JPH0524989A - Method for synthesizing diamond and sphalerite type compound - Google Patents

Method for synthesizing diamond and sphalerite type compound

Info

Publication number
JPH0524989A
JPH0524989A JP3175464A JP17546491A JPH0524989A JP H0524989 A JPH0524989 A JP H0524989A JP 3175464 A JP3175464 A JP 3175464A JP 17546491 A JP17546491 A JP 17546491A JP H0524989 A JPH0524989 A JP H0524989A
Authority
JP
Japan
Prior art keywords
diamond
substrate
growth
cbn
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3175464A
Other languages
Japanese (ja)
Other versions
JP3079653B2 (en
Inventor
Takashi Chikuno
孝 築野
Naoharu Fujimori
直治 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP03175464A priority Critical patent/JP3079653B2/en
Publication of JPH0524989A publication Critical patent/JPH0524989A/en
Application granted granted Critical
Publication of JP3079653B2 publication Critical patent/JP3079653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a vapor phase synthesis method eptaxially growing diamond and/or sphalerite type compounds having a flat surface shape. CONSTITUTION:In the method for eptaxially growing diamond and/or sphalerite type compounds by vapor phase on a substrate, as the substrate, a single crystal diamond substrate in which its face orientation has been deviated in the range of 2 to 20 deg. in the direction of <001> to <110>+ or -15 deg. is used, by which single crystals excellent in crystalline properties and surface flatness can be synthesized on the substrate. As the sphalerite type compounds, cBN, GaAs and SiC can preferably be given.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ダイヤモンド及び/又
は閃亜鉛鉱型化合物の気相合成法に関し、詳しくはダイ
ヤモンド基板を用いた上記合成法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase synthesis method of diamond and / or sphalerite compound, and more particularly to the above synthesis method using a diamond substrate.

【0002】[0002]

【従来の技術】近年様々な種類のダイヤモンド気相合成
法が開発され、ダイヤモンド膜の工業分野への応用は急
速な勢いで進んでいる。ダイヤモンドの半導体としての
利用は主要な応用分野の一つであり、ダイヤモンド高
温、高速素子への期待が高まってきている。珪素(S
i)やヒ化ガリウム(GaAs)等の半導体工業の基盤
は高品質の結晶成長技術にあって、ダイヤモンドについ
てもこれは当てはまるものである。
2. Description of the Related Art In recent years, various kinds of diamond vapor phase synthesis methods have been developed, and the application of diamond films to the industrial field is rapidly progressing. Utilization of diamond as a semiconductor is one of the main fields of application, and expectations for diamond high temperature and high speed devices are increasing. Silicon (S
The basis of the semiconductor industry such as i) and gallium arsenide (GaAs) is high quality crystal growth technology, and this is also applicable to diamond.

【0003】従って、高品質で欠陥の少ないp型及びn
型ダイヤモンド結晶膜のエピタキシャル成長及び成長し
た結晶の原子レベルでの平坦且つ清浄な表面を作製する
ことは非常に重要な技術と考えられる。これまで、気相
合成によるダイヤモンドのエピタキシャル成長について
は、平坦な表面形状を得る条件として、 i)(001)面を用いること〔文献:特開平1−10
3994、特開平1−246867各号公報〕、 ii)メタン、水素系でマイクロ波プラズマCVD法によ
り合成する場合には6%程度のメタン高濃度条件で行う
こと〔文献:H.Shiomi et al , Japanese Journal of A
pplied Physics vol.29 (1990) p.34 〕、などが報告さ
れている。(001)面上にマイクロ波プラズマCVD
法でメタン濃度6%で成膜すると、確かに平坦な膜は得
られるが、わずかな条件のずれによって、表面上に2次
的な粒子が成長し、凸凹な表面になってしまうことが問
題であった。また、ダイヤモンド基板上にダイヤモンド
単結晶を形成させた後に、続けて立方晶窒化ホウ素(c
BN)や炭化珪素(SiC)などの異種結晶をヘテロエ
ピタキシャル成長させることはダイヤモンド半導体の応
用範囲を広げる上で大きな意味をもつ技術である。
Therefore, p-type and n-type having high quality and few defects
It is considered that the epitaxial growth of the diamond-type diamond crystal film and the production of a flat and clean surface at the atomic level of the grown crystal are very important techniques. Up to now, for epitaxial growth of diamond by vapor phase synthesis, i) (001) plane has been used as a condition for obtaining a flat surface shape [Reference: JP-A-1-10].
3994, Japanese Patent Laid-Open No. 1-246867], ii) When synthesizing by a microwave plasma CVD method in a methane or hydrogen system, it should be performed under a high methane concentration condition of about 6% [Reference: H. Shiomi et al, Japanese Journal of A
pplied Physics vol.29 (1990) p.34], etc. have been reported. Microwave plasma CVD on (001) plane
When a methane concentration of 6% is formed by the method, a flat film is certainly obtained, but a slight deviation of the conditions causes secondary particles to grow on the surface, resulting in an uneven surface. Met. After forming a diamond single crystal on the diamond substrate, the cubic boron nitride (c
Heteroepitaxial growth of heterogeneous crystals such as BN) and silicon carbide (SiC) is a technology that has a great significance in expanding the application range of diamond semiconductors.

【0004】ダイヤモンドの(001)面は、ダイヤモ
ンド構造の性質上、1原子層のステップごとに表面のC
原子の結合手の向きは<001>の回りに90度回転し
ている。そのため、(001)面の1原子層ステップの
清浄表面に形成される表面超構造は図4に示すように一
方は2×1構造となり、他方は1×2構造となる(図
1)。2原子層のステップの場合は、図2に示すように
その上下とも同じ周期構造となる(図2)。一般的に
は、表面は1原子層のステップが多く存在し、表面には
1×2構造と2×1構造の両方が形成される。ダイヤモ
ンド(001)面の上に、閃亜鉛鉱型の物質を成長させ
る場合を考える。閃亜鉛鉱型化合物では、<001>に
垂直な原子層を考えたときに、結合手の向きが回転する
だけでなく、面を構成する原子の種類も変わる。例えば
cBNでは1層ごとにB原子からなる層、N原子からな
る層とが繰り返される。ダイヤモンドの上にcBNを成
長させる場合、C原子の上にはB原子が結合するから、 ・・・C−C−C−C−C−C−C−B−N−B−N−B−N−B−N・・・ ←・・・ダイヤモンド基板 → ←cBNエピタキシャル膜・・・・→ のように積層するようになる。もし、表面上に一原子層
のステップがあると、その両側での成長は、 のようになる。即ち、図5に示すようにBとNの2層を
周期とするcBN結晶を半周期だけずらしたような反位
相境界(アンチフェーズドメインバウンダリー)がステ
ップの上側のテラスに成長した部分と、ステップの下の
テラスに成長した部分の間に形成されてしまう。このよ
うな境界では、結晶は不連続となってしまう。それに対
し、二原子層のステップがある場合には、 のように成長する)。この場合には図3に示すにように
ステップのずれは、cBNの周期の1周期分に相当する
ため、1原子層ステップの場合のような位相のずれは生
じない。そのため、二原子層のステップは成長に悪い影
響を与えない。そこで、ダイヤモンドの上にcBNを成
長させる場合には、表面上にステップがないようにする
か、もしくは二原子層のステップのみになるようにする
ことが望まれる。全くステップがない表面を得ることは
殆ど不可能であるから、2原子層のステップだけになる
ように表面を制御する必要がある。このような表面で
は、表面超構造は2×1のみ、もしくは1×2構造のみ
(これをシングルドメインという)となる。Siはダイ
ヤモンド構造の半導体であり、その(001)面上にに
閃亜鉛鉱型の半導体材料であるGaAs、SiCなどを
成長させる場合には、やはり1原子層ステップのない表
面が必要であり、これを得る方法としてはいくつかの条
件が提案されており〔例えばSakamoto et al, Japanese
Journal of Applied Physics Letter vol.47 (1985)
p.617 〕、特許も出願されている(例えば特開平2−1
80795号公報等)。
Due to the nature of the diamond structure, the (001) face of diamond has a C surface at every atomic layer step.
The orientation of the atomic bond is rotated 90 degrees around <001>. Therefore, as shown in FIG. 4, one surface has a 2 × 1 structure and the other surface has a 1 × 2 structure as shown in FIG. 4 (FIG. 1). In the case of the step of two atomic layers, as shown in FIG. 2, the periodic structure is the same both above and below (FIG. 2). Generally, there are many steps of one atomic layer on the surface, and both 1 × 2 structure and 2 × 1 structure are formed on the surface. Consider the case where a zinc blende type material is grown on a diamond (001) surface. In the zinc-blende type compound, when the atomic layer perpendicular to <001> is considered, not only the direction of the bond rotates but also the kind of atoms constituting the plane changes. For example, in cBN, a layer made of B atoms and a layer made of N atoms are repeated for each layer. When cBN is grown on diamond, the B atom is bonded to the C atom, so that C—C—C—C—C—C—C—B—N—B—N—B— N-B-N ... ← ... Diamond substrate → ← cBN epitaxial film ... If there is a monoatomic step on the surface, the growth on both sides of it will be become that way. That is, as shown in FIG. 5, a portion where an antiphase boundary (antiphase domain boundary), which is obtained by shifting a cBN crystal having two layers of B and N as a period by a half period, grows on the terrace above the step, It will be formed between the grown parts on the terrace under the step. At such a boundary, the crystal becomes discontinuous. On the other hand, if there is a diatomic layer step, Grows like). In this case, as shown in FIG. 3, the step shift corresponds to one cycle of the cBN cycle, so that the phase shift does not occur as in the case of one atomic layer step. Therefore, the diatomic step does not adversely affect the growth. Therefore, when growing cBN on diamond, it is desirable that there be no steps on the surface or only diatomic layer steps. Since it is almost impossible to obtain a surface with no steps, it is necessary to control the surface so that there are only two atomic layer steps. On such a surface, the surface superstructure is only 2 × 1 or 1 × 2 structure (this is called a single domain). Si is a semiconductor having a diamond structure, and in the case of growing a zinc blende type semiconductor material such as GaAs or SiC on its (001) plane, a surface without one atomic layer step is required. Several conditions have been proposed for obtaining this [for example, Sakamoto et al, Japanese.
Journal of Applied Physics Letter vol. 47 (1985)
p.617], a patent has also been applied (for example, Japanese Patent Laid-Open No. 2-1
No. 80795, etc.).

【0005】[0005]

【発明が解決しようとする課題】しかし、ダイヤモンド
に関しては、これまで知られていた方法で作製したダイ
ヤモンド基板あるいはダイヤモンドエピタキシャル層
は、原子の大きさレベルでは完全に平坦なものではな
く、無数の単原子層ステップを含んだ表面であった。本
発明は、前記現状に鑑みてなされたものであり、本発明
の目的は結晶性に優れたダイヤモンド及び/又は閃亜鉛
鉱型化合物の単結晶膜をダイヤモンド単結晶基板上に合
成できる方法を提供することにある。
However, regarding diamond, a diamond substrate or a diamond epitaxial layer produced by a method known so far is not perfectly flat at the atomic size level, and countless single atoms are present. It was a surface containing atomic layer steps. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of synthesizing a single crystal film of diamond and / or a zinc blende type compound having excellent crystