JPS63302516A - Semiconductor diamond and manufacture thereof - Google Patents

Semiconductor diamond and manufacture thereof

Info

Publication number
JPS63302516A
JPS63302516A JP62137700A JP13770087A JPS63302516A JP S63302516 A JPS63302516 A JP S63302516A JP 62137700 A JP62137700 A JP 62137700A JP 13770087 A JP13770087 A JP 13770087A JP S63302516 A JPS63302516 A JP S63302516A
Authority
JP
Japan
Prior art keywords
diamond
dopant element
semiconductor diamond
raw material
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62137700A
Other languages
Japanese (ja)
Other versions
JPH07105353B2 (en
Inventor
Hideaki Nakahata
英章 中幡
Takahiro Imai
貴浩 今井
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP62137700A priority Critical patent/JPH07105353B2/en
Priority to DE3818719A priority patent/DE3818719C2/en
Priority to US07/201,151 priority patent/US5001452A/en
Publication of JPS63302516A publication Critical patent/JPS63302516A/en
Publication of JPH07105353B2 publication Critical patent/JPH07105353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • H01L29/1602Diamond

Abstract

PURPOSE:To obtain an N-type semiconductor diamond which has not been developed by containing S as a dopant element. CONSTITUTION:S is contained as a dopant element. It is preferable that the concentration of S as the dopant element is brought to 1X10<10>-1X10<20>cm<-3>. A vapor-phase thin-film synthetic method using a raw material gas, the ratio S/C of the atomicity of S therein to the atomicity of C therein extends over 0.001%-1.0%, an extra-high voltage synthetic method or an ion implantation method is employed as the manufacture of the dopant element. A diamond film such as an S-doped diamond film is grown onto a diamond single crystal substrate (111) surface, using the raw material gas such as a reaction gas consisting of 0.5% CH4, 0.000005-0.005% H2S and H2 as the reminder as a raw material through a microwave plasma CVD method. Or a material in which S is mixed into diamond powder is dissolved into an Fe-Ni solvent, and an S-doped diamond single crystal is obtained under the conditions of 5GPa and approximately 1400 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子機器等に利用さ゛れる半導体特性を有する
ダイヤモンドに関するものでろる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to diamond having semiconducting properties and used in electronic devices and the like.

〔従来の技術〕[Conventional technology]

ダイヤモンドは、バンドギャップがa5eVであり本来
絶縁性のものであるが、81やGeなどと同様に不純物
をドーピングすることにより不純物準位を形成し、P型
及びN型の半導体特性を持たせることが当然考えられる
Diamond has a band gap of a5eV and is originally insulating, but like 81 and Ge, it can be doped with impurities to form an impurity level and have P-type and N-type semiconductor characteristics. can of course be considered.

実際、天然ダイヤモンドの中にはBを含有したP型半導
体が存在しており、ubダイヤと呼ばれている。このn
bダイヤは超高圧合成法によっても製造できる。しかし
N型の半導性を示すダイヤモンドは天然には存在しない
。また、超高圧合成法で製造されたものでもN型の半導
性が確認された例はない。
In fact, some natural diamonds contain P-type semiconductors containing B, and are called UB diamonds. This n
B diamonds can also be produced by ultra-high pressure synthesis. However, diamonds that exhibit N-type semiconductivity do not exist naturally. Furthermore, there is no example in which N-type semiconductivity has been confirmed even in materials manufactured by ultra-high pressure synthesis.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

PM接合を利用した半導体ダイヤモンドデバイスを形成
するためには、N型半導体ダイヤモンドが不可欠である
N-type semiconductor diamond is essential for forming semiconductor diamond devices using PM junctions.

しかしながらこれまで、超高圧合成法やイオン注入法に
よりダイヤモンドへのドーピングが試られているが、N
型半導体ダイヤモンドを得られた例はない。
However, attempts have been made to dope diamond using ultra-high pressure synthesis and ion implantation methods, but N
There is no example of obtaining type semiconductor diamond.

