JPS6270295A - Production of n-type semiconductive diamond film - Google Patents

Production of n-type semiconductive diamond film

Info

Publication number
JPS6270295A
JPS6270295A JP21184985A JP21184985A JPS6270295A JP S6270295 A JPS6270295 A JP S6270295A JP 21184985 A JP21184985 A JP 21184985A JP 21184985 A JP21184985 A JP 21184985A JP S6270295 A JPS6270295 A JP S6270295A
Authority
JP
Japan
Prior art keywords
gas
dopant
film
hydrocarbon
diamond film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21184985A
Other languages
Japanese (ja)
Other versions
JPH0371397B2 (en
Inventor
Naoharu Fujimori
直治 藤森
Takahiro Imai
貴浩 今井
Akira Doi
陽 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21184985A priority Critical patent/JPS6270295A/en
Publication of JPS6270295A publication Critical patent/JPS6270295A/en
Publication of JPH0371397B2 publication Critical patent/JPH0371397B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To enable the production of a diamond film exhibiting N-type semiconductor characteristics, by carrying out the thermal decomposition or plasma decomposition of a dopant gas containing P, As and/or Sb and a reaction gas containing a hydrocarbon and hydrogen at a specific ratio thereby depositing the film on a substrate. CONSTITUTION:A diamond film is synthesized in vapor phase from a mixed gas of hydrocarbon and hydrogen containing P, As and/or Sb as a dopant by the following procedure. A hydrocarbon gas such as CH4, C2H6, etc., and H2 gas are mixed to a dopant-containing gas such as PH3, AsH3, etc., capable of easily releasing an impurity such as P, As, Sb, etc., by decomposition. The molar ratio of C to H2 in the mixed gas is adjusted to 0.001-0.02 and the molar ratio of the dopant element such as P, As, Sb, etc., to C is adjusted to 0.0001-0.002. The hydrocarbon in the mixed gas is thermally decomposed by plasma CVD process or CVD process to obtain a diamond thin film having N-type semiconductor characteristic and usable effectively for electronic device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子機器等に利用されるn型半導体特性を示す
ダイヤモンド膜の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a diamond film exhibiting n-type semiconductor characteristics used in electronic devices and the like.

〔従来技術の背景〕[Background of conventional technology]

炭素(C)は周期律表でlVb族に属しており、同族の
Siと同様に半導体材料として使用できる可能性がある
と考えられている。しかしながらグラファイトでは導電
性が高く半導体としては用いることはできない、これに
対しダイヤモンドは絶縁性であるので不純物添加等の方
法によって半導体としての使用が理論的には考えられる
Carbon (C) belongs to the lVb group in the periodic table, and is thought to have the potential to be used as a semiconductor material like Si, which is in the same group. However, graphite is highly conductive and cannot be used as a semiconductor, whereas diamond is insulating, so it is theoretically possible to use it as a semiconductor by adding impurities or other methods.

天然に産する大部分のダイヤモンドは電気的に10■Ω
値以上の絶縁体であるが、ご(一部に10°〜104Ω
備と低い抵抗値のものがありnb型と呼ばれている。1
そしてこのnb型・はその詳しい調査によってp型半導
体であることが明らかになっており、超高圧高温合成に
よって人工的に製造することができるものである。しか
しながらn型半導体のダイヤモンドは天然に存在しない
ばかりでなく超高圧合成でも製造例は現在のところない
Most naturally occurring diamonds have an electrical resistance of 10 Ω.
Although it is an insulator with a value exceeding the
There is a type with a low resistance value, which is called the nb type. 1
Detailed investigation has revealed that this nb-type semiconductor is a p-type semiconductor, which can be artificially produced by ultra-high pressure and high temperature synthesis. However, diamond, which is an n-type semiconductor, not only does not exist naturally, but also there is no example of its production by ultra-high pressure synthesis.

ダイヤモンド半導体素子の作製の為にはp、  n両型
の半導体が不可欠であり、これを可能にする為9・9オ
ンを主入法によ−てn型半導体のイ乍製カベ試みられて
きた。その結果、Sb、^r、C等のイオン注入層とB
注入層との接合が整流作用゛に近いV−■特性を持つこ
とが報告されている。しかしn型半導体の確認までは至
ってない。
Both p- and n-type semiconductors are essential for the production of diamond semiconductor devices, and to make this possible, attempts have been made to manufacture n-type semiconductors using the 9.9-on method. Ta. As a result, an ion-implanted layer of Sb, ^r, C, etc. and B
It has been reported that the junction with the injection layer has V-■ characteristics close to rectifying action. However, it has not yet been confirmed that it is an n-type semiconductor.

〔発明の開示〕[Disclosure of the invention]

本発明は、上述の課題を解決する為に薄膜法を用いたn
型半導体層の製造法を提供するものである。
In order to solve the above-mentioned problems, the present invention provides an n-type film using a thin film method.
The present invention provides a method for manufacturing a type semiconductor layer.

本発明の特徴は、炭化水素と水素との混合ガスからダイ
ヤモンド膜の気相合成時にP、^S等の不純物(ドーパ
ント)を分解放出し易いガスを導入することにある。こ
のような気相合成に不純物を入れると高圧合成に比べて
はるかに均一に含有されると共にイオン注入法に比べて
無理のない位置に不純物原子が入り込み、ドーパントと
しての効果を出し易いと考えた0本発明はこの考えによ
り実現したもので従来の高圧合成法やイオン注入法によ
って合成されなかったn型半導体を合成することに成功
した。
A feature of the present invention is that a gas that easily decomposes and releases impurities (dopants) such as P and ^S is introduced during vapor phase synthesis of a diamond film from a mixed gas of hydrocarbons and hydrogen. We believe that when impurities are introduced in this type of vapor phase synthesis, they are contained much more uniformly than in high-pressure synthesis, and the impurity atoms can enter into more reasonable positions than in ion implantation, making it easier to produce the effect as a dopant. The present invention was realized based on this idea, and succeeded in synthesizing an n-type semiconductor that could not be synthesized by conventional high-pressure synthesis methods or ion implantation methods.

本発明を実施するには薄膜ダイヤの合成手法を利用する
必要があるが、炭素が残留せず結晶質の良い膜の形成に
は、プラズマCVDもしくはCVD法が望ましい。
In order to carry out the present invention, it is necessary to use a thin film diamond synthesis method, and plasma CVD or CVD is preferable for forming a film with good crystallinity without residual carbon.

この場合の反応ガスは炭化水素のCとHアとのモル比が
0.001以上0.02以下が適当である。
In this case, it is appropriate that the reaction gas has a molar ratio of hydrocarbon C to H a of 0.001 or more and 0.02 or less.

0.001以下では膜の成長速度は極めて遅く経済的で
なく、又0.02以上では膜の結晶性が悪く半導体層と
して十分な性能を付加すること−ができない。
If it is less than 0.001, the growth rate of the film will be extremely slow and uneconomical, and if it is more than 0.02, the crystallinity of the film will be poor and it will not be possible to add sufficient performance as a semiconductor layer.

又、ドーパント元素としてはP、^s、Sbが通常のS
tをn型にする場合と同じく効果があった。
In addition, as dopant elements, P, ^s, and Sb are ordinary S.
This had the same effect as when t was made n-type.

ドーパント元素とCとのモル比は0.0001以上0.
002とすべきである。 0.0001以下では半導体
として十分な導電率を出せない。又0.002以上では
膜中に歪が生し、欠陥の多い膜となり半導体素子への適
用が困難になる。
The molar ratio between the dopant element and C is 0.0001 or more and 0.0001 or more.
It should be 002. If it is less than 0.0001, sufficient conductivity as a semiconductor cannot be achieved. Moreover, if it is more than 0.002, strain will occur in the film, resulting in a film with many defects, making it difficult to apply to semiconductor devices.

このようにして作製した膜はダイヤモンド単結晶上に形
成させればエピタキシャル成長して単結晶膜が得られる
ため半導体素子としての利用が可能となる。
If the film produced in this way is formed on a diamond single crystal, it can be epitaxially grown to obtain a single crystal film, so that it can be used as a semiconductor element.

又薄膜形成法としてはプラズマCVD、CVDのいずれ
においても可能である。ガスの励起手段としては高周波
、マイクロ波、電子線、レーザー等いずれの手段でも効
果に変わりはなく、磁場により励起をさらに強くするこ
とも本発明の範囲である。
Further, as a thin film forming method, either plasma CVD or CVD can be used. As a gas excitation means, any means such as high frequency, microwave, electron beam, laser, etc. will have the same effect, and it is also within the scope of the present invention to further strengthen the excitation using a magnetic field.

次に実施例によって詳しく説明をする 実施例1 公知プラズマCVD (マイクロ波で2.45Gbを用
いてプラズマを点火する。)法にて、CHオニ0.5%
、  Plh: 0.05%残H2からなる反応ガスよ
りダイヤモンド単結晶基板上の(111)面に0.5μ
mの厚さのダイヤモンド膜を形成した。この膜の電気抵
抗はlXl0’Ω備と計測され、ホール効果を測定した
結果n型半導体であることを確認した。
Next, a detailed explanation will be given with reference to Examples.Example 1 Using a known plasma CVD method (in which plasma is ignited using 2.45 Gb of microwave), CH 0.5%
, Plh: A 0.5 μ
A diamond film with a thickness of m was formed. The electrical resistance of this film was measured to be 1X10'Ω, and as a result of measuring the Hall effect, it was confirmed that it was an n-type semiconductor.

