WO2000058534A1 - N-type semiconductor diamond and its fabrication method - Google Patents

N-type semiconductor diamond and its fabrication method Download PDF

Info

Publication number
WO2000058534A1
WO2000058534A1 PCT/JP2000/001863 JP0001863W WO0058534A1 WO 2000058534 A1 WO2000058534 A1 WO 2000058534A1 JP 0001863 W JP0001863 W JP 0001863W WO 0058534 A1 WO0058534 A1 WO 0058534A1
Authority
WO
WIPO (PCT)
Prior art keywords
type semiconductor
substrate
semiconductor diamond
diamond
producing
Prior art date
Application number
PCT/JP2000/001863
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Ando
Yoichiro Sato
Original Assignee
Japan Science And Technology Corporation
National Institute For Materials Science
Yasu, Eiji
Gamo, Mika
Sakaguchi, Isao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation, National Institute For Materials Science, Yasu, Eiji, Gamo, Mika, Sakaguchi, Isao filed Critical Japan Science And Technology Corporation
Priority to JP2000608811A priority Critical patent/JP3769642B2/en
Priority to US09/926,188 priority patent/US7063742B1/en
Priority to EP00911381A priority patent/EP1179621A4/en
Publication of WO2000058534A1 publication Critical patent/WO2000058534A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10S117/901Levitation, reduced gravity, microgravity, space
    • Y10S117/902Specified orientation, shape, crystallography, or size of seed or substrate

Definitions

  • the present invention can be used for small high-power devices, high-power high-frequency devices, and electronic devices such as radiation-resistant integrated circuits, which are impossible with conventional semiconductors.
  • the present invention relates to diamond and a method for producing the same, and more particularly to an n-type semiconductor diamond in which donor atoms are effectively added to diamond and a method for producing the same. Background art
  • Diamond on the other hand, is a wide bandgap semiconductor with the highest electron and hole mobilities, a very high breakdown field, and very few electron-hole pairs at high temperatures and under radiation. Because it can adapt to harsh environments, it can be used for devices for high power, high frequency operation, and high temperature operation. In order to realize such a diamond semiconductor device, a high-quality diamond crystal thin film is required.
  • low-resistance p-type semiconductor diamond could be easily manufactured by doping with boron, but a number of manufacturing methods have been studied for low-resistance n-type semiconductor diamond, including methods for doping CVD diamond. However, it was actually difficult to obtain high-quality semiconductor diamond crystal thin films.
  • the microwave plasma C preparation of phosphorus-doped diamond by VD method information introducing phosphine (PH 3) in the reaction gas of hydrogen and hydrocarbon doped with phosphorus by decomposing phosphine in microphone port wave plasma
  • phosphine PH 3
  • the CVD method has been reported on various methods for producing an n-type semiconductor diamond crystal thin film, but has not obtained a quality applicable to semiconductor electronic devices.
  • an n-type diamond semiconductor in which a pentavalent or more valent atom is added as a donor atom has been proposed (see Japanese Patent Application Laid-Open No. 10-198489).
  • an n-type semiconductor diamond that can be applied to a semiconductor electronic device doped with zirconium has not yet been realized, and its manufacturing method has been an issue.
  • the present invention solves such problems in the conventional technology.
  • the present invention provides a manufacturing method capable of obtaining an n-type diamond having perfect crystallinity applicable to a semiconductor electronic device. It is to be.
  • a second object is to provide an n-type semiconductor diamond having perfect crystallinity applicable to semiconductor devices. Disclosure of the invention
  • a method for producing an n-type semiconductor diamond according to the present invention includes: a process of turning a diamond substrate into an inclined substrate by mechanical polishing; a process of smoothing the surface of the inclined substrate; A source gas consisting of volatile hydrocarbons, whey compounds, and hydrogen gas is excited by microwave plasma, and an n-type semiconductor diamond is epitaxially grown on a smoothed substrate while maintaining a predetermined substrate temperature. Processing steps.
  • a diamond (100) plane orientation substrate is used as the diamond substrate.
  • the inclined substrate is a plane in which the surface normal of the diamond (100) plane is defined by the ⁇ 100> direction or the ⁇ 110> direction or the ⁇ 100> direction. It is formed by mechanical polishing so as to be inclined at any angle in the range of 1.5 to 6 degrees with respect to the ⁇ 100> direction.
  • the smoothing treatment is preferably a treatment in which the inclined substrate is exposed to hydrogen plasma or a treatment in which the inclined substrate is exposed to an oxidizing flame of a combustion flame such as acetylene.
  • the surface of the substrate is smoothed in the atomic order, and a surface in which the (100) plane is connected in steps in the atomic layer order is obtained.
  • the substrate is exposed to a temperature of 700 to 1200 ° C for 0.5 to 5 hours. Including processing.
  • the predetermined substrate temperature is between 700 ° C and 1100 ° C, preferably 830. C.
  • the volatile hydrocarbons constituting the source gas are alkanes or alkenes.
  • the alkane is methane, hexane or propane, and the alkene is preferably ethylene or propylene.
  • the iodide compound constituting the source gas is preferably hydrogen sulfide or carbon disulfide, but may be an organic iodide compound, for example, a lower alkyl mercaptan.
  • the microwave plasma is composed of a raw material gas of methane having a concentration of 0.1 to 5%, hydrogen sulfide having a concentration of 1 ppm to 2000 ppm, and hydrogen.
  • the raw material gas is maintained at a pressure of 30 to 60 Torr while flowing at a flow rate of 200 ml ⁇ min ” 1 and is excited at a microwave frequency of 2.45 GH and a microwave output of 300 to 400 W.
  • the carrier has n-type conductivity supplied from a single donor level, has high mobility, and has few crystal defects.
  • Type semiconductor diamond can be manufactured.
  • the n-type semiconductor diamond manufactured by the manufacturing method of the present invention has an impurity atom as an i-atom, which forms a single donor level of 0.38 ev. are doing.
  • the n-type semiconductor diamond has perfect crystallinity that is T 3/2 dependent in a temperature range where the carrier mobility is equal to or higher than room temperature with respect to the temperature (T), and can be applied to semiconductor electronic devices.
  • this n-type semiconductor diamond has perfect crystallinity in which light emission by free excitons and bound excitons is observed, and can be applied to semiconductor electronic devices.
  • this n-type semiconductor diamond has a carrier concentration of at least 1.4 ⁇ 10 : 3 cm— 3 at room temperature and a carrier mobility of 580 cm 2 V— 1 ⁇ s It has the perfect crystallinity described above and can be applied to semiconductor electronic devices.
  • the n-type semiconductor diamond has perfect crystallinity in which the half width of the diamond peak in the Raman spectrum is 2.6 cm— ; or less, and can be applied to semiconductor electronic devices.
  • n-type semiconductor diamond of the present invention when used, a pn junction having excellent electrical characteristics can be formed by combining with the conventional p-type semiconductor diamond fabrication technology, and the semiconductor diamond thin film can be formed. This makes it possible to industrially manufacture semiconductor electronic devices, thereby realizing the manufacture of small high-power devices, high-output high-frequency devices, high-temperature operating devices, and the like.
  • FIG. 1 is a schematic diagram showing a substrate surface state by the substrate pretreatment of the present embodiment.
  • FIG. 2 is an atomic force microscope (AFM) photograph of the substrate surface shape obtained by the substrate pretreatment of this example.
  • FIG. 3 is an optical microscope photograph comparing the surface shapes of an i-doped n-type semiconductor diamond grown epitaxially on a substrate subjected to the substrate pretreatment and a substrate not subjected to the pretreatment according to the present embodiment.
  • FIG. 4 is a schematic configuration diagram of the microwave plasma CVD apparatus used in the present embodiment.
  • FIG. 5 is a view showing the conditions for homoepitaxial growth of an i-doped n-type semiconductor diamond in this example.
  • FIG. 6 is a diagram showing the temperature dependence of the carrier concentration of the i-doped n-type semiconductor diamond of this example.
  • FIG. 7 is a diagram showing the temperature dependence of the mobility of the i-doped n-type semiconductor diamond of this example measured by the Hall coefficient.
  • FIG. 8 is a diagram showing the temperature dependence of the mobility of a diode n-type semiconductor diamond grown at a substrate temperature of 780.degree.
  • FIG. 9 is a diagram showing a comparison of the mobility between the i-doped n-type semiconductor diamond of the present example and the conventional n-type n-type semiconductor diamond.
  • FIG. 10 is a diagram showing the Raman spectrum of the i-doped n-type semiconductor diamond of this example.
  • FIG. 11 is a diagram showing a spectrum of free exciton light emission and bound exciton light emission of the i-doped n-type semiconductor diamond of this example.
  • FIGS. 12A and 12B are diagrams showing the crystallinity of the i-doped n-type semiconductor diamond of this example.
  • FIG. 12A shows a secondary electron microscope (SEM) image
  • FIG. 12B shows a reflection electron diffraction (RHEED) pattern. ing.
  • FIG. 13 is a diagram showing the profile of the atomic concentration of secondary ion mass spectrometry (S IMS) in the i-doped n-type semiconductor diamond of this example.
  • S IMS secondary ion mass spectrometry
  • the n-type semiconductor diamond growth method may be a growth method using any of electricity, heat and light energy, depending on the method of activating the source gas. In this embodiment, however, only the electric energy and the heat energy are used.
  • An epitaxial growth method using a microwave plasma CVD (chemical vapor deposition) system is used.
  • This substrate pretreatment is performed in the (1) diamond (100) plane direction with the surface normal to the 100> direction or the 0100> direction or the 0100> direction.
  • An inclined substrate is manufactured by mechanical polishing so that it is inclined at an angle (inclination angle) in the range of 1.5 to 6 degrees with respect to the 100> direction in the plane formed by The feature is that the substrate is exposed to hydrogen plasma to smooth the surface.
  • diamond abrasive grains having a grain size of 0.5 ⁇ m or less are used.
  • the surface smoothing treatment of (2) uses a microwave plasma device described below. , 2.45 GHz microwave output 200 to 1200 W, hydrogen pressure 10 to 50 Torr, substrate temperature 700 to 1200 ° C, processing time 0.5 to 5 hours.
  • This surface smoothing treatment can also be performed by exposing it to an oxidizing flame of a combustion flame such as acetylene.
  • Figure 1 (a) shows the substrate pretreatment described above, that is, the surface normal of the diamond (100) substrate is in the plane defined by the 100> direction, especially the 0 10> direction, or the 100> direction, especially the 001> direction.
  • This is a schematic cross-sectional view showing the state of the surface of an inclined substrate that has been mechanically polished so as to be inclined at any angle (inclination angle) in the range of 1.5 to 6 degrees based on the direction.
  • the surface of the inclined substrate has a predetermined inclination angle (h) set at the time of mechanical polishing of the envelope surface.
  • h inclination angle
  • FIG. 1 (b) shows the above-mentioned substrate pretreatment, that is, the inclined substrate was exposed to the above-mentioned hydrogen plasma to perform a smoothing process, and the state of the surface after the smoothing process was shown in a schematic cross-sectional view. Things.
  • the surface of this substrate is smoothed in the atomic order by this smoothing process, and the (100) plane becomes a continuous surface in the order of the atomic layer in a step-like manner.
  • FIG. 2 (a) is an atomic force microscope (AFM) photograph of the surface of the inclined substrate prepared by the mechanical polishing described in (1) above.
  • the surface of the inclined substrate produced by the above (1) has a predetermined inclination angle set at the time of mechanical polishing, as the envelope surface of the inclined substrate surface. , Microscopically, there are many irregularities on the atomic order.
  • FIG. 2 (b) is an AFM photograph of the surface of the inclined substrate after the above-mentioned smoothing treatment (2) is performed.
  • Fig. 3 (a) shows a micro-process using the raw material gas obtained by diluting methane gas and hydrogen sulfide gas with hydrogen gas, as described in detail below, on the substrate that has been subjected to the above-mentioned substrate pretreatments (1) and (2).
  • 1 is an optical microscope photograph of the surface of a 1- ⁇ m-thick n-type diamond thin film grown epitaxially by mouth-wave plasma CVD.
  • Figure 3 (b) is an optical micrograph of the surface of an n-type diamond thin film epitaxially grown on the (100) substrate without the substrate pretreatment described in (1) and (2) above. Except for the above, it was prepared under the same conditions as above.
  • the surface of the n-type diamond thin film epitaxially grown on the substrate subjected to the above-mentioned substrate pretreatments (1) and (2) is very flat, and has an atomic order. It turns out that it is flat.
  • this n-type diamond thin film has a very high perfect crystal in measurement for evaluating crystallinity, for example, measurement of temperature dependence of mobility, exciton emission, or Raman spectrum. It shows the nature.
  • the surface of the n-type diamond thin film epitaxially grown on the substrate not subjected to the substrate pretreatment in (1) and (2) above has a triangular pyramidal twin It can be seen that the surface has grown and that the surface has severe irregularities reflecting polishing marks.
  • this n-type diamond thin film has a high perfect crystallinity such as an n-type diamond thin film epitaxially grown on the substrate pretreated in (1) and (2) above in the measurement for evaluating the crystallinity. Is not shown.
  • the substrate surface parallel to the (100) plane that is, mechanically polished at an inclination angle of 0 and subjected to the smoothing treatment in (2), has a (100) plane as shown in Fig. 1 (c). Fluctuated up and down in the order of the atomic layer, that is, the (100) plane became a series of irregularities, and the surface of the n-type diamond thin film epitaxially grown on this plane was as shown in Fig. 3 (b). Twinning occurs, and good results cannot be obtained in the above-described measurement for evaluating crystallinity.
  • the substrate for epitaxial growth As described above, as a pretreatment of the substrate for epitaxial growth, (1) ⁇ 100> In the plane defined by the surface normal direction of the substrate (100) and the direction of the ⁇ 100> direction, especially the ⁇ 101> direction or the ⁇ 100> direction, the ⁇ 100> direction A tilted substrate is mechanically polished so that it is tilted at an angle (tilt angle) in the range of 1.5 to 6 degrees with respect to the direction. Then, (2) this tilted substrate is subjected to hydrogen plasma. By exposing and smoothing the surface, the surface is smoothed in the atomic order, and the surface in which the (100) plane is in the atomic layer order in a step-like form is obtained. By epitaxial growth, n-type diamond with good crystallinity can be epitaxially grown.
  • FIG. 4 is a schematic configuration diagram of a microwave plasma CVD apparatus used in the present embodiment.
  • a microwave plasma C VD apparatus 10 used in the present embodiment is composed of, for example, a microwave generator 1 of 2.45 GHz, an isolator and a power monitor 13, and a tuner 5.
  • a reaction tube 7 to be irradiated with microwaves a vacuum pump (not shown) for evacuating the reaction tube 7, and a gas supplied to the reaction tube 7 by switching between a mixed gas as a source gas or a purge gas.
  • a control system 17 is provided, and a gas is supplied onto the substrate 15 to generate microwave plasma 19.
  • the substrate temperature is monitored with an optical pyrometer.
  • the growth conditions vary depending on the raw material, temperature, pressure, gas flow rate, impurity addition amount, substrate area and the like.
  • FIG. 5 is a diagram showing the growth conditions for the iodo-doped semiconductor diamond homoepitaxy in this example.
  • the reaction gas uses a mixed gas of hydrogen / hydrogen sulfide / hydrogen as the raw material gas. Any gas mixture of compound gas and hydrogen can be used as a source gas. Hydrocarbons are used as a source of carbon, which is a constituent element of diamond, zeo-compound gas is used as a source of one atom of donor, and hydrogen is used as a carrier gas.
  • methane, ethane, and propane are used as alkanes
  • ethylene and propylene are used as alkenes.
  • Methane, as a volatile hydrocarbon, can easily minimize the carbon supply of diamond's constituent elements. Most preferred.
  • thio compound examples include inorganic thio compounds such as hydrogen sulfide (H 2 S) and carbon disulfide (CS 2 ), and organic thio compounds such as lower alkyl mercaptan, with hydrogen sulfide being most preferred.
  • inorganic thio compounds such as hydrogen sulfide (H 2 S) and carbon disulfide (CS 2 )
  • organic thio compounds such as lower alkyl mercaptan, with hydrogen sulfide being most preferred.
  • methane / hydrogen sulfide / hydrogen as the mixed gas.
  • the methane concentration in the mixed gas is 0.1% to 5%, preferably 0.5% to 3.0%.
  • the concentration of hydrogen sulfide in the gas mixture is 1 ppm to 2000 ppm, preferably 5 ⁇ ! Good to use at ⁇ 200 ppm.
  • the methane concentration is 1%, and the hydrogen sulfide is 10 to 10 ppm.
  • the carrier concentration increases.
  • the mobility is most preferably 5 Oppm because the maximum amount of hydrogen sulfide is 50 ppm.
  • the total gas flow rate depends on the scale of the apparatus, for example, the volume of the reaction tube, the supply gas flow rate, the exhaust volume, and the like. In the present embodiment, the total gas flow rate is 200 ml / min.
  • the gas flow rate is controlled by a mass flow controller corresponding to each gas type.
  • the amount of hydrogen sulfide added is controlled by a mass flow controller using a mixed gas cylinder of, for example, 100 ppm hydrogen sulfide / hydrogen, diluted with carrier hydrogen.
  • the ratio is controlled to a predetermined ratio.
  • a mixed gas cylinder of 10 Oppm hydrogen sulfide / hydrogen is used.
  • the hydrogen sulfide concentration is set to 5 Oppm, so when the total flow rate is 20 Oml / min, the carrier hydrogen gas is set to 10 Oml / min, and the mixed gas cylinder of 10 ⁇ ppm hydrogen sulfide / hydrogen is used. By flowing 10 Oml / min, the hydrogen sulfide concentration can be set to 5 Oppm as a whole.
  • the pressure is approximately within a range of 30 to 60 T 0 rr, and in this embodiment, the pressure is set to 4 OTo rr.
  • glow discharge is maintained at a relatively high pressure.
  • 0/5534-Force at which the temperature of the substrate on which diamond is deposited is 700 ° C to 1100 ° C is 830 ° C in this embodiment.
  • Ib diamond was used as the substrate diamond, it is not limited to this type of diamond, and may be la or II type. Further, in this embodiment, diamond is homoepitaxially grown on the (100) plane, but is not limited to the (100) plane, and may be, for example, the (111) plane or the (110) plane.
  • the diamond (100) oriented substrate surface was polished using diamond abrasive grains with a grain size of 0.5 ⁇ m or less.
  • a polished tilted substrate was prepared, and this tilted substrate was exposed to hydrogen plasma at a microwave output of 2.45 GHz, 200 to 1200 W, and a hydrogen pressure of 10 to 50 Torr, using the microwave plasma apparatus described above.
  • the surface is smoothed at a substrate temperature of 700 to 1200 ° C and a processing time of 0.5 to 5 hours.
  • This surface smoothing treatment can also be performed by exposing it to an oxidizing flame of a combustion flame such as acetylene.
  • the substrate is subjected to a cleaning process, and is set on the substrate holder, and hydrogen purge is repeated several times from the gas supply line to remove nitrogen and oxygen in the vacuum vessel.
  • the substrate surface temperature is controlled to be 830 ° C. and the pressure is controlled to 40 Torr.
  • the substrate surface temperature is measured by, for example, an optical pyrometer.
  • microwave discharge was performed under pressure control of 40 T 0 rr, and the hydrogen gas for purging was switched to a mixed gas of 1% methane / 50 ppm hydrogen sulfide diluted with hydrogen at the gas supply line, and 20 Oml was added to the reaction tube.
  • plasma is generated above the substrate. This plasma flow is supplied to the diamond substrate, and the diamond thin film grows epitaxially.
  • the diamond crystal thin films thus produced all show a negative Hall coefficient at the measurement temperature of 250-550 K, the mobility at room temperature is as high as 580 cm 2 / V ⁇ s, and the reflection electron diffraction ( RHEED), a clear Kikuchi pattern can be observed, and the crystallinity of the crystal thin film is extremely high.
  • an n-type semiconductor diamond having high mobility and good crystallinity can be obtained.
  • FIG. 6 is a diagram showing the temperature dependence of the carrier concentration of the n-type semiconductor diamond according to the present embodiment.
  • the carrier concentration is increased to 10 12 ⁇ 10 15 cm 3 as the temperature rises, the conductivity of the diamond film is 1. 3 x 10- 3 ⁇ ⁇ ⁇ 1 at room temperature.
  • the carrier concentration shows a complete exponential dependence on the reciprocal of temperature, which indicates that carriers are supplied only from a single donor level. .
  • the activation energy of the donor level is 0.38 eV.
  • the n-type semiconductor diamond of the present invention is an n-type semiconductor diamond in which zeo (S) atoms form a single donor level with an activation energy of 0.38 eV.
  • FIG. 7 is a diagram showing the temperature dependence of the mobility of the n-type semiconductor diamond according to the present embodiment measured by the Hall coefficient.
  • FIG. 8 is a diagram showing the temperature dependence of the mobility of n-type semiconductor diamond grown at 780 ° C. measured by the Hall coefficient. The growth conditions other than the substrate temperature are the same, but since the substrate temperature is low, the amount of indium (S) incorporated into the crystal is small.
  • the mobility is 980 cm 2 / V ⁇ s, and therefore, the n-type semiconductor diamond of the present invention exhibits extremely high mobility even when the doping amount of iodine is small.
  • the electron mobility of type IIa diamond is estimated to be about 2000 cm 2 V 1 .s—.
  • the crystallinity can be extremely high, the use of I la-type diamond substrate 1 0 3 cm 2 V 1 ⁇ s 1 single mobility is possible.
  • FIG. 9 is a graph showing a comparison of the mobility between the n-type semiconductor diamond doped with n-type (S) of the present embodiment and the n-type semiconductor diamond doped with phosphorus (P).
  • the mark indicates the completeness of the S-doped n-type semiconductor diamond according to the present invention at a growth temperature of 780 ° C. and the mark 8 at 830 ° C.
  • the result is a conventional P-doped n-type semiconductor diamond.
  • the mobility of the S-doped n-type semiconductor diamond of this embodiment is about 600 cm 2 / V ⁇ s or more, as described above, and is extremely high.
  • the Iou (S) doped n-type semiconductor diamond according to the production method of the present invention contrary to the temperature dependence shown when the temperature characteristics of the mobility is large crystal defects decreases as a high temperature, T 3 kappa 2 Dependence is shown.
  • FIG. 10 is a diagram showing the Raman spectrum of the n-type semiconductor diamond of this example. As is clear from Fig. 10, there is no peak other than the peak at the wave number of 1333 cm- 1 and its half width is extremely narrow at about 2.6 cm. Therefore, the n-type semiconductor diamond of this example has extremely high crystallinity. Although not shown, the wave number of an n-type semiconductor diamond epitaxially grown without performing the above-mentioned substrate pretreatment is about 6 cm- 1 .
  • FIG. 11 is a diagram showing the spectra of free exciton emission and bound exciton emission of the n-type semiconductor diamond of this example.
  • free exciton emission (FE) around 235 nm and bound exciton emission (BE) around 238 nm are observed in the n-type semiconductor diamond of this example. This indicates that the doped hole is present at the lattice point of the diamond lattice and forms a complete donor level in the band gap of the diamond crystal.
  • free exciton light emission and bound exciton light emission are not observed in n-type semiconductor diamond grown epitaxially without performing the above-mentioned substrate pretreatment.
  • Figure 12 (a) shows a secondary electron microscope (SEM) photograph, and (b) shows a backscattered electron diffraction (RHEED) pattern.
  • SEM secondary electron microscope
  • RHEED backscattered electron diffraction
  • FIG. 13 is a diagram showing the profile of the atomic concentration of the n-type semiconductor diamond of this example measured by secondary ion mass spectrometry (S IMS). From FIG. 13, it can be seen that in the n-type semiconductor diamond of the present example, ⁇ (S) is doped at a constant concentration, and this ⁇ (S) is at least 10 13 cm ⁇ 3 or more, which is the detection limit of SIMS. You can see that it has been done.
  • S IMS secondary ion mass spectrometry
  • the n-type semiconductor diamond fabricated in this example has n-type conductivity in which carriers are supplied from a single donor level, has few crystal defects, and has low mobility. Is big. Therefore, a pn junction with excellent characteristics can be formed by combining it with the conventional p-type semiconductor diamond fabrication technology.
  • the present embodiment describes an exemplary embodiment of the present invention, and various changes, omissions, and additions can be made in the embodiment without departing from the spirit and scope of the present invention. . Therefore, the present invention is not limited to the embodiments, but should be understood to cover the scope defined by the elements recited in the claims and the equivalents thereof.
  • the n-type semiconductor diamond and the method for manufacturing the same according to the present invention enable industrial manufacture of semiconductor electronic devices using a semiconductor diamond thin film, such as small high-power devices, high-power high-frequency devices, and high-temperature operating devices. Manufacturing can be realized.

Abstract

A substrate (15) is polished into an inclined substrate and is exposed to a hydrogen plasma so that it is smoothed. This substrate (15) is heated under control to a surface temperature of 830 °C, and a mixed gas containing 1 % of methane, 50 ppm of hydrogen sulfide and hydrogen is introduced at a rate of 200 ml/min. into a reaction tube (7). A microwave plasma (19) is produced to grow n-type semiconductor diamond epitaxially over the substrate (15). Thus, there is fabricated a sulfur-doped n-type semiconductor diamond having a high mobility, a high quality, and a single donor level of an activation energy of 0.38 eV.

Description

- 明 細 書 n型半導体ダイヤモンド及びその製造方法 技術分野  -Description n-type semiconductor diamond and its manufacturing method
この発明は、 従来の半導体では不可能である小型ハイパワーデバイス、 高出力 高周波デバイス及び耐放射線集積回路等の電子デバイスなどに利用でき、 n導電 型の高移動度かつ結晶性の良い n型半導体ダイヤモンド及びその製造方法に関す るもので、 特に、 ドナー原子をダイヤモンド中に効果的に添加した n型半導体ダ ィャモンド及びその製造方法に関するものである。 背景技術  INDUSTRIAL APPLICABILITY The present invention can be used for small high-power devices, high-power high-frequency devices, and electronic devices such as radiation-resistant integrated circuits, which are impossible with conventional semiconductors. The present invention relates to diamond and a method for producing the same, and more particularly to an n-type semiconductor diamond in which donor atoms are effectively added to diamond and a method for producing the same. Background art
現在使用されている S i系半導体やガリウムヒ素半導体では、 素子の微細化及 び高密度化により素子内部の電界強度が上昇し、 また使用時の発熱が問題となり 、 これらの半導体にとっては今後過酷な環境に適応することが要求される。  In Si-based semiconductors and gallium arsenide semiconductors currently used, the electric field strength inside the device increases due to the miniaturization and high density of the device, and heat generation during use becomes a problem. It is required to adapt to different environments.
これに対し、 ダイヤモンドはワイ ドバンドギャップ半導体であり、 電子及び正 孔移動度がもっとも高く、 ブレークダウン電界が非常に高いうえ、 高温や放射線 下での電子正孔対の発生が非常に少ないため、 過酷な環境に適応し得ることから 、 ハイパワー、 高周波動作、 高温動作用のデバイスに使用可能である。 このよう なダイヤモンド半導体デバイスを実現するためには、 高品質のダイヤモンド結晶 薄膜が必要である。  Diamond, on the other hand, is a wide bandgap semiconductor with the highest electron and hole mobilities, a very high breakdown field, and very few electron-hole pairs at high temperatures and under radiation. Because it can adapt to harsh environments, it can be used for devices for high power, high frequency operation, and high temperature operation. In order to realize such a diamond semiconductor device, a high-quality diamond crystal thin film is required.
これまで低抵抗 p型半導体ダイヤモンドはホウ素ドープで容易に作製すること ができたが、 低抵抗 n型半導体ダイヤモンドについては、 C V Dダイヤモンドへ のドープ法を含め数多くの製造法が研究されてきてはいるものの、 高品質の半導 体ダイヤモンド結晶薄膜を得ることは実際には困難であった。  Until now, low-resistance p-type semiconductor diamond could be easily manufactured by doping with boron, but a number of manufacturing methods have been studied for low-resistance n-type semiconductor diamond, including methods for doping CVD diamond. However, it was actually difficult to obtain high-quality semiconductor diamond crystal thin films.
例えば、 チッソをドープしたダイヤモンドは活性化エネルギーが低いため室温 では絶縁体になってしまうことが報告されている (Mat. Res. Soc. Symp. Pro 162, 3-14 (1990) ) 。 さらにリンをド一プした n型ダイヤモンド結晶薄膜も報告 されているが、 電気抵抗が高すぎて現実的な使用には適さない (Mat. Res. Soc. Symp. Pro 162, 23-34 (1990) ) 。 For example, it has been reported that diamond doped with nitrogen has low activation energy and becomes an insulator at room temperature (Mat. Res. Soc. Symp. Pro 162, 3-14 (1990)). Furthermore, n-type diamond crystal thin films doped with phosphorus have been reported, but their electrical resistance is too high to be suitable for practical use (Mat. Res. Soc. Symp. Pro 162, 23-34 (1990)).
また、 マイクロ波プラズマ C VD法により、 メタンと硫化水素から n型ダイヤ モンド薄膜を得る試みも報告されている (特開昭 6 3 - 3 0 2 5 1 6号公報) 。 しかしながら、 同公報の表 1及び表 2から明らかなように、 このマイクロ波ブラ ズマ C VD法により作製された n型半導体ダイヤモンド薄膜の電子移動度は、 表 2に示された超高圧法で作られた n型半導体ダイヤモンド単結晶の電子移動度に 較べ、 同等のィォゥ濃度でありながら、 異常に大きな値を示している。 すなわち 、 この n型半導体ダイヤモンド薄膜は、 欠陥が多く、 半導体電子デバイスに適用 できないことを示している。  An attempt to obtain an n-type diamond thin film from methane and hydrogen sulfide by microwave plasma CVD has also been reported (Japanese Patent Application Laid-Open No. 63-32516). However, as is clear from Tables 1 and 2 of the publication, the electron mobility of the n-type semiconductor diamond thin film produced by the microwave plasma CVD method was determined by the ultrahigh pressure method shown in Table 2. Compared to the electron mobility of the obtained n-type semiconductor diamond single crystal, it shows an extraordinarily large value while having the same ion concentration. That is, this n-type semiconductor diamond thin film has many defects and cannot be applied to semiconductor electronic devices.
また、 マイクロ波プラズマ C VD法によるリンドープダイヤモンドの製造につ いては、 水素と炭化水素の反応ガス中にフォスフィン (P H 3 ) を導入しマイク 口波プラズマ中でフォスフィンを分解してリンをドープする方法、 及び高温下ま たは紫外線照射下でフォスフィンを分解してリンをドープする方法が知られてい る。 . Further, the microwave plasma C preparation of phosphorus-doped diamond by VD method information, introducing phosphine (PH 3) in the reaction gas of hydrogen and hydrocarbon doped with phosphorus by decomposing phosphine in microphone port wave plasma There is known a method of decomposing phosphine at a high temperature or under irradiation of ultraviolet rays to dope phosphorus. .
しかし、 このマイクロ波プラズマ C VD法によると、 ダイヤモンド中へは水素 と結合した状態のリンがドープされるため、 リンは電子の供給体とはならず、 ま たリンがドープされたとしても、 n型半導体ダイヤモンドのキヤリャ移動度が低 く、 準位も深いため半導体電子デノ イスに適用できる品質の n型半導体は得られ ていない。  However, according to this microwave plasma CVD method, diamond is doped with phosphorus in a state of being bonded to hydrogen, so that phosphorus does not serve as an electron supplier, and even if phosphorus is doped, Since the carrier mobility of n-type semiconductor diamond is low and the level is deep, n-type semiconductors of a quality applicable to semiconductor electronic devices have not been obtained.
以上のように C V D法では、 これまでにも、 n型半導体ダイヤモンド結晶薄膜 の各種製造法について報告はあるが、 半導体電子デバイスに適用できるレベルの 品質のものは得られていない。  As described above, the CVD method has been reported on various methods for producing an n-type semiconductor diamond crystal thin film, but has not obtained a quality applicable to semiconductor electronic devices.
さらに、 ダイヤモンドにリンイオンを加速して打ち込む方法も知られているが 、 この方法では炭素と比べて質量が大きいリンを打ち込むことになつて、 ダイヤ モンド中に欠陥を生じさせるとともに、 リンは炭素と結合することなしにダイヤ モンド格子中に侵入型として含まれるため、 ダイヤモンド格子中に結合を作るこ とは困難であり、 高品質の n型半導体ダイヤモンドは得られていない。  In addition, a method of implanting phosphorous ions into diamond by accelerating it is also known. However, in this method, phosphorus having a larger mass than carbon is implanted, causing defects in the diamond, and phosphorus is converted into carbon. Since they are interstitial in the diamond lattice without bonding, it is difficult to make bonds in the diamond lattice, and high-quality n-type semiconductor diamond has not been obtained.
またプラズマを用いないダイヤモンドへのリンド一プ法として、 反応系に黒鉛 と赤リンを置き、 系内で蒸発させてダイヤモンドを合成するとともに、 その中に リンをドープさせる化学輸送反応法も知られている。 In addition, as a method of bonding diamonds without using plasma, graphite and red phosphorus are placed in a reaction system, and diamond is synthesized by evaporating in the system. A chemical transport reaction method of doping with phosphorus is also known.
しかし、 黒鉛と赤リンの反応速度や蒸発速度の違いのため、 リン濃度の制御が 困難となり、 高品質の n型半導体は得られない。  However, due to differences in the reaction rates and evaporation rates of graphite and red phosphorus, it is difficult to control the phosphorus concentration, and high-quality n-type semiconductors cannot be obtained.
また、 最近、 5価以上の原子をドナ一原子として添加した n型ダイヤモンド半 導体の提案もなされている (特開平 1 0— 1 9 4 8 8 9号公報参照) 。 しかしな がら、 ィォゥを添加した半導体電子デノ イスに適用できる n型半導体ダイヤモン ドは未だ実現されておらず、 その製造方法について課題となっている。  Recently, an n-type diamond semiconductor in which a pentavalent or more valent atom is added as a donor atom has been proposed (see Japanese Patent Application Laid-Open No. 10-198489). However, an n-type semiconductor diamond that can be applied to a semiconductor electronic device doped with zirconium has not yet been realized, and its manufacturing method has been an issue.
この発明は、 このような従来の技術における課題を解決するものであり、 第 1 の目的として、 半導体電子デバイスに適用可能な完全結晶性を有する n型ダイヤ モンドを得ることができる製造方法を提供することである。  The present invention solves such problems in the conventional technology. As a first object, the present invention provides a manufacturing method capable of obtaining an n-type diamond having perfect crystallinity applicable to a semiconductor electronic device. It is to be.
さらに第 2の目的として、 半導体デバイスに適用可能な完全結晶性を有する n 型半導体ダイヤモンドを提供することにある。 発明の開示  A second object is to provide an n-type semiconductor diamond having perfect crystallinity applicable to semiconductor devices. Disclosure of the invention
この第 1の目的を達成するために、 本発明の n型半導体ダイヤモンドの製造方 法は、 ダイヤモンド基板を機械研磨によって傾斜基板にする処理と、 この傾斜基 板の表面を平滑化する処理と、 揮発性炭化水素とィォゥ化合物と水素ガスとから 成る原料ガスをマイクロ波プラズマで励起して、 所定の基板温度を保ちながら、 平滑化処理した基板上に n型半導体ダイャモンドをェピ夕キシャル成長する処理 工程とから成る。  In order to achieve the first object, a method for producing an n-type semiconductor diamond according to the present invention includes: a process of turning a diamond substrate into an inclined substrate by mechanical polishing; a process of smoothing the surface of the inclined substrate; A source gas consisting of volatile hydrocarbons, whey compounds, and hydrogen gas is excited by microwave plasma, and an n-type semiconductor diamond is epitaxially grown on a smoothed substrate while maintaining a predetermined substrate temperature. Processing steps.
ダイヤモンド基板は、 ダイヤモンド ( 1 0 0 ) 面方位基板を使用する。  As the diamond substrate, a diamond (100) plane orientation substrate is used.
また、 傾斜基板は、 ダイヤモンド ( 1 0 0 ) 面方位基板の面法線が、 く 1 0 0 >方向とく 0 1 0 >方向又はく 1 0 0 >方向とく 0 0 1〉方向とが成す平面内で < 1 0 0 >方向を基準として 1 . 5〜6度の範囲のいずれかの角度で傾くように 機械研磨して形成する。  In addition, the inclined substrate is a plane in which the surface normal of the diamond (100) plane is defined by the <100> direction or the <110> direction or the <100> direction. It is formed by mechanical polishing so as to be inclined at any angle in the range of 1.5 to 6 degrees with respect to the <100> direction.
また、 平滑化処理は、 傾斜基板を水素プラズマに晒す処理又はアセチレン等の 燃焼炎の酸化炎に晒す処理が好ましい。  The smoothing treatment is preferably a treatment in which the inclined substrate is exposed to hydrogen plasma or a treatment in which the inclined substrate is exposed to an oxidizing flame of a combustion flame such as acetylene.
これらの処理によって、 この基板表面は原子オーダーで平滑化され、 また ( 1 0 0 ) 面が原子層オーダーでステップ状に連なった表面が得られる。 また、 水素プラズマに晒す処理は、 傾斜基板を水素圧力 10〜50To r rか つマイクロ波出力が 200〜 1200Wのプラズマ中に、 基板温度 700- 12 00 °Cで処理時間 0. 5〜 5時間晒す処理を含む。 By these treatments, the surface of the substrate is smoothed in the atomic order, and a surface in which the (100) plane is connected in steps in the atomic layer order is obtained. In the process of exposing the tilted substrate to hydrogen plasma at a hydrogen pressure of 10 to 50 Torr and a microwave output of 200 to 1200 W, the substrate is exposed to a temperature of 700 to 1200 ° C for 0.5 to 5 hours. Including processing.
さらに、 所定の基板温度は、 700 °C〜 1 100 °C、 好ましくは 830。Cであ る。  Further, the predetermined substrate temperature is between 700 ° C and 1100 ° C, preferably 830. C.
また、 原料ガスを構成する揮発性炭化水素は、 アルカン又はアルケンである。 このアルカンは、 メタン、 ェ夕ン又はプロパンであり、 アルケンは、 エチレン又 はプロピレンであるのが好ましい。  The volatile hydrocarbons constituting the source gas are alkanes or alkenes. The alkane is methane, hexane or propane, and the alkene is preferably ethylene or propylene.
また、 原料ガスを構成するィォゥ化合物は、 硫化水素又は二硫化炭素が好まし いが、 有機ィォゥ化合物であってもよく、 例えば、 低級アルキルメルカブタンが 好適である。  The iodide compound constituting the source gas is preferably hydrogen sulfide or carbon disulfide, but may be an organic iodide compound, for example, a lower alkyl mercaptan.
また、 本発明の n型半導体ダイヤモンドの製造方法においては、 マイクロ波プ ラズマを、 原料ガスを濃度 0. 1〜5%のメタン、 濃度 1 ppm〜2000 pp mの硫化水素及び水素とから構成し、 この原料ガスを流量 200ml · mi n"1 で流しながら 30〜60 T o r rの圧力に保ち、 マイクロ波周波数 2. 45 GH , 及びマイクロ波出力 300〜400Wで励起する。 In the method for producing an n-type semiconductor diamond according to the present invention, the microwave plasma is composed of a raw material gas of methane having a concentration of 0.1 to 5%, hydrogen sulfide having a concentration of 1 ppm to 2000 ppm, and hydrogen. The raw material gas is maintained at a pressure of 30 to 60 Torr while flowing at a flow rate of 200 ml · min ” 1 and is excited at a microwave frequency of 2.45 GH and a microwave output of 300 to 400 W.
このような方法による本発明の n型半導体ダイャモンドの製造方法によれば、 キヤリアが単一のドナーレベルから供給される n型導電性を有し、 移動度が大き く、 かつ結晶欠陥の少ない n型半導体ダイヤモンドが製造できる。  According to the method for manufacturing an n-type semiconductor diamond of the present invention by such a method, the carrier has n-type conductivity supplied from a single donor level, has high mobility, and has few crystal defects. Type semiconductor diamond can be manufactured.
また第 2の目的を達成するために、 本発明の製造方法で作製した n型半導体ダ ィャモンドは、 不純物原子がィォゥ原子であり、 このィォゥ原子が 0. 38 ev の単一のドナーレベルを形成している。  In order to achieve the second object, the n-type semiconductor diamond manufactured by the manufacturing method of the present invention has an impurity atom as an i-atom, which forms a single donor level of 0.38 ev. are doing.
さらに、 この n型半導体ダイヤモンドは、 キャリア移動度が温度 (T) に対し て室温以上の温度範囲において、 T 3/2依存性である完全結晶性を有し、 半導体 電子デバイスに適用できる。 Further, the n-type semiconductor diamond has perfect crystallinity that is T 3/2 dependent in a temperature range where the carrier mobility is equal to or higher than room temperature with respect to the temperature (T), and can be applied to semiconductor electronic devices.
さらに、 この n型半導体ダイヤモンドは、 自由励起子及び束縛励起子による発 光が観察さる完全結晶性を有し、 半導体電子デバィスに適用できる。  Furthermore, this n-type semiconductor diamond has perfect crystallinity in which light emission by free excitons and bound excitons is observed, and can be applied to semiconductor electronic devices.
さらに、 この n型半導体ダイヤモンドは、 室温において、 キャリア濃度が 1. 4 X 10 : 3 cm—3以上であり、 かつ、 キヤリア移動度が 580 cm2 V—1 · s 以上である完全結晶性を有し、 半導体電子デバイスに適用できる。 Furthermore, this n-type semiconductor diamond has a carrier concentration of at least 1.4 × 10 : 3 cm— 3 at room temperature and a carrier mobility of 580 cm 2 V— 1 · s It has the perfect crystallinity described above and can be applied to semiconductor electronic devices.
さらに、 この n型半導体ダイヤモンドは、 ラマンスペクトルのダイヤモンドピ ークの半値幅が 2 . 6 c m— ;以下である完全結晶性を有し、 半導体電子デバイス に適用できる。 Further, the n-type semiconductor diamond has perfect crystallinity in which the half width of the diamond peak in the Raman spectrum is 2.6 cm— ; or less, and can be applied to semiconductor electronic devices.
したがって、 本発明の n型半導体ダイヤモンドを使用すれば、 従来からの p型 半導体ダイヤモンド作製技術と組み合わせることによって、 優れた電気的特性を 有する p n接合を形成することができるとともに、 半導体ダイャモンド薄膜によ る半導体電子デバイスの工業的な製造が可能になり、 小型ハイパワーデバイス、 高出力高周波デバイス及び高温動作デバイス等の製造を実現することができる。 図面の簡単な説明  Therefore, when the n-type semiconductor diamond of the present invention is used, a pn junction having excellent electrical characteristics can be formed by combining with the conventional p-type semiconductor diamond fabrication technology, and the semiconductor diamond thin film can be formed. This makes it possible to industrially manufacture semiconductor electronic devices, thereby realizing the manufacture of small high-power devices, high-output high-frequency devices, high-temperature operating devices, and the like. BRIEF DESCRIPTION OF THE FIGURES
この発明は以下の詳細な説明及び本発明の実施例を示す添付図面によって、 よ り良く理解されるものとなろう。 なお添付図面に示す実施例は本発明を特定する ものではなく、 説明及び理解を容易とするためにだけ用いられるものである。 第 1の目的に対応して図中、  The present invention will be better understood from the following detailed description and the accompanying drawings, which illustrate embodiments of the invention. The embodiments shown in the accompanying drawings do not specify the present invention, but are used only for facilitating explanation and understanding. In the figure corresponding to the first purpose,
図 1は本実施例の基板前処理による基板表面状態を示す模式図である。  FIG. 1 is a schematic diagram showing a substrate surface state by the substrate pretreatment of the present embodiment.
図 2は本実施例の基板前処理による基板表面形状の原子間力顕微鏡 ( A F M) 写真である。  FIG. 2 is an atomic force microscope (AFM) photograph of the substrate surface shape obtained by the substrate pretreatment of this example.
図 3は本実施例の基板前処理を施した基板と施さない基板とにィォゥドープ n 型半導体ダイャモンドをェビ夕キシャル成長した場合の表面形状を比較した光学 顕微鏡写真である。  FIG. 3 is an optical microscope photograph comparing the surface shapes of an i-doped n-type semiconductor diamond grown epitaxially on a substrate subjected to the substrate pretreatment and a substrate not subjected to the pretreatment according to the present embodiment.
図 4は本実施例で用いたマイクロ波プラズマ C V D装置の概略構成図である。 図 5は本実施例のィォゥドープ n型半導体ダイヤモンドホモエピタキシー成長 条件を示す図である。  FIG. 4 is a schematic configuration diagram of the microwave plasma CVD apparatus used in the present embodiment. FIG. 5 is a view showing the conditions for homoepitaxial growth of an i-doped n-type semiconductor diamond in this example.
第 2の目的に対応して、  For the second purpose,
図 6は本実施例のィォゥドープ n型半導体ダイヤモンドのキヤリア濃度の温度 依存性を示す図である。  FIG. 6 is a diagram showing the temperature dependence of the carrier concentration of the i-doped n-type semiconductor diamond of this example.
図 7は本実施例のィォゥドープ n型半導体ダイヤモンドのホール係数測定によ る移動度の温度依存性を示す図である。 図 8は本実施例の基板温度 7 8 0 °Cで成長させたィォゥド一プ n型半導体ダイ ャモンドのホール係数測定による移動度の温度依存性を示す図である。 FIG. 7 is a diagram showing the temperature dependence of the mobility of the i-doped n-type semiconductor diamond of this example measured by the Hall coefficient. FIG. 8 is a diagram showing the temperature dependence of the mobility of a diode n-type semiconductor diamond grown at a substrate temperature of 780.degree.
図 9は本実施例のィォゥドープ n型半導体ダイヤモンドと従来のリンド一プ n 型半導体ダイヤモンドとの移動度の比較を示す図である。  FIG. 9 is a diagram showing a comparison of the mobility between the i-doped n-type semiconductor diamond of the present example and the conventional n-type n-type semiconductor diamond.
図 1 0は本実施例のィォゥドープ n型半導体ダイヤモンドのラマンスぺクトル を示す図である。  FIG. 10 is a diagram showing the Raman spectrum of the i-doped n-type semiconductor diamond of this example.
図 1 1は本実施例のィォゥドープ n型半導体ダイヤモンドの自由励起子発光と 束縛励起子発光のスぺクトルを示す図である。  FIG. 11 is a diagram showing a spectrum of free exciton light emission and bound exciton light emission of the i-doped n-type semiconductor diamond of this example.
図 1 2は本実施例のィォゥドープ n型半導体ダイヤモンドの結晶性を示す図で あり、 (a ) は 2次電子顕微鏡 (S E M) 像を、 (b ) は反射電子線回折 (R H E E D ) パターンを示している。  FIGS. 12A and 12B are diagrams showing the crystallinity of the i-doped n-type semiconductor diamond of this example. FIG. 12A shows a secondary electron microscope (SEM) image, and FIG. 12B shows a reflection electron diffraction (RHEED) pattern. ing.
図 1 3は本実施例のィォゥドープ n型半導体ダイヤモンドにおける 2次イオン 質量分析 (S I M S ) の原子濃度のプロファイルを示す図である。 発明を実施するための最良の形態  FIG. 13 is a diagram showing the profile of the atomic concentration of secondary ion mass spectrometry (S IMS) in the i-doped n-type semiconductor diamond of this example. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の n型半導体ダイヤモンドの製造方法における最良な実施例を図 面を参照して詳細に説明する。  Hereinafter, the best embodiment of the method for producing an n-type semiconductor diamond of the present invention will be described in detail with reference to the drawings.
なお、 n型半導体ダイヤモンド成長法としては、 原料ガスを活性化する方法に 応じ、 電気、 熱及び光エネルギーのいずれかを利用する成長法でよいが、 本実施 例では電気エネルギー及び熱エネルギ一を利用したマイクロ波プラズマ C V D ( 化学気相成長) 装置によるェピ夕キシャル成長法を使用する。  The n-type semiconductor diamond growth method may be a growth method using any of electricity, heat and light energy, depending on the method of activating the source gas. In this embodiment, however, only the electric energy and the heat energy are used. An epitaxial growth method using a microwave plasma CVD (chemical vapor deposition) system is used.
最初に、 本実施例のェキ夕ビシャル成長基板の前処理を説明する。 この基板前 処理は、 ( 1 ) ダイヤモンド ( 1 0 0 ) 面方位基板表面をこの面法線がく 1 0 0 >方向とく 0 1 0 >方向又はく 1 0 0 >方向とく 0 0 1 >方向とが成す平面内で く 1 0 0 >方向を基準として 1 . 5 ~ 6度の範囲のいずれかの角度 (傾斜角) で 傾くように機械研磨して傾斜基板を作製し、 (2 ) この傾斜基板を、 水素プラズ マに晒して表面を平滑化することを、 特徴としている。  First, the pretreatment of the epitaxial growth substrate of the present embodiment will be described. This substrate pretreatment is performed in the (1) diamond (100) plane direction with the surface normal to the 100> direction or the 0100> direction or the 0100> direction. An inclined substrate is manufactured by mechanical polishing so that it is inclined at an angle (inclination angle) in the range of 1.5 to 6 degrees with respect to the 100> direction in the plane formed by The feature is that the substrate is exposed to hydrogen plasma to smooth the surface.
( 1 ) の機械研磨は、 粒度 0 . 5〃 m以下のダイャモンド砥粒を使用する。 In the mechanical polishing of (1), diamond abrasive grains having a grain size of 0.5 μm or less are used.
( 2 ) の表面平滑化処理は、 下記に説明するマイクロ波プラズマ装置を使用し 、 2. 45 GHzのマィクロ波出カ200〜1200W、 水素圧カ10〜50T o r r、 基板温度 700〜1200°C、 処理時間 0. 5〜 5時間でおこなう。 な お、 この表面平滑化処理は、 アセチレン等の燃焼炎の酸化炎に晒すことによって も可能である。 The surface smoothing treatment of (2) uses a microwave plasma device described below. , 2.45 GHz microwave output 200 to 1200 W, hydrogen pressure 10 to 50 Torr, substrate temperature 700 to 1200 ° C, processing time 0.5 to 5 hours. This surface smoothing treatment can also be performed by exposing it to an oxidizing flame of a combustion flame such as acetylene.
図 1 (a) は、 上記の基板前処理、 すなわち、 ダイヤモンド ( 100) 基板の 面法線がく 100 >方向とく 0 10〉方向又はく 100〉方向とく 001〉方向 とが成す平面内でく 100 >方向を基準として 1. 5〜6度の範囲のいずれかの 角度 (傾斜角) で傾くように機械研磨した傾斜基板の表面の状態を模式断面図に より示したものである。  Figure 1 (a) shows the substrate pretreatment described above, that is, the surface normal of the diamond (100) substrate is in the plane defined by the 100> direction, especially the 0 10> direction, or the 100> direction, especially the 001> direction. > This is a schematic cross-sectional view showing the state of the surface of an inclined substrate that has been mechanically polished so as to be inclined at any angle (inclination angle) in the range of 1.5 to 6 degrees based on the direction.
この図に示すように、 この傾斜基板表面は、 包絡面が機械研磨時に設定した所 定の傾斜角 (ひ) を有するが、 ミクロに見ると、 原子オーダーで非常に凹凸が多 い。  As shown in this figure, the surface of the inclined substrate has a predetermined inclination angle (h) set at the time of mechanical polishing of the envelope surface. However, when viewed microscopically, the surface of the inclined substrate has very many irregularities on the atomic order.
図 1 (b) は、 上記の基板前処理、 すなわち、 この傾斜基板を上記の水素ブラ ズマに晒して平滑化処理を行い、 この平滑化処理後の表面の状態を模式断面図に より示したものである。  FIG. 1 (b) shows the above-mentioned substrate pretreatment, that is, the inclined substrate was exposed to the above-mentioned hydrogen plasma to perform a smoothing process, and the state of the surface after the smoothing process was shown in a schematic cross-sectional view. Things.
この図に示すように、 この基板表面は、 この平滑化処理によって、 原子オーダ 一で表面が平滑化され、 また ( 100) 面が原子層オーダ一でステップ状に連な つた表面になる。  As shown in this figure, the surface of this substrate is smoothed in the atomic order by this smoothing process, and the (100) plane becomes a continuous surface in the order of the atomic layer in a step-like manner.
図 2 (a) は、 上記 ( 1) の機械研磨により作製した傾斜基板表面の原子間力 顕微鏡 (AFM) 写真である。  FIG. 2 (a) is an atomic force microscope (AFM) photograph of the surface of the inclined substrate prepared by the mechanical polishing described in (1) above.
この図から、 表面に段差が多数存在すること、 また、 機械研磨に使用した砥粒 による細い筋状痕も多数存在することが判る。  From this figure, it can be seen that there are many steps on the surface and that there are many fine streaks due to the abrasive grains used for mechanical polishing.
すなわち、 上記 ( 1) によって作製した傾斜基板の表面は、 図 1 (a) の模式 図に示したように、 この傾斜基板表面の包絡面が機械研磨時に設定した所定の傾 斜角度を有し、 ミクロに見ると、 原子オーダーで非常に凹凸が多い。  That is, as shown in the schematic diagram of FIG. 1 (a), the surface of the inclined substrate produced by the above (1) has a predetermined inclination angle set at the time of mechanical polishing, as the envelope surface of the inclined substrate surface. , Microscopically, there are many irregularities on the atomic order.
図 2 (b) は、 この傾斜基板に上記 (2) の平滑化処理を施した後の表面の A FM写真である。  FIG. 2 (b) is an AFM photograph of the surface of the inclined substrate after the above-mentioned smoothing treatment (2) is performed.
この図から、 図 2 (a) に見られた段差が少なくなり、 また、 砥粒による細い 筋状痕も無くなつており、 原子オーダーで表面が平滑化されていることが判る。 すなわち、 上記 (2) の表面平滑化処理によって、 図 1 (b) の模式図に示した ように、 この基板表面は、 原子オーダーで表面が平滑化され、 また ( 100) 面 が原子層ォ一ダ一でステツプ状に連なつた表面になる。 From this figure, it can be seen that the steps shown in Fig. 2 (a) are reduced, and fine streak marks due to abrasive grains are also eliminated, and the surface is smoothed at the atomic order. That is, as shown in the schematic diagram of FIG. 1 (b), the surface of this substrate is smoothed in the atomic order by the surface smoothing treatment of the above (2), and the (100) plane is an atomic layer. The surface becomes continuous in a step-like fashion.
図 3 (a) は、 上記 ( 1) 及び (2) の基板前処理を施した基板に、 下記に詳 述する、 メタンガスと硫化水素ガスを水素ガスで希釈した原料ガスを使用してマ イク口波プラズマ CVD法によりェピタキシャル成長させた厚さ 1〃mの n型ダ ィャモンド薄膜の表面の光学顕微鏡写真である。 図 3 (b) は、 上記 (1) 及び (2) の基板前処理を施さない ( 100) 基板上に、 ェピタキシャル成長させた n型ダイヤモンド薄膜の表面の光学顕微鏡写真である (基板前処理以外は上記と 同一条件で作製) 。  Fig. 3 (a) shows a micro-process using the raw material gas obtained by diluting methane gas and hydrogen sulfide gas with hydrogen gas, as described in detail below, on the substrate that has been subjected to the above-mentioned substrate pretreatments (1) and (2). 1 is an optical microscope photograph of the surface of a 1-μm-thick n-type diamond thin film grown epitaxially by mouth-wave plasma CVD. Figure 3 (b) is an optical micrograph of the surface of an n-type diamond thin film epitaxially grown on the (100) substrate without the substrate pretreatment described in (1) and (2) above. Except for the above, it was prepared under the same conditions as above.
図 3 (a) に見られるように、 上記 ( 1) 及び (2) の基板前処理を施した基 板にェピタキシャル成長させた n型ダイヤモンド薄膜の表面は非常に平坦であり 、 原子オーダ一で平坦であることが判る。 また、 この n型ダイヤモンド薄膜は、 下記に詳述するように、 結晶性を評価する測定、 例えば、 移動度の温度依存性、 励起子発光、 或いはラマンスペクトル等の測定において、 非常に高い完全結晶性 を示している。  As can be seen from FIG. 3 (a), the surface of the n-type diamond thin film epitaxially grown on the substrate subjected to the above-mentioned substrate pretreatments (1) and (2) is very flat, and has an atomic order. It turns out that it is flat. In addition, as described in detail below, this n-type diamond thin film has a very high perfect crystal in measurement for evaluating crystallinity, for example, measurement of temperature dependence of mobility, exciton emission, or Raman spectrum. It shows the nature.
一方、 図 3 (b) に見られるように、 上記 ( 1) 及び (2) の基板前処理を施 さない基板にェピタキシャル成長させた n型ダイヤモンド薄膜の表面は、 三角錐 状の双晶が成長しており、 また研磨痕を反映した凹凸の激しい表面であることが 判る。 また、 この n型ダイヤモンド薄膜は、 結晶性を評価する測定においても、 上記 ( 1) 及び (2) の基板前処理した基板にェピタキシャル成長させた n型ダ ィャモンド薄膜のような高い完全結晶性を示さない。  On the other hand, as can be seen in Fig. 3 (b), the surface of the n-type diamond thin film epitaxially grown on the substrate not subjected to the substrate pretreatment in (1) and (2) above has a triangular pyramidal twin It can be seen that the surface has grown and that the surface has severe irregularities reflecting polishing marks. In addition, this n-type diamond thin film has a high perfect crystallinity such as an n-type diamond thin film epitaxially grown on the substrate pretreated in (1) and (2) above in the measurement for evaluating the crystallinity. Is not shown.
なお、 (100) 面に平行に、 すなわち、 傾斜角 0で機械研磨し、 (2) の平 滑化処理をした場合の基板表面は、 図 1 (c) に示すように、 ( 100) 面が原 子層オーダ一で互いに上下した、 すなわち、 ( 100) 面が凹凸に連なった面に なり、 この面にェピタキシャル成長した n型ダイヤモンド薄膜の表面は図 3 (b ) に示したような双晶が発生し、 また、 上記の結晶性を評価する測定においても 良い結果が得られない。  The substrate surface parallel to the (100) plane, that is, mechanically polished at an inclination angle of 0 and subjected to the smoothing treatment in (2), has a (100) plane as shown in Fig. 1 (c). Fluctuated up and down in the order of the atomic layer, that is, the (100) plane became a series of irregularities, and the surface of the n-type diamond thin film epitaxially grown on this plane was as shown in Fig. 3 (b). Twinning occurs, and good results cannot be obtained in the above-described measurement for evaluating crystallinity.
以上説明したように、 ェピキ夕ピシャル成長用基板の前処理として、 (1) ダ ィャモンド ( 1 0 0 ) 面方位基板の面法線がく 1 0 0〉方向とく 0 1◦〉方向又 はく 1 0 0〉方向とく 0 0 1 >方向とが成す平面内で < 1 0 0 >方向を基準とし て 1 . 5〜 6度の範囲のいずれかの角度 (傾斜角) で傾くように機械研磨した傾 斜基板を作製し、 次に、 (2 ) この傾斜基板を、 水素プラズマに晒して表面を平 滑化することによって、 原子オーダ一で表面が平滑化され、 かつ、 ( 1 0 0 ) 面 が原子層オーダ一でステツプ状に連なった表面が得られ、 この基板上にェピタキ シャル成長することにより、 結晶性の良い n型ダイヤモンドをェピ夕キシャル成 長することができる。 As described above, as a pretreatment of the substrate for epitaxial growth, (1) <100> In the plane defined by the surface normal direction of the substrate (100) and the direction of the <100> direction, especially the <101> direction or the <100> direction, the <100> direction A tilted substrate is mechanically polished so that it is tilted at an angle (tilt angle) in the range of 1.5 to 6 degrees with respect to the direction. Then, (2) this tilted substrate is subjected to hydrogen plasma. By exposing and smoothing the surface, the surface is smoothed in the atomic order, and the surface in which the (100) plane is in the atomic layer order in a step-like form is obtained. By epitaxial growth, n-type diamond with good crystallinity can be epitaxially grown.
次に、 本実施例で使用したマイクロ波プラズマ C V D装置を説明する。 図 4は 本実施例で使用するマイクロ波プラズマ C V D装置の概略構成図である。  Next, the microwave plasma CVD apparatus used in the present embodiment will be described. FIG. 4 is a schematic configuration diagram of a microwave plasma CVD apparatus used in the present embodiment.
図 4を参照すると、 本実施形態で使用するマイクロ波プラズマ C VD装置 1 0 は、 例えば 2 . 4 5 G H zのマイクロ波発生装置 1と、 アイソレー夕及びパワー モニタ一 3と、 チューナー 5とを有しマイクロ波が照射される反応管 7と、 この 反応管 7を真空排気する真空ポンプ (図示しない) と、 反応管 7に原料ガスであ る混合ガス又はパージ用ガスを切り換えて供給するガス供給ライン 9と、 複数の 光学窓 1 1 , 1 1と、 反応管内に設けられた基板ホルダ一 1 3と、 この基板ホル ダ一 1 3上に設置された基板 1 5を加熱又は冷却する温度制御システム 1 7とを 備え、 基板 1 5上にガスが供給されてマイクロ波プラズマ 1 9が発生するように なっている。 なお、 基板温度は光高温計でモニターしている。  Referring to FIG. 4, a microwave plasma C VD apparatus 10 used in the present embodiment is composed of, for example, a microwave generator 1 of 2.45 GHz, an isolator and a power monitor 13, and a tuner 5. A reaction tube 7 to be irradiated with microwaves, a vacuum pump (not shown) for evacuating the reaction tube 7, and a gas supplied to the reaction tube 7 by switching between a mixed gas as a source gas or a purge gas. A supply line 9, a plurality of optical windows 11 and 11, a substrate holder 13 provided in the reaction tube, and a temperature for heating or cooling the substrate 15 placed on the substrate holder 13 A control system 17 is provided, and a gas is supplied onto the substrate 15 to generate microwave plasma 19. The substrate temperature is monitored with an optical pyrometer.
次に、 マイクロ波プラズマ C V D法による n型半導体ダイヤモンドのェピ夕キ シャル成長条件について説明する。 この成長条件は、 原料、 温度、 圧力、 ガス流 量、 不純物添加量、 基板面積等により異なる。  Next, conditions for epitaxial growth of n-type semiconductor diamond by microwave plasma CVD will be described. The growth conditions vary depending on the raw material, temperature, pressure, gas flow rate, impurity addition amount, substrate area and the like.
図 5は本実施例におけるィォゥドープ半導体ダイヤモンドホモエピタキシーの 成長条件を示す図である。 図 5を参照して説明すると、 本実施例では反応ガスが メ夕ン /硫化水素/水素の混合ガスを原料ガスとして使用しているが、 アル力ン 、 アルケン等の揮発性炭化水素/ィォゥ化合物ガスノ水素の混合ガスであれば原 料ガスとして使用可能である。 炭化水素はダイヤモンドの構成元素である炭素の ソースとして、 ィォゥ化合物ガスはドナ一原子のソースとして、 また水素はキヤ リアガスとして使用している。 アルカンとしては例えばメタン、 ェタン、 プロパンを使用し、 アルケンとして は例えばエチレン、 プロピレンを使用するが、 揮発性炭化水素としてメタンはダ ィャモンドの構成元素の炭素供給を最小限に抑えることが容易にできるので最も 好ましい。 FIG. 5 is a diagram showing the growth conditions for the iodo-doped semiconductor diamond homoepitaxy in this example. Explaining with reference to FIG. 5, in this embodiment, the reaction gas uses a mixed gas of hydrogen / hydrogen sulfide / hydrogen as the raw material gas. Any gas mixture of compound gas and hydrogen can be used as a source gas. Hydrocarbons are used as a source of carbon, which is a constituent element of diamond, zeo-compound gas is used as a source of one atom of donor, and hydrogen is used as a carrier gas. For example, methane, ethane, and propane are used as alkanes, and ethylene and propylene are used as alkenes.Methane, as a volatile hydrocarbon, can easily minimize the carbon supply of diamond's constituent elements. Most preferred.
ィォゥ化合物としては、 例えば硫化水素 (H2 S) 、 二硫化炭素 (CS2 ) 等 の無機ィォゥ化合物、 低級アルキルメルカブタン等の有機ィォゥ化合物が挙げら れるが、 硫化水素が最も好ましい。 Examples of the thio compound include inorganic thio compounds such as hydrogen sulfide (H 2 S) and carbon disulfide (CS 2 ), and organic thio compounds such as lower alkyl mercaptan, with hydrogen sulfide being most preferred.
したがって、 混合ガスとしてはメタン /硫化水素/水素を使用するのが好まし い。 混合ガス中のメタン濃度は 0. 1%〜5%、 好ましくは 0. 5%〜3. 0% で使用するのがよい。 混合ガス中の硫化水素の濃度は、 1 ppm〜2000 pp m、 好ましくは 5 ρρπ!〜 200 p pmで使用するのがよい。  Therefore, it is preferable to use methane / hydrogen sulfide / hydrogen as the mixed gas. The methane concentration in the mixed gas is 0.1% to 5%, preferably 0.5% to 3.0%. The concentration of hydrogen sulfide in the gas mixture is 1 ppm to 2000 ppm, preferably 5 ρπ! Good to use at ~ 200 ppm.
本実施例ではメタン濃度 1%、 硫化水素 10〜10 Oppmである。 硫化水素 の濃度が増加するとキヤリァ濃度が増加するが、 この硫化水素の濃度範囲では移 動度は硫化水素の添加量が 50 ppmで最大となることから 5 Oppmが最も好 ましい。  In this embodiment, the methane concentration is 1%, and the hydrogen sulfide is 10 to 10 ppm. As the concentration of hydrogen sulfide increases, the carrier concentration increases. In this concentration range of hydrogen sulfide, the mobility is most preferably 5 Oppm because the maximum amount of hydrogen sulfide is 50 ppm.
全ガス流量は装置の規模、 例えば反応管部の体積、 供給ガス流量及び排気量等 によるが、 本実施形態では 200ml /m i nである。  The total gas flow rate depends on the scale of the apparatus, for example, the volume of the reaction tube, the supply gas flow rate, the exhaust volume, and the like. In the present embodiment, the total gas flow rate is 200 ml / min.
ガス流量は各ガス種に対応したマスフローコントローラで制御するが、 硫化水 素の添加量は例えば 100 p pm硫化水素/水素の混合ガスボンベを用い、 キヤ リア水素で希釈してマスフローコントローラで流量制御して、 所定の添加量の割 合に制御している。  The gas flow rate is controlled by a mass flow controller corresponding to each gas type.The amount of hydrogen sulfide added is controlled by a mass flow controller using a mixed gas cylinder of, for example, 100 ppm hydrogen sulfide / hydrogen, diluted with carrier hydrogen. Thus, the ratio is controlled to a predetermined ratio.
本実施例では 10 Oppm硫化水素/水素の混合ガスボンベを使用する。 本実 施形態では硫化水素濃度を 5 Oppmに設定しているので、 全流量が 20 Oml /mi nの場合、 キヤリア水素ガスを 10 Oml/minとして 10◦ ppm硫 化水素/水素の混合ガスボンベから 10 Oml/mi nを流すと全体で硫化水素 濃度が 5 Oppmに設定できる。  In this embodiment, a mixed gas cylinder of 10 Oppm hydrogen sulfide / hydrogen is used. In this embodiment, the hydrogen sulfide concentration is set to 5 Oppm, so when the total flow rate is 20 Oml / min, the carrier hydrogen gas is set to 10 Oml / min, and the mixed gas cylinder of 10◦ppm hydrogen sulfide / hydrogen is used. By flowing 10 Oml / min, the hydrogen sulfide concentration can be set to 5 Oppm as a whole.
マイクロ波プラズマ CVDでは気圧がだいたい 30〜60 T 0 r r内であり、 本実施例では 4 OTo r rとした。 マイクロ波放電では比較的高い圧力でグロ一 放電を維持する。 0/5534 - ダイヤモンドを析出する基板の温度は 700°C~1100°Cとする力 本実施 例では 830°Cである。 In the microwave plasma CVD, the pressure is approximately within a range of 30 to 60 T 0 rr, and in this embodiment, the pressure is set to 4 OTo rr. In microwave discharge, glow discharge is maintained at a relatively high pressure. 0/5534-Force at which the temperature of the substrate on which diamond is deposited is 700 ° C to 1100 ° C is 830 ° C in this embodiment.
また基板ダイャモンドとして I bダイャモンドを使用したが、 このタイプのダ ィャモンドに限られず、 laや II型でもよい。 さらに本実施形態では (100) 面にダイヤモンドをホモェピタキシャル成長させるが、 (100) 面に限らず、 例えば (111) 面や (110) 面でもよい。  In addition, although Ib diamond was used as the substrate diamond, it is not limited to this type of diamond, and may be la or II type. Further, in this embodiment, diamond is homoepitaxially grown on the (100) plane, but is not limited to the (100) plane, and may be, for example, the (111) plane or the (110) plane.
次に、 本実施例における n型半導体ダイヤモンドの作製プロセスについて説明 する。  Next, the manufacturing process of the n-type semiconductor diamond in this embodiment will be described.
先ず、 ェキ夕ピシャル成長用基板の前処理として、 粒度 0. 5〃m以下のダイ ャモンド砥粒を使用して、 ダイヤモンド (100) 面方位基板表面を、 この面法 線が、 く 100〉方向とく 010>方向又はく 100>方向とく 001〉方向と が成す平面内でく 100 >方向を基準として 1. 5〜6度の範囲のいずれかの角 度 (傾斜角) で傾くように機械研磨した傾斜基板を作製し、 この傾斜基板を、 上 記に説明したマイクロ波プラズマ装置を使用し、 2. 45 GHzのマイクロ波出 力 200〜1200W、 水素圧力 10〜50Tor rの水素プラズマに晒して、 基板温度 700〜1200°C、 処理時間 0. 5〜5時間で表面を平滑化する。 な お、 この表面平滑化処理は、 アセチレン等の燃焼炎の酸化炎に晒すことによって も可能である。  First, as a pre-treatment of the substrate for the epitaxial growth, the diamond (100) oriented substrate surface was polished using diamond abrasive grains with a grain size of 0.5 μm or less. A machine that tilts at an angle (tilt angle) in the range of 1.5 to 6 degrees with reference to the 100> direction in the plane defined by the direction 010> direction or the 100> direction, particularly the 001> direction. A polished tilted substrate was prepared, and this tilted substrate was exposed to hydrogen plasma at a microwave output of 2.45 GHz, 200 to 1200 W, and a hydrogen pressure of 10 to 50 Torr, using the microwave plasma apparatus described above. The surface is smoothed at a substrate temperature of 700 to 1200 ° C and a processing time of 0.5 to 5 hours. This surface smoothing treatment can also be performed by exposing it to an oxidizing flame of a combustion flame such as acetylene.
次に、 この基板を洗浄処理し、 基板ホルダ一に設置して、 ガス供給ラインから 水素パージを数回繰り返し真空容器内の窒素や酸素を除去する。 次いで、 基板ホ ルダ一を加熱しつつ基板表面温度が 830°Cとなるように制御するとともに 40 To rrに圧力制御する。 なお、 基板表面温度は例えば光高温計で測定する。 次に、 40 T 0 r rの圧力制御の下にマイクロ波放電させるとともにガス供給 ラインでパージ用水素ガスをメタン 1 % /硫化水素 50 p pmの水素希釈の混合 ガスに切り換えて反応管に 20 Oml/minで導入すると、 基板上方にプラズ マが発生する。 このプラズマ流がダイヤモンド基板に供給され、 ダイヤモンド薄 膜がェピ夕キシャル成長する。  Next, the substrate is subjected to a cleaning process, and is set on the substrate holder, and hydrogen purge is repeated several times from the gas supply line to remove nitrogen and oxygen in the vacuum vessel. Next, while controlling the substrate holder, the substrate surface temperature is controlled to be 830 ° C. and the pressure is controlled to 40 Torr. The substrate surface temperature is measured by, for example, an optical pyrometer. Next, microwave discharge was performed under pressure control of 40 T 0 rr, and the hydrogen gas for purging was switched to a mixed gas of 1% methane / 50 ppm hydrogen sulfide diluted with hydrogen at the gas supply line, and 20 Oml was added to the reaction tube. When introduced at / min, plasma is generated above the substrate. This plasma flow is supplied to the diamond substrate, and the diamond thin film grows epitaxially.
所定膜厚になったら、 ガス供給ラインを水素パージに切り換えるとともにマイ クロ波放電を停止し、 基板加熱を停止又は冷却する。 最後に室温に戻ったら、 常圧復帰した反応管の基板ホルダーから、 ダイヤモン ド基板を取り出す。 When the film thickness reaches a predetermined value, switch the gas supply line to hydrogen purge, stop microwave discharge, and stop or cool the substrate. When the temperature finally returns to room temperature, remove the diamond substrate from the substrate holder of the reaction tube that has returned to normal pressure.
このようにして製造したダイヤモンド結晶薄膜に、 測定温度 250〜550 K においてォーミヅク特性を確認した電極を形成した。  On the diamond crystal thin film thus manufactured, an electrode whose ohmic property was confirmed at a measurement temperature of 250 to 550 K was formed.
このようにして製造したダイヤモンド結晶薄膜は、 測定温度 250- 550 K において、 すべて負のホール係数を示し、 室温での移動度は 580 cm2 /V · sと高く、 また、 反射電子線回折 (RHEED) で鮮明な菊池パターンが観測で き、 結晶薄膜の結晶性がきわめて高い。 The diamond crystal thin films thus produced all show a negative Hall coefficient at the measurement temperature of 250-550 K, the mobility at room temperature is as high as 580 cm 2 / V · s, and the reflection electron diffraction ( RHEED), a clear Kikuchi pattern can be observed, and the crystallinity of the crystal thin film is extremely high.
以上の説明から明らかなように、 本実施例の n型半導体ダイヤモンドの製造方 法によれば、 高移動度かつ結晶性のよい n型半導体ダイヤモンドを得ることがで きる。  As is clear from the above description, according to the method for producing an n-type semiconductor diamond of this example, an n-type semiconductor diamond having high mobility and good crystallinity can be obtained.
次に、 このようにして製造した n型半導体ダイヤモンドの特性について詳しく 説明する。  Next, the characteristics of the n-type semiconductor diamond thus manufactured will be described in detail.
図 6は本実施形態に係る n型半導体ダイャモンドのキヤリァ濃度の温度依存性 を示す図である。  FIG. 6 is a diagram showing the temperature dependence of the carrier concentration of the n-type semiconductor diamond according to the present embodiment.
図 6から分かるように、 キャリア濃度は温度上昇につれて 1012〜1015cm 3まで増加しており、 ダイヤモンド薄膜の伝導度は室温で 1. 3 x 10— 3Ω ο πτ1である。 この図から判るように、 キャリア濃度は温度の逆数に対して完全な 指数関数依存性を示しており、 このことは、 キャリアが単一ドナ一準位からのみ 供給されていることを示している。 図 6から判るように、 ドナー準位の活性化工 ネルギ一は 0. 38 e Vである。 As can be seen from FIG. 6, the carrier concentration is increased to 10 12 ~10 15 cm 3 as the temperature rises, the conductivity of the diamond film is 1. 3 x 10- 3 Ω ο πτ 1 at room temperature. As can be seen from the figure, the carrier concentration shows a complete exponential dependence on the reciprocal of temperature, which indicates that carriers are supplied only from a single donor level. . As can be seen from Fig. 6, the activation energy of the donor level is 0.38 eV.
すなわち、 本発明の n型半導体ダイヤモンドは、 ィォゥ (S) 原子が 0. 38 e Vの活性化エネルギーで単一ドナー準位を形成している n型半導体ダイヤモン ドである。  That is, the n-type semiconductor diamond of the present invention is an n-type semiconductor diamond in which zeo (S) atoms form a single donor level with an activation energy of 0.38 eV.
図 7は本実施例の n型半導体ダイャモンドのホール係数測定による移動度の温 度依存性を示す図である。  FIG. 7 is a diagram showing the temperature dependence of the mobility of the n-type semiconductor diamond according to the present embodiment measured by the Hall coefficient.
測定温度 250〜550 Kにおいて、 すべて負のホール係数を示す。  At measurement temperatures of 250 to 550 K, all exhibit a negative Hall coefficient.
図 7から明らかなように、 室温におけるキャリア濃度は 1. 4 x l 013cnT3 で、 移動度は 580 cm2 /V · sである。 図 8は 7 8 0 °Cで成長させた n型半導体ダイヤモンドのホール係数測定による 移動度の温度依存性を示す図である。 基板温度以外の成長条件は同一であるが、 基板温度が低いので、 結晶中へのィォゥ (S ) の取り込み量は少ない。 As is clear from FIG. 7, the carrier concentration at room temperature is 1.4 xl 0 13 cnT 3 and the mobility is 580 cm 2 / V · s. FIG. 8 is a diagram showing the temperature dependence of the mobility of n-type semiconductor diamond grown at 780 ° C. measured by the Hall coefficient. The growth conditions other than the substrate temperature are the same, but since the substrate temperature is low, the amount of indium (S) incorporated into the crystal is small.
図 8に示す例では移動度が 9 8 0 c m2 /V · sであり、 したがって本発明の n型半導体ダイヤモンドはィォゥのドープ量が少ない場合においても極めて高い 移動度を示す。 In the example shown in FIG. 8, the mobility is 980 cm 2 / V · s, and therefore, the n-type semiconductor diamond of the present invention exhibits extremely high mobility even when the doping amount of iodine is small.
なお、 I I a型ダイヤモンドの電子移動度は約 2 0 0 0 c m2 V 1 . s— と推定 されているが、 本実施例の製造方法によれば、 極めて結晶性がよく作製できるた め、 I l a型ダイヤモンド基板を用いれば 1 0 3 c m2 V 1 · s 1台の移動度も可 能である。 The electron mobility of type IIa diamond is estimated to be about 2000 cm 2 V 1 .s—. However, according to the manufacturing method of this example, since the crystallinity can be extremely high, the use of I la-type diamond substrate 1 0 3 cm 2 V 1 · s 1 single mobility is possible.
図 9は本実施例のィォゥ (S ) ドープ n型半導体ダイヤモンドと従来のリン ( P ) ド一プ n型半導体ダイヤモンドとの移動度の比較を示す図である。  FIG. 9 is a graph showing a comparison of the mobility between the n-type semiconductor diamond doped with n-type (S) of the present embodiment and the n-type semiconductor diamond doped with phosphorus (P).
図 9中、 口印は成長温度が 7 8 0 °C、 〇印が 8 3 0 °Cでの、 本発明による Sド ープ n型半導体ダイヤモンドのデ一夕であり、 黒丸及び鎖線で示したものが従来 の Pド一プ n型半導体ダイヤモンドのデ一夕である。  In FIG. 9, the mark indicates the completeness of the S-doped n-type semiconductor diamond according to the present invention at a growth temperature of 780 ° C. and the mark 8 at 830 ° C. The result is a conventional P-doped n-type semiconductor diamond.
従来の Pド一プ n型半導体ダイヤモンドでは、 室温で移動度が 1 0 c m2 /V • s程度であり、 最高値でも 3 0 c m2 /V · s程度である (Diamond and Rela ted Materials 7 (1998) 540-544, S. Koizumi et al参照) 。 In conventional P de one flop n-type semiconductor diamond is about mobility 1 0 cm 2 / V • s at room temperature, is about 3 0 cm 2 / V · s at most value (Diamond and Rela ted Materials 7 (1998) 540-544, see S. Koizumi et al).
これに対して、 本実施例の Sド一プ n型半導体ダイヤモンドでは、 上述したよ うに移動度が約 6 0 0 c m2 /V · s以上であり、 極めて高移動度である。 On the other hand, the mobility of the S-doped n-type semiconductor diamond of this embodiment is about 600 cm 2 / V · s or more, as described above, and is extremely high.
さらに、 本発明の製造方法によるィォゥ (S ) ドープ n型半導体ダイヤモンド では、 移動度の温度特性が結晶欠陥が多い場合に示す温度依存性とは逆に、 高温 になるにつれて小さくなる、 T 3 κ 2依存性を示す。 Furthermore, the Iou (S) doped n-type semiconductor diamond according to the production method of the present invention, contrary to the temperature dependence shown when the temperature characteristics of the mobility is large crystal defects decreases as a high temperature, T 3 kappa 2 Dependence is shown.
この温度特性は、 キヤリァの散乱過程がフオノンによるものが支配的であるこ とを示しており、 完全結晶性の高 、単結晶においてのみ観測されるものである。 したがって、 本実施例のィォゥ (S ) ド一プ η型半導体ダイヤモンドは、 結晶欠 陥が極めて少なく、 したがって、 キャリアの源が結晶欠陥などではなく ドーパン ト原子によるものであり、 半導体電子デバイスとして使用できる完全結晶性を有 することが判る。 図 10は本実施例の n型半導体ダイヤモンドのラマンスぺクトルを示す図であ る。 図 10から明らかなように、 波数が 1333 cm— 1のピーク以外に何もピー クがなく、 その半値幅は約 2. 6 cm と極めて狭い。 したがって、 本実施例の n型半導体ダイヤモンドは極めて結晶性が高い。 なお図示していないが、 上記基 板前処理を施さないでェピ夕キシャル成長した n型半導体ダイャモンドの波数は 約 6 cm— 1である。 This temperature characteristic indicates that the carrier scattering process is dominated by the phonon, and is observed only in single crystals with high perfect crystallinity. Therefore, the ゥ -type (S) -doped η-type semiconductor diamond of this example has very few crystal defects, and therefore the carrier source is not a crystal defect or the like but a dopant atom, and is used as a semiconductor electronic device. It can be seen that it has perfect crystallinity. FIG. 10 is a diagram showing the Raman spectrum of the n-type semiconductor diamond of this example. As is clear from Fig. 10, there is no peak other than the peak at the wave number of 1333 cm- 1 and its half width is extremely narrow at about 2.6 cm. Therefore, the n-type semiconductor diamond of this example has extremely high crystallinity. Although not shown, the wave number of an n-type semiconductor diamond epitaxially grown without performing the above-mentioned substrate pretreatment is about 6 cm- 1 .
図 11は本実施例の n型半導体ダイヤモンドの自由励起子発光と束縛励起子発 光のスペクトルを示す図である。 図 11から明らかなように、 本実施例の n型半 導体ダイヤモンドでは 235 nm付近の自由励起子発光 (FE) と 238 nm付 近の束縛励起子発光 (BE) とが観測される。 このことは、 特に、 ド一プしたィ ォゥがダイヤモンド格子の格子点に存在し、 かつ、 ダイヤモンド結晶のバンドギ ヤップ内に完全なドナ一レベルを形成していることを示している。 また、 上記基 板前処理を施さないでェピタキシャル成長した n型半導体ダイヤモンドでは、 自 由励起子発光と束縛励起子発光は観測されない。  FIG. 11 is a diagram showing the spectra of free exciton emission and bound exciton emission of the n-type semiconductor diamond of this example. As is evident from FIG. 11, free exciton emission (FE) around 235 nm and bound exciton emission (BE) around 238 nm are observed in the n-type semiconductor diamond of this example. This indicates that the doped hole is present at the lattice point of the diamond lattice and forms a complete donor level in the band gap of the diamond crystal. In addition, free exciton light emission and bound exciton light emission are not observed in n-type semiconductor diamond grown epitaxially without performing the above-mentioned substrate pretreatment.
図 12 (a) は 2次電子顕微鏡 (SEM)写真を示し、 (b) は反射電子線回 折 (RHEED) パターンを示す。 図 12 (a)から明らかなように、 本実施例 の n型半導体ダイヤモンドの表面は非常になめらかである。 そして、 図 12 (b ) から明らかなように、 非常に鮮明な菊池パターンが生じており、 結晶性が極め て高いことが確認できる。  Figure 12 (a) shows a secondary electron microscope (SEM) photograph, and (b) shows a backscattered electron diffraction (RHEED) pattern. As is clear from FIG. 12 (a), the surface of the n-type semiconductor diamond of this example is very smooth. Then, as is clear from FIG. 12 (b), a very clear Kikuchi pattern is generated, and it can be confirmed that the crystallinity is extremely high.
図 13は本実施例の n型半導体ダイヤモンドにおける 2次イオン質量分析 (S IMS) による原子濃度のプロファイルを示す図である。 図 13から本実施例の n型半導体ダイヤモンド中でィォゥ (S) が一定濃度でド一プされており、 この ィォゥ (S) は少なくとも S IMSの検出限界の 1013 cm— 3以上ド一プされて いることが判る。 FIG. 13 is a diagram showing the profile of the atomic concentration of the n-type semiconductor diamond of this example measured by secondary ion mass spectrometry (S IMS). From FIG. 13, it can be seen that in the n-type semiconductor diamond of the present example, ゥ (S) is doped at a constant concentration, and this ゥ (S) is at least 10 13 cm− 3 or more, which is the detection limit of SIMS. You can see that it has been done.
以上の説明から明らかなように、 本実施例で作製される n型半導体ダイャモン ドは、 キャリアが単一のドナ一レベルから供給される n型導電性を有し、 結晶欠 陥が少なく移動度が大きい。 したがって、 従来からの p型半導体ダイヤモンド作 製技術と組み合わせることによって、 優れた特性を有する pn接合を形成するこ とができる。 なお、 本実施例は本発明の例示的な実施例について説明したものであり、 本発 明の要旨及び範囲を逸脱することなく、 実施例での種々の変更、 省略、 追加が可 能である。 したがって本発明は実施例に限定されるものでなく、 特許請求の範囲 に記載された要素によって規定される範囲及びその均等範囲を包含するものとし て理解されなければならない。 産業上の利用可能性 As is clear from the above description, the n-type semiconductor diamond fabricated in this example has n-type conductivity in which carriers are supplied from a single donor level, has few crystal defects, and has low mobility. Is big. Therefore, a pn junction with excellent characteristics can be formed by combining it with the conventional p-type semiconductor diamond fabrication technology. Note that the present embodiment describes an exemplary embodiment of the present invention, and various changes, omissions, and additions can be made in the embodiment without departing from the spirit and scope of the present invention. . Therefore, the present invention is not limited to the embodiments, but should be understood to cover the scope defined by the elements recited in the claims and the equivalents thereof. Industrial applicability
以上のように、 本発明の n型半導体ダイヤモンド及びその製造方法によって、 半導体ダイャモンド薄膜による半導体電子デバイスの工業的な製造が可能になり 、 小型ハイパワーデバイス、 高出力高周波デバイス及び高温動作デバイス等の製 造が実現できる。  As described above, the n-type semiconductor diamond and the method for manufacturing the same according to the present invention enable industrial manufacture of semiconductor electronic devices using a semiconductor diamond thin film, such as small high-power devices, high-power high-frequency devices, and high-temperature operating devices. Manufacturing can be realized.

Claims

請 求 の 範 囲 The scope of the claims
1. n型半導体ダイヤモンドの製造方法において、 ダイヤモンド基板を機械研磨 によって傾斜基板にし、 この傾斜基板の表面を平滑化処理し、 揮発性炭化水素 とィォゥ化合物と水素ガスとから成る原料ガスをマイクロ波プラズマで励起し て、 所定の基板温度を保ちながら、 上記平滑化処理した基板上に n型半導体ダ ィャモンドをェピ夕キシャル成長することを特徴とする、 n型半導体ダイヤモ ンドの製造方法。 1. In a method for producing an n-type semiconductor diamond, a diamond substrate is formed into an inclined substrate by mechanical polishing, the surface of the inclined substrate is smoothed, and a raw material gas comprising volatile hydrocarbons, thio compounds, and hydrogen gas is microwaved. A method for producing an n-type semiconductor diamond, characterized in that an n-type semiconductor diamond is epitaxially grown on the smoothed substrate while being excited by plasma and maintaining a predetermined substrate temperature.
2. 前記ダイヤモンド基板は、 ダイヤモンド ( 100) 面方位基板であることを 特徴とする、 請求項 1記載の n型半導体ダイヤモンドの製造方法。 2. The method for producing an n-type semiconductor diamond according to claim 1, wherein the diamond substrate is a diamond (100) plane oriented substrate.
3. 前記傾斜基板は、 ダイヤモンド ( 100) 面方位基板をこの基板の面法線が く 100>方向とく 0 1◦ >方向又はく 100〉方向とく 001〉方向とが成 す平面内で < 100〉方向を基準として 1. 5〜 6度の範囲のいずれかの角度 で傾くように機械研磨した傾斜基板であることを特徴とする、 請求項 1記載の n型半導体ダイヤモンドの製造方法。 3. The tilted substrate has a diamond (100) plane oriented in a plane defined by the plane normal to the plane of the substrate and the <100> direction of the substrate. 2. The method for producing an n-type semiconductor diamond according to claim 1, wherein the inclined substrate is mechanically polished so as to be inclined at any angle in a range of 1.5 to 6 degrees with respect to the direction.
4. 前記平滑化処理は、 前記傾斜基板を水素プラズマに晒す処理又はアセチレン 等の燃焼炎の酸化炎に晒す処理であることを特徴とする、 請求項 1記載の n型 半導体ダイヤモンドの製造方法。 4. The method for producing an n-type semiconductor diamond according to claim 1, wherein the smoothing process is a process of exposing the inclined substrate to hydrogen plasma or a process of exposing the substrate to an oxidizing flame of a combustion flame such as acetylene.
5. 前記水素プラズマに晒す処理は、 前記傾斜基板を水素圧力 10~ 50 T 0 r rかつマイクロ波出力が 200〜 1200Wのプラズマ中に、 基板温度 700 〜1200°Cで処理時間 0. 5~ 5時間晒す処理であることを特徴とする、 請 求項 1記載の n型半導体ダイヤモンドの製造方法。 5. The process of exposing the inclined substrate to the hydrogen plasma is performed in a plasma having a hydrogen pressure of 10 to 50 T 0 rr and a microwave output of 200 to 1200 W at a substrate temperature of 700 to 1200 ° C and a processing time of 0.5 to 5 3. The method for producing an n-type semiconductor diamond according to claim 1, wherein the method is exposure treatment for a time.
6. 前記所定の基板温度は、 700 °C〜 1 1 00 °C、 好ましくは 830 °Cである ことを特徴とする請求項 1記載の n型半導体ダイャモンドの製造方法。 6. The method for manufacturing an n-type semiconductor diamond according to claim 1, wherein the predetermined substrate temperature is 700 ° C to 110 ° C, preferably 830 ° C.
7. 前記揮発性炭化水素が、 アルカン又はアルケンであることを特徴とする、 請 求項 1記載の n型半導体ダイヤモンドの製造方法。 7. The method for producing an n-type semiconductor diamond according to claim 1, wherein the volatile hydrocarbon is an alkane or an alkene.
8. 前記アルカンがメタン、 ェ夕ン又はプロパンであることを特徴とする、 請求 項 7記載の n型半導体ダイヤモンドの製造方法。 8. The method for producing an n-type semiconductor diamond according to claim 7, wherein the alkane is methane, ethylene, or propane.
9. 前記アルケンが、 エチレン又はプロピレンであることを特徴とする、 請求項 7記載の n型半導体ダイヤモンドの製造方法。 9. The method for producing an n-type semiconductor diamond according to claim 7, wherein the alkene is ethylene or propylene.
10. 前記ィォゥ化合物が、 硫化水素又は二硫化炭素であることを特徴とする、 請求項 1記載の n型半導体ダイヤモンドの製造方法。 10. The method for producing an n-type semiconductor diamond according to claim 1, wherein the iodide compound is hydrogen sulfide or carbon disulfide.
11. 前記ィォゥ化合物が、 有機ィォゥ化合物であることを特徴とする、 請求項 1記載の n型半導体ダイヤモンドの製造方法。 11. The method for producing an n-type semiconductor diamond according to claim 1, wherein the iodide compound is an organic iodide compound.
12. 前記有機ィォゥ化合物が、 低級アルキルメルカプ夕ンであることを特徴と する、 請求項 11記載の n型半導体ダイヤモンドの製造方法。 12. The method for producing an n-type semiconductor diamond according to claim 11, wherein the organic compound is a lower alkyl mercapone.
13. 前記マイクロ波プラズマは、 濃度 0. 1%〜5%のメタン、 濃度 lppm 〜2000 ppmの硫化水素及び水素とから成る前記原料ガスを流量 200m 1 · mi n 1で流しながら 30〜60 T o r rの圧力に保ち、 マイクロ波周波 数 2. 45 GHZ 及びマイクロ波出力 3◦ 0〜400Wで励起することを特徴 とする、 請求項 1記載の n型半導体ダイヤモンドの製造方法。 13. The microwave plasma while flowing concentration 0.1% to 5% of methane, the feed gas comprising hydrogen sulfide and hydrogen concentration LPPM to 2000 ppm at a flow rate 200m 1 · mi n 1 30~60 T maintaining a pressure of orr, characterized in that it excited by microwave frequency 2. 45 GH Z and microwave output 3◦ 0~400W, manufacturing method of the n-type semiconductor diamond according to claim 1, wherein.
14. 請求項 1〜13のいずれかに記載の η型半導体ダイヤモンドの製造方法に より製造した η型半導体ダイヤモンド。 14. An η-type semiconductor diamond produced by the method for producing an η-type semiconductor diamond according to any one of claims 1 to 13.
15. 不純物原子がィォゥ原子であり、 このィォゥ原子が 0. 38 evのドナー レベルを形成していることを特徴とする請求項 14に記載の n型半導体ダイヤ モンド。 15. The n-type semiconductor diamond according to claim 14, wherein the impurity atoms are zeo atoms, and the zeo atoms form a donor level of 0.38 ev. Mondo.
16. キャリア移動度の温度 (T)依存性が、 室温以上の温度範囲において、 T 3' /2依存性であることを特徴とする、 請求項 14に記載の n型半導体ダイヤモ ンド。 16. The n-type semiconductor diamond according to claim 14, wherein the temperature (T) dependency of carrier mobility is T 3 ′ / 2 in a temperature range of room temperature or higher.
17. 自由励起子及び束縛励起子による発光が観察されることを特徴とする、 求項 14に記載の n型半導体ダイヤモンド。 17. The n-type semiconductor diamond according to claim 14, wherein light emission by free excitons and bound excitons is observed.
18. 室温において、 キャリア濃度が 1. 4 X 1013 cm— 3以上であり、 かつ、 キャリア移動度が 580 cm2 V— ; · s 1以上であることを特徴とする、 請求 項 14に記載の n型半導体ダイヤモンド。 18. At room temperature, it is the carrier concentration is 1. 4 X 10 13 cm- 3 or more, and the carrier mobility of 580 cm 2 V-; and characterized in that · s 1 or more, according to claim 14 N-type semiconductor diamond.
19. ラマンスペクトルのダイヤモンドピークの半値幅が 2. 6 cm— 1以下であ ることを特徴とする請求項 14に記載の n型半導体ダイヤモンド。 19. The n-type semiconductor diamond according to claim 14, wherein the half width of the diamond peak in the Raman spectrum is 2.6 cm- 1 or less.
Blue
PCT/JP2000/001863 1999-03-26 2000-03-27 N-type semiconductor diamond and its fabrication method WO2000058534A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000608811A JP3769642B2 (en) 1999-03-26 2000-03-27 N-type semiconductor diamond and method for producing the same
US09/926,188 US7063742B1 (en) 1999-03-26 2000-03-27 N-type semiconductor diamond and its fabrication method
EP00911381A EP1179621A4 (en) 1999-03-26 2000-03-27 N-type semiconductor diamond and its fabrication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP11/124682 1999-03-26
JP12468299 1999-03-26

Publications (1)

Publication Number Publication Date
WO2000058534A1 true WO2000058534A1 (en) 2000-10-05

Family

ID=14891474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001863 WO2000058534A1 (en) 1999-03-26 2000-03-27 N-type semiconductor diamond and its fabrication method

Country Status (6)

Country Link
US (1) US7063742B1 (en)
EP (1) EP1179621A4 (en)
JP (1) JP3769642B2 (en)
KR (1) KR100525792B1 (en)
TW (1) TW471006B (en)
WO (1) WO2000058534A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053029A1 (en) * 2003-11-25 2005-06-09 Sumitomo Electric Industries, Ltd. DIAMOND n-TYPE SEMICONDUCTOR, MANUFACTURING METHOD THEREOF, SEMICONDUCTOR ELEMENT, AND ELECTRON EMITTING ELEMENT
WO2006082746A1 (en) * 2005-02-03 2006-08-10 National Institute Of Advanced Industrial Science And Technology FILM OF SEMICONDUCTOR SINGLE CRYSTAL OF n-TYPE (100) FACE ORIENTED DIAMOND DOPED WITH PHOSPHORUS ATOM AND PROCESS FOR PRODUCING THE SAME
JP2008539575A (en) * 2005-04-29 2008-11-13 エレメント シックス リミテッド Diamond transistor and manufacturing method thereof
CN100456490C (en) * 2003-11-25 2009-01-28 住友电气工业株式会社 Diamond n-type semiconductor, manufacturing method thereof, semiconductor element, and electron emitting element
JP2009059798A (en) * 2007-08-30 2009-03-19 Sumitomo Electric Ind Ltd Manufacturing method of diamond electronic device
JP2010251599A (en) * 2009-04-17 2010-11-04 National Institute Of Advanced Industrial Science & Technology Single crystal diamond substrate
CN110828753A (en) * 2019-11-19 2020-02-21 肇庆市华师大光电产业研究院 Preparation method of functional interlayer of lithium-sulfur battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833027B2 (en) * 2001-09-26 2004-12-21 The United States Of America As Represented By The Secretary Of The Navy Method of manufacturing high voltage schottky diamond diodes with low boron doping
AU2003242456A1 (en) 2002-06-18 2003-12-31 Sumitomo Electric Industries, Ltd. N-type semiconductor diamond producing method and semiconductor diamond
WO2006137401A1 (en) * 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation Diamond semiconductor element and method for manufacturing same
EP2226413B1 (en) * 2007-12-26 2016-10-12 Sumitomo Electric Industries, Ltd. Method for manufacturing diamond monocrystal having a thin film, and diamond monocrystal having a thin film.
US20130175546A1 (en) * 2012-01-06 2013-07-11 Akhan Technologies, Inc. Diamond Semiconductor System and Method
US20200286732A1 (en) * 2019-03-04 2020-09-10 Samsung Electronics Co., Ltd. Method of pre-treating substrate and method of directly forming graphene using the same
EP3967793A4 (en) * 2019-05-10 2023-01-11 Adamant Namiki Precision Jewel Co., Ltd. Diamond crystal substrate and production method for diamond crystal substrate
CN113891954A (en) 2019-05-29 2022-01-04 朗姆研究公司 High selectivity, low stress, and low hydrogen diamond-like carbon hard mask generated by high power pulsed low frequency RF

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302516A (en) * 1987-06-02 1988-12-09 Sumitomo Electric Ind Ltd Semiconductor diamond and manufacture thereof
JPH0517291A (en) * 1991-07-04 1993-01-26 Matsushita Electric Ind Co Ltd Treatment of substrate for deposition of diamond thin film
JPH0524989A (en) * 1991-07-16 1993-02-02 Sumitomo Electric Ind Ltd Method for synthesizing diamond and sphalerite type compound

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3818719C2 (en) * 1987-06-02 2000-03-23 Sumitomo Electric Industries N-type semiconductor diamond and process for producing the same
JPH01103994A (en) * 1987-10-16 1989-04-21 Sumitomo Electric Ind Ltd Method for growing diamond single crystal
JPH02263791A (en) * 1989-04-03 1990-10-26 Fujitsu Ltd Production of diamond film
US5474021A (en) * 1992-09-24 1995-12-12 Sumitomo Electric Industries, Ltd. Epitaxial growth of diamond from vapor phase
US5500077A (en) * 1993-03-10 1996-03-19 Sumitomo Electric Industries, Ltd. Method of polishing/flattening diamond
US5709577A (en) * 1994-12-22 1998-01-20 Lucent Technologies Inc. Method of making field emission devices employing ultra-fine diamond particle emitters
JP2952342B2 (en) 1996-12-26 1999-09-27 工業技術院長 n-type diamond semiconductor
KR100253115B1 (en) * 1997-03-05 2000-05-01 윤덕용 Fabrication method of n type semiconductor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302516A (en) * 1987-06-02 1988-12-09 Sumitomo Electric Ind Ltd Semiconductor diamond and manufacture thereof
JPH0517291A (en) * 1991-07-04 1993-01-26 Matsushita Electric Ind Co Ltd Treatment of substrate for deposition of diamond thin film
JPH0524989A (en) * 1991-07-16 1993-02-02 Sumitomo Electric Ind Ltd Method for synthesizing diamond and sphalerite type compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.B. ANDERSON ET AL.: "Molecular-orbital theory of monatomic and diatomic substitional defects as shallow n-type dopants in diamond", PHYSICAL REVIEW B.,, vol. 54, no. 20, November 1996 (1996-11-01), pages 14341 - 14348, XP002927088 *
See also references of EP1179621A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005053029A1 (en) * 2003-11-25 2005-06-09 Sumitomo Electric Industries, Ltd. DIAMOND n-TYPE SEMICONDUCTOR, MANUFACTURING METHOD THEREOF, SEMICONDUCTOR ELEMENT, AND ELECTRON EMITTING ELEMENT
CN100456490C (en) * 2003-11-25 2009-01-28 住友电气工业株式会社 Diamond n-type semiconductor, manufacturing method thereof, semiconductor element, and electron emitting element
JP4835157B2 (en) * 2003-11-25 2011-12-14 住友電気工業株式会社 Diamond n-type semiconductor, manufacturing method thereof, semiconductor device, and electron-emitting device
WO2006082746A1 (en) * 2005-02-03 2006-08-10 National Institute Of Advanced Industrial Science And Technology FILM OF SEMICONDUCTOR SINGLE CRYSTAL OF n-TYPE (100) FACE ORIENTED DIAMOND DOPED WITH PHOSPHORUS ATOM AND PROCESS FOR PRODUCING THE SAME
JP2006240983A (en) * 2005-02-03 2006-09-14 National Institute Of Advanced Industrial & Technology Film of semiconductor single crystal of n-type (100) face-oriented diamond doped with phosphorus atom and process for producing the same
JP2011176360A (en) * 2005-02-03 2011-09-08 National Institute Of Advanced Industrial Science & Technology Diamond semiconductor device having (100) face orientation
US8876973B2 (en) 2005-02-03 2014-11-04 National Institute Of Advanced Industrial Science And Technology Film of n type (100) oriented single crystal diamond semiconductor doped with phosphorous atoms, and a method of producing the same
JP2008539575A (en) * 2005-04-29 2008-11-13 エレメント シックス リミテッド Diamond transistor and manufacturing method thereof
JP2009059798A (en) * 2007-08-30 2009-03-19 Sumitomo Electric Ind Ltd Manufacturing method of diamond electronic device
JP2010251599A (en) * 2009-04-17 2010-11-04 National Institute Of Advanced Industrial Science & Technology Single crystal diamond substrate
CN110828753A (en) * 2019-11-19 2020-02-21 肇庆市华师大光电产业研究院 Preparation method of functional interlayer of lithium-sulfur battery
CN110828753B (en) * 2019-11-19 2021-11-12 肇庆市华师大光电产业研究院 Preparation method of functional interlayer of lithium-sulfur battery

Also Published As

Publication number Publication date
KR100525792B1 (en) 2005-11-03
US7063742B1 (en) 2006-06-20
TW471006B (en) 2002-01-01
JP3769642B2 (en) 2006-04-26
EP1179621A4 (en) 2007-12-19
EP1179621A1 (en) 2002-02-13
KR20010114226A (en) 2001-12-31

Similar Documents

Publication Publication Date Title
Davis Thin films and devices of diamond, silicon carbide and gallium nitride
TWI312535B (en)
JP3540275B2 (en) P-type ZnO single crystal and method for producing the same
JP3945782B2 (en) Semiconductor light emitting device and manufacturing method thereof
US8222674B2 (en) Semiconductor device having a group-III nitride superlattice layer on a silicon substrate
WO2000058534A1 (en) N-type semiconductor diamond and its fabrication method
EP1036863B1 (en) Method for synthesizing n-type diamond having low resistance
JP3557457B2 (en) Method for manufacturing SiC film and method for manufacturing SiC multilayer film structure
Wang et al. High-quality heterojunction between p-type diamond single-crystal film and n-type cubic boron nitride bulk single crystal
US6281099B1 (en) Method for synthesizing single crystal AIN thin films of low resistivity n-type and low resistivity p-type
JP3590883B2 (en) Ultraviolet light emitting device and method of manufacturing the same
JP4019136B2 (en) Diamond ultraviolet light emitting device
TWI302342B (en)
CA2158182C (en) Field effect transistor using diamond
Davis et al. Gas-source molecular beam epitaxy of III–V nitrides
Yokoyama et al. Growth and characterization of ZnSe on Si by atomic layer epitaxy
JP4789035B2 (en) Semiconductor device using n-type diamond
JP2007129271A (en) Semiconductor light emitting element and method of manufacturing same
JPH05299355A (en) Manufacture of boron doped diamond film
JP4002955B2 (en) Method for manufacturing diamond semiconductor device
JP2015154005A (en) Iron silicide semiconductor, method for manufacturing iron silicide semiconductor thin film, light-emitting element, and light-receiving element
Kato et al. n-Type Diamond Growth by Phosphorus Doping
JP2004331446A (en) LOW RESISTANCE n-TYPE SEMICONDUCTOR DIAMOND
JP2009032707A (en) METHOD FOR FORMING CRYSTALLINE SiC BY CARBONIZATION OF SURFACE OF Si SUBSTRATE, AND CRYSTALLINE SiC SUBSTRATE
JPH05291138A (en) Molecular beam epitaxy method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 608811

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017011835

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09926188

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000911381

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020017011835

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000911381

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017011835

Country of ref document: KR