本発明はこのような現状に鑑みて、N型半導体ダイヤモ
ンド及びその製法を提供することを目的とするものであ
る。
In view of the current situation, it is an object of the present invention to provide an N-type semiconductor diamond and a method for producing the same.

〔問題点を解決するための手段及び作用]本発明者等は
、ダイヤモンドへのドーパント元素として通常まず考え
られる。
[Means and effects for solving the problems] The present inventors usually first consider dopant elements for diamond.

V族元素OPやAs等ではなく、Pやム8等より共有結
合半径が小さくCのそれに近い値を有する8をドーパン
トとして用いることを考えつい九、そして種々実験、検
討の結果、例えば気相薄膜合成法、超高圧単結晶合成法
、イオン注入法等により8を含有するダイヤモンド金製
造することができ、この日ドープダイヤモンドは、Sの
形成したドナーレベルからの自由′電子によりN型の半
導性を示すことを見出し、本発明に到達したのである。
Instead of group V elements such as OP and As, we came up with the idea of using 8 as a dopant, which has a smaller covalent bond radius than P and Mu 8, and has a value close to that of C. As a result of various experiments and studies, for example It is possible to produce diamond gold containing 8 by synthesis methods, ultra-high pressure single crystal synthesis methods, ion implantation methods, etc., and today doped diamonds are made into N-type semiconductors by free electrons from the donor level formed by S. The present invention was achieved based on the discovery that the present invention exhibits the same properties as the above.

すなわち本発明はドーパント元素としてSt−含有して
なる半導体ダイヤモンドに関するものであり、Sの濃度
がlX10”〜I X 10!0C3−”]であるもの
が特に好ましい。
That is, the present invention relates to a semiconductor diamond containing St- as a dopant element, and it is particularly preferable that the S concentration is 1X10" to IX10!0C3-".

さらに本発明はSを含有してなる半導体ダイヤそンドを
製造する方法として、原料ガス中のSの原子数とCの原
子数の比8 / C(%)が(1001〜to係である
原料ガスを用いて気相薄膜合成法により、Sを含有して
なる半導体ダイヤモンドを得ることを特徴とする半導体
ダイヤモンドの製造゛方法、超高圧合成法により、ドー
パント元素として8を含有してなる半導体ダイヤモンド
を得ることを特徴とする半導体ダイヤモンドの製造方法
及びイオン注入法によりドーパント元素としてSを含有
してなる半導体ダイヤモンドを得ることを特徴とする半
導体ダイヤモンドの製造方法を提供する。
Furthermore, the present invention provides a method for manufacturing a semiconductor diamond containing S, in which the ratio of the number of S atoms to the number of C atoms in the raw material gas is 8/C (%) (1001~to). A method for producing a semiconductor diamond, characterized in that a semiconductor diamond containing S is obtained by a vapor phase thin film synthesis method using a gas, and a semiconductor diamond containing 8 as a dopant element by an ultra-high pressure synthesis method. The present invention provides a method for producing a semiconductor diamond, which is characterized by obtaining a semiconductor diamond, and a method for producing a semiconductor diamond, which is characterized by obtaining a semiconductor diamond containing S as a dopant element by an ion implantation method.

ダイヤモンドは、PI族元素0の共有結合で構成されて
いる。不純物としてダイヤモンド中に入った■族元素の
SがCの格子位置に置換されると、共有結合に携わらな
い外殻電子が2個存在することになり、これらはドナー
電子となってダイヤモンドはN型の半導性を示すと考え
られる。つまり日はダイヤモンドにドープされて禁制帯
中にドナーレベtvt−形成する。
Diamond is composed of covalent bonds of zero PI group elements. When S, a group element that has entered diamond as an impurity, is substituted at the lattice position of C, there are two outer shell electrons that do not participate in covalent bonds, and these become donor electrons, making diamond N It is thought to exhibit type semiconductivity. That is, the diamond is doped to form a donor level tvt in the forbidden band.

またSが、たとえばCの格子間に入り、この空孔とペア
になった場合のように、Cの格子位置に置換されていな
くても、ドナーレベルを形成できる場合もあると予想さ
れる。
It is also expected that there may be cases where S can form a donor level even if it is not substituted at the lattice position of C, such as when S enters the interstitial space of C and pairs with this vacancy.

また実際、以上のような考えにもとづき、Sドープダイ
ヤモンドを作成したとζろN型の半導性を示すことが確
認された。
In fact, it has been confirmed that S-doped diamond produced based on the above idea exhibits ζ-N type semiconductivity.

本発明の8ド一プ半導体ダイヤモンドにおいて、B濃度
はlX101@〜1×10冨o(1″″!〕未満では半
導体として用いるには抵抗率が高くナリスぎるし、I 
Xl 0” (eyR−’lt”越えると電導形態が金
喝的になり半導体としての性質を失なう。
In the 8-doped semiconductor diamond of the present invention, if the B concentration is less than 1x101@~1x10(1""!), the resistivity is too high and too naive to be used as a semiconductor, and the I
When Xl 0''(eyR-'lt'' is exceeded), the conduction form becomes opaque and loses its properties as a semiconductor.

本発明の8ド一プ半導体ダイヤモンドは気相薄膜合成法
、超高圧単結晶合成法、イオン注入法等の公知技術を用
いて製造することができ、いずれの方法によっても得ら
れた8ド一プ半導体ダイヤモンドの性質に差異はなかっ
た。
The 8-doped semiconductor diamond of the present invention can be produced using known techniques such as vapor phase thin film synthesis, ultra-high pressure single crystal synthesis, and ion implantation. There was no difference in the properties of the semiconducting diamond.

気相薄膜合成法により本発明の8ド一プ半導体ダイヤモ
ンドを製造する場合、摩料ガス中の8原子数とC原子数
の比a / C比が(1001%〜1.01として行な
うことが好ましい。この範囲で行なうことにより得られ
たダイヤ中の8濃度を半導体として有効なlX101G
〜lX10”・Ca+−”]にすることができるからで
ある。
When producing the 8-doped semiconductor diamond of the present invention by the vapor phase thin film synthesis method, the ratio a/C ratio of the number of 8 atoms to the number of C atoms in the abrasive gas can be set as (1001% to 1.01). Preferably, the concentration of 8 in the diamond obtained by performing this range is 1X101G, which is effective as a semiconductor.
˜l×10″·Ca+−″].

原材料としては、C供給源として例えばOH4゜a冨a
s t  0111等の炭化水素、0HIOH、C,H
,OH等のアルコール等が挙げられ、S供給源としては
例えばH鵞s、as鴛、  so茸、  8P、  等
が挙げられる。
As a raw material, as a C supply source, for example, OH4゜a Toma
Hydrocarbons such as s t 0111, 0HIOH, C, H
, OH, and the like, and examples of the S supply source include H. spp., .

気相薄膜合成法として種々の従来技術を応用できる。−
例としてマイクロ波プラズマCvD法を用いる場合を説
明すると、チャンバー内に反応ガスを導入し、一方マグ
ネトロンから発振されたマイクロ波を方形導波管により
チャンバーまで導き、チャンバー内反応ガスに放電を起
こしてダイヤモンドの合成反応を行う。
Various conventional techniques can be applied as a vapor phase thin film synthesis method. −
To explain the case of using the microwave plasma CvD method as an example, a reaction gas is introduced into a chamber, and on the other hand, microwaves oscillated from a magnetron are guided to the chamber through a rectangular waveguide, causing a discharge in the reaction gas inside the chamber. Carry out a diamond synthesis reaction.

本発明のSドープダイヤモンド分気相薄膜合成法、超高
圧単結晶合成法又はイオン注入法で得る具体的条件、方
法については、以下の実施例にて詳説する。
Specific conditions and methods obtained by the S-doped diamond partial vapor phase thin film synthesis method, ultra-high pressure single crystal synthesis method, or ion implantation method of the present invention will be explained in detail in the following Examples.

〔実tIfJ例〕[Actual tIfJ example]

実施例1 公知のマイクロ波プラズマOVD法にて、OH4:α5
俤、HIB :αooooos〜α005憾、残部H8
からなる反応ガスを原料としてダイヤモンド単結晶基板
(111)面上に、0.5μmの厚さの本発明のSドー
プダイヤモンドat−成長させた6反応系内圧力は30
 Torr 、  マイクロ波は2.54GBg、出力
350Wであった。
Example 1 Using a known microwave plasma OVD method, OH4:α5
俤, HIB: αoooooos~α005, remainder H8
The S-doped diamond of the present invention with a thickness of 0.5 μm was grown on the surface of the diamond single crystal substrate (111) using a reaction gas consisting of as a raw material.The pressure inside the reaction system was 30
Torr, the microwave was 2.54GBg, and the output was 350W.

得られたSドープダイヤエピタキシャル膜の抵抗率測定
とホール測定を行ったところ、ホール係数はいずれも(
ハ)でありN型半導体であることが確認された。さらに
STM8によりダイヤモンド中のB濃度の測定を行った
。8 / O係及び自由電子密度、電子移動度、8濃度
の測定を表1にまとめて示す、なお、NIh1と庵2の
試料の8濃度は自由電子密度から推定した値である。
When resistivity and Hall measurements were performed on the resulting S-doped diamond epitaxial film, the Hall coefficients were (
c), and it was confirmed that it was an N-type semiconductor. Furthermore, the B concentration in the diamond was measured using STM8. Measurements of the 8/O ratio, free electron density, electron mobility, and 8 concentration are summarized in Table 1. Note that the 8 concentration of the NIh1 and Iori 2 samples is a value estimated from the free electron density.

表1 実施例2 ダイヤモンド粉末に8を混入したものt−F′e−IJ
i  溶媒に溶かし込み、5 opa %約1400℃
の条件下に7時間置くことで超高圧法により本発明の8
ドープダイヤモンド単結晶が得られた。
Table 1 Example 2 Diamond powder mixed with 8 t-F'e-IJ
i Dissolved in solvent, 5 opa% approximately 1400℃
8 of the present invention by ultra-high pressure method by placing it under the conditions of 7 hours.
A doped diamond single crystal was obtained.

この本発明品について、実施例1と同様の測定を行った
ところやはりホール係数は(へ)であった。
When this product of the present invention was measured in the same manner as in Example 1, the Hall coefficient was (f).

原料の8原子数とC原子数の比S/C(イ)、自由電子
密度、電子移動度、B濃度は表2に示すとおりであった
。NIh9のB濃度は自由電子密度からの推定値である
The ratio S/C (a) of the number of 8 atoms to the number of C atoms, free electron density, electron mobility, and B concentration of the raw material were as shown in Table 2. The B concentration of NIh9 is an estimated value from the free electron density.

表2 実施fR3 イオン注入法により1日加速電圧150KeV。Table 2 Implementation fR3 Acceleration voltage is 150 KeV per day using ion implantation method.

S注入ft 10 ” 1/era”の条件でダイヤモ
ンド単結晶に8を注入して1本発明の8ドープダイヤモ
ンドを製造した。得られたSドープダイヤモンドに真空
中でアニールを施した後、ホール測定と抵抗率測定を行
った。ホール係数は(→でありN型半導体であることが
確認された。B注入部の平均自由電子密度は10 ” 
l” 176g” ]、電子移動度ば40 [cry”
/ V、 a ]  であった。
An 8-doped diamond according to the present invention was manufactured by implanting 8 into a diamond single crystal under the conditions of S implantation ft 10 "1/era". After annealing the obtained S-doped diamond in a vacuum, hole measurements and resistivity measurements were performed. The Hall coefficient is (→, confirming that it is an N-type semiconductor.The average free electron density of the B injection part is 10"
l” 176g”], electron mobility is 40 [cry”
/V,a].

〔発明の効果] 以上の説明と実施例の結果から明らかなように、本発明
のSf:含有したダイヤモンドは、従来得られていなか
ったN型の半導体ダイヤモンドを実現したものである。
[Effects of the Invention] As is clear from the above description and the results of the examples, the Sf:containing diamond of the present invention realizes an N-type semiconductor diamond, which has not been obtained conventionally.

したがって本発明の8を含有するダイヤモンドを用いる
ことにより、PM接合を利用したダイヤモンド半導体デ
バイスの作製が可能となる。
Therefore, by using the diamond containing 8 of the present invention, it becomes possible to fabricate a diamond semiconductor device using PM junction.

また、サーミスターへの応用や、単に導電性の要求され
るダイヤモンドコーティングgトLての応用も考えられ
る。これらの場合には多結晶ダイヤモンドでも有効でめ
る。
Further, application to thermistors and diamond coatings that simply require electrical conductivity are also possible. In these cases, polycrystalline diamond may also be effective.

このようにダイヤそンド半導体としての広い用途への可
能性を開(本発明のSト°−プダイヤモノドは、その製
法上は公知技術を応用することで容易に得られる点でも
有利である。
As described above, the S-top diamond of the present invention has the advantage of being easily obtained by applying known technology.

Claims (5)

【特許請求の範囲】[Claims] (1)ドーパント元素としてSを含有してなる半導体ダ
イヤモンド。
(1) A semiconductor diamond containing S as a dopant element.
(2)ドーパント元素としてSを1×10^1^0〜1
×10^2^0〔cm^−^3〕の濃度を含有する特許
請求の範囲第1項に記載される半導体ダイヤモンド。
(2) S as a dopant element at 1×10^1^0~1
The semiconductor diamond according to claim 1, containing a concentration of x10^2^0 [cm^-^3].
(3)原料ガス中のSの原子数とCの原子数の比S/C
(%)が0.001%〜1.0%である原料ガスを用い
て気相薄膜合成法により、Sを含有してなる半導体ダイ
ヤモンドを得ることを特徴とする半導体ダイヤモンドの
製造方法。
(3) Ratio of the number of S atoms to the number of C atoms in the source gas S/C
1. A method for producing a semiconductor diamond, the method comprising obtaining a semiconductor diamond containing S by a vapor phase thin film synthesis method using a raw material gas having an S content (%) of 0.001% to 1.0%.
(4)超高圧合成法によりドーパント元素としてSを含
有してなる半導体ダイヤモンドを得ることを特徴とする
半導体ダイヤモンドの製造方法。
(4) A method for producing a semiconductor diamond, which comprises obtaining a semiconductor diamond containing S as a dopant element by an ultra-high pressure synthesis method.
(5)イオン注入法によりドーパント元素としてSを含
有してなる半導体ダイヤモンドを得ることを特徴とする
半導体ダイヤモンドの製造方法。
(5) A method for producing a semiconductor diamond, which comprises obtaining a semiconductor diamond containing S as a dopant element by an ion implantation method.
JP62137700A 1987-06-02 1987-06-02 Semiconductor diamond and method for manufacturing the same Expired - Lifetime JPH07105353B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62137700A JPH07105353B2 (en) 1987-06-02 1987-06-02 Semiconductor diamond and method for manufacturing the same
DE3818719A DE3818719C2 (en) 1987-06-02 1988-06-01 N-type semiconductor diamond and process for producing the same
US07/201,151 US5001452A (en) 1987-06-02 1988-06-02 Semiconducting diamond and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62137700A JPH07105353B2 (en) 1987-06-02 1987-06-02 Semiconductor diamond and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPS63302516A true JPS63302516A (en) 1988-12-09
JPH07105353B2 JPH07105353B2 (en) 1995-11-13

Family

ID=15204772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62137700A Expired - Lifetime JPH07105353B2 (en) 1987-06-02 1987-06-02 Semiconductor diamond and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JPH07105353B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058534A1 (en) * 1999-03-26 2000-10-05 Japan Science And Technology Corporation N-type semiconductor diamond and its fabrication method
US6756086B2 (en) 1999-07-21 2004-06-29 Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry Method for the fabrication of a diamond semiconductor
JP2015030072A (en) * 2013-08-05 2015-02-16 住友電気工業株式会社 Tool having nano-polycrystalline diamond, working system, and working method
JP2015030645A (en) * 2013-08-05 2015-02-16 住友電気工業株式会社 Nano-polycrystalline diamond and electron gun including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4789035B2 (en) * 1999-03-26 2011-10-05 独立行政法人科学技術振興機構 Semiconductor device using n-type diamond

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058534A1 (en) * 1999-03-26 2000-10-05 Japan Science And Technology Corporation N-type semiconductor diamond and its fabrication method
US7063742B1 (en) 1999-03-26 2006-06-20 Japan Science And Technology Agency N-type semiconductor diamond and its fabrication method
US6756086B2 (en) 1999-07-21 2004-06-29 Agency Of Industrial Science And Technology, Ministry Of International Trade And Industry Method for the fabrication of a diamond semiconductor
JP2015030072A (en) * 2013-08-05 2015-02-16 住友電気工業株式会社 Tool having nano-polycrystalline diamond, working system, and working method
JP2015030645A (en) * 2013-08-05 2015-02-16 住友電気工業株式会社 Nano-polycrystalline diamond and electron gun including the same

Also Published As

Publication number Publication date
JPH07105353B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
Diaz et al. Molecular beam epitaxy of the van der Waals heterostructure MoTe2 on MoS2: phase, thermal, and chemical stability
Nishitani-Gamo et al. Sulfur-doped homoepitaxial (001) diamond with n-type semiconductive properties
CN109402739A (en) A kind of two dimension bismuth oxygen selenium atom crystalline material, and its preparation method and application
Nishitani-Gamo et al. Homoepitaxial diamond growth with sulfur-doping by microwave plasma-assisted chemical vapor deposition
US5001452A (en) Semiconducting diamond and process for producing the same
Kim et al. Theoretically predicted and experimentally determined effects of the Si/(Si+ C) gas phase ratio on the growth and character of monocrystalline beta silicon carbide films
JPS63302516A (en) Semiconductor diamond and manufacture thereof
JPH04174517A (en) Manufacture of diamond semiconductor
Soukiassian et al. Silicon carbide surface oxidation and SiO2/SiC interface formation investigated by soft X-ray synchrotron radiation
Zikrillaev et al. Current status of silicon studies with GexSi1-x binary compounds and possibilities of their applications in electronics
JPH0658891B2 (en) Thin film single crystal diamond substrate
Shao et al. On the crystallographic characteristics of ion beam synthesised β–FeSi2
Sankar et al. Growth and characterization of ZnSe and phosphorus-doped ZnSe single crystals
JPS6270295A (en) Production of n-type semiconductive diamond film
Chen et al. Study of 1f noise in InP grown by CBE
Watanabe et al. Preparation of some chalcogenide spinel single crystals and their electronic properties
Tomm et al. Effects of doping on the electronic properties of semiconducting iron disilicide
Seong et al. Magnetic properties of vanadium-doped silicon carbide nanowires
Krafcsik et al. Growth of Epitaxial β-SiC at the SiO2/Si Interface as a Result of Annealing in CO
Ožvold et al. The temperature dependence of the direct gap of β-FeSi2 films
JPS63302517A (en) Semiconductor diamond and manufacture thereof
JP2645439B2 (en) Semiconductor diamond and its manufacturing method
Kumari et al. Structural and electrical properties of amorphous carbon-sulfur composite films
Grzybowski et al. GeSn alloys on Si using deuterated stannane and trigermane: Synthesis and properties
CN114000121B (en) Strain diamond growth doping method based on MBE method and epitaxial structure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071113

Year of fee payment: 12