実施例2 実施例1と同し方法にて第1表に示す組成の反応ガスよ
り、各0.3μmのダイヤモンド膜を作成して電気抵抗
と電子の移動度を測定した。その結果を表に示す。
Example 2 Diamond films each having a thickness of 0.3 μm were prepared using the same method as in Example 1 using the reaction gas having the composition shown in Table 1, and the electrical resistance and electron mobility were measured. The results are shown in the table.

第1表 実施例3 公知CVD (約210(lに加熱したタングステンフ
ィラメントにより熱分解)により、C/Hz =0.0
05. A s / C= 0.001 となるようニ
CJa+ASHt+H!ガスを混合し、0.3μmの膜
を人工ダイヤ単結晶上に形成して電気抵抗値とボール効
果を測定したところ、抵抗が1.5X10−Ωlでn型
と同定され、電子の移動度は720CII+ /ν、s
ecであった。
Table 1 Example 3 C/Hz = 0.0 by known CVD (pyrolysis with a tungsten filament heated to about 210 l)
05. CJa+ASHt+H so that A s / C = 0.001! When the gas was mixed and a 0.3 μm film was formed on an artificial diamond single crystal and the electrical resistance and ball effect were measured, the resistance was 1.5 x 10-Ωl and it was identified as n-type, and the electron mobility was 720CII+ /ν,s
It was ec.

手続補正書 昭和61年6月す日Procedural amendment June 1986

Claims (3)

【特許請求の範囲】[Claims] (1)ドーパント元素を含むガス、炭化水素ガス及び水
素から成る反応ガスを熱分解、もしくはプラズマ分解し
て基板上に蒸着することを特徴とするn型半導体ダイヤ
モンド膜の製造法。
(1) A method for producing an n-type semiconductor diamond film, characterized in that a reaction gas consisting of a gas containing a dopant element, a hydrocarbon gas, and hydrogen is thermally decomposed or plasma decomposed and deposited on a substrate.
(2)該ドーパント元素がP、AsもしくはSbからな
る群から選ばれた1種以上であることを特徴とする特許
請求の範囲第1項記載のn型半導体ダイヤモンド膜の製
造法。
(2) The method for producing an n-type semiconductor diamond film according to claim 1, wherein the dopant element is one or more selected from the group consisting of P, As, or Sb.
(3)該反応ガス中の炭素原子と水素分子のモル比が0
.001〜0.02であり、ドーパント原子と炭素原子
とのモル比が0.0001〜0.002であることを特
徴とする特許請求の範囲第1項記載のn型半導体ダイヤ
モンド膜の製造法。
(3) The molar ratio of carbon atoms to hydrogen molecules in the reaction gas is 0
.. 001 to 0.02, and the molar ratio of dopant atoms to carbon atoms is 0.0001 to 0.002.
JP21184985A 1985-09-24 1985-09-24 Production of n-type semiconductive diamond film Granted JPS6270295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21184985A JPS6270295A (en) 1985-09-24 1985-09-24 Production of n-type semiconductive diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21184985A JPS6270295A (en) 1985-09-24 1985-09-24 Production of n-type semiconductive diamond film

Publications (2)

Publication Number Publication Date
JPS6270295A true JPS6270295A (en) 1987-03-31
JPH0371397B2 JPH0371397B2 (en) 1991-11-13

Family

ID=16612606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21184985A Granted JPS6270295A (en) 1985-09-24 1985-09-24 Production of n-type semiconductive diamond film

Country Status (1)

Country Link
JP (1) JPS6270295A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196094A (en) * 1987-10-07 1989-04-14 Tokai Univ Process for introducing impurity in low pressure synthesis of diamond
JPH02239193A (en) * 1989-03-13 1990-09-21 Idemitsu Petrochem Co Ltd Diamond semiconductor and its production
EP0458466A2 (en) * 1990-05-21 1991-11-27 Sumitomo Electric Industries, Limited Hall device
WO1992001314A1 (en) * 1990-07-06 1992-01-23 Advanced Technology Materials, Inc. N-type semiconducting diamond, and method of making the same
US5274268A (en) * 1987-04-01 1993-12-28 Semiconductor Energy Laboratory Co., Ltd. Electric circuit having superconducting layered structure
US5304461A (en) * 1989-01-10 1994-04-19 Kabushiki Kaisha Kobe Seiko Sho Process for the selective deposition of thin diamond film by gas phase synthesis
US5400738A (en) * 1989-03-07 1995-03-28 Sumitomo Electric Industries, Ltd. Method for producing single crystal diamond film
WO2000001867A1 (en) * 1998-07-07 2000-01-13 Japan Science And Technology Corporation Method for synthesizing n-type diamond having low resistance
US6162412A (en) * 1990-08-03 2000-12-19 Sumitomo Electric Industries, Ltd. Chemical vapor deposition method of high quality diamond
JP2011168441A (en) * 2010-02-18 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> N-type semiconductor diamond and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135117A (en) * 1982-01-29 1983-08-11 Natl Inst For Res In Inorg Mater Preparation of diamond
JPS5930709A (en) * 1982-08-13 1984-02-18 Toa Nenryo Kogyo Kk Method for synthesizing carbon film and carbon granule in vapor phase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58135117A (en) * 1982-01-29 1983-08-11 Natl Inst For Res In Inorg Mater Preparation of diamond
JPS5930709A (en) * 1982-08-13 1984-02-18 Toa Nenryo Kogyo Kk Method for synthesizing carbon film and carbon granule in vapor phase

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274268A (en) * 1987-04-01 1993-12-28 Semiconductor Energy Laboratory Co., Ltd. Electric circuit having superconducting layered structure
JPH0196094A (en) * 1987-10-07 1989-04-14 Tokai Univ Process for introducing impurity in low pressure synthesis of diamond
JPH0372600B2 (en) * 1987-10-07 1991-11-19 Univ Tokai
US5304461A (en) * 1989-01-10 1994-04-19 Kabushiki Kaisha Kobe Seiko Sho Process for the selective deposition of thin diamond film by gas phase synthesis
US5400738A (en) * 1989-03-07 1995-03-28 Sumitomo Electric Industries, Ltd. Method for producing single crystal diamond film
JPH02239193A (en) * 1989-03-13 1990-09-21 Idemitsu Petrochem Co Ltd Diamond semiconductor and its production
EP0458466A2 (en) * 1990-05-21 1991-11-27 Sumitomo Electric Industries, Limited Hall device
WO1992001314A1 (en) * 1990-07-06 1992-01-23 Advanced Technology Materials, Inc. N-type semiconducting diamond, and method of making the same
US6162412A (en) * 1990-08-03 2000-12-19 Sumitomo Electric Industries, Ltd. Chemical vapor deposition method of high quality diamond
WO2000001867A1 (en) * 1998-07-07 2000-01-13 Japan Science And Technology Corporation Method for synthesizing n-type diamond having low resistance
US6340393B1 (en) 1998-07-07 2002-01-22 Japan Science And Technology Corporation Method for synthesizing n-type diamond having low resistance
JP2011168441A (en) * 2010-02-18 2011-09-01 Nippon Telegr & Teleph Corp <Ntt> N-type semiconductor diamond and method for producing the same

Also Published As

Publication number Publication date
JPH0371397B2 (en) 1991-11-13

Similar Documents

Publication Publication Date Title
Fujimori et al. Characterization of conducting diamond films
US4767517A (en) Process of depositing diamond-like thin film by cathode sputtering
Nishitani-Gamo et al. Sulfur-doped homoepitaxial (001) diamond with n-type semiconductive properties
JP3568394B2 (en) Method for synthesizing low-resistance n-type diamond
Shohno et al. Epitaxial growth of BP compounds on Si substrates using the B2H6-PH3-H2 system
CA2185217A1 (en) Process to produce diamond films
CN1849417A (en) Growth of ultra-high purity silicon carbide crystals in an ambient containing hydrogen
US10017878B2 (en) Growth method of graphene
Nishitani-Gamo et al. Homoepitaxial diamond growth with sulfur-doping by microwave plasma-assisted chemical vapor deposition
US5001452A (en) Semiconducting diamond and process for producing the same
JPS6270295A (en) Production of n-type semiconductive diamond film
Takigawa et al. Hetero-Epitaxial Growth of Boron Monophosphide on Silicon Substrate Using B2H6-PH3-H2 System
JPH0658891B2 (en) Thin film single crystal diamond substrate
JPH04238895A (en) Diamond film and its production
Harris et al. Low-pressure growth of single-crystal silicon carbide
JPS63283014A (en) Silicon carbide semiconductor element
Takahashi et al. Effect of acceptor impurity addition in low temperature growth of 3C-SiC
JP2620293B2 (en) Diamond modification method
Saito et al. Morphology and semiconducting properties of homoepitaxially grown phosphorus-doped (1 0 0) and (1 1 1) diamond films by microwave plasma-assisted chemical vapor deposition using triethylphosphine as a dopant source
JP2645439B2 (en) Semiconductor diamond and its manufacturing method
JPS63302516A (en) Semiconductor diamond and manufacture thereof
JPH04175295A (en) Production of semiconductive diamond
JPS63185894A (en) Production of diamond thin film or diamond-like thin film
JPS6115150B2 (en)
JP2001270712A (en) Silicon-containing gadolinium polyboride and method for producing the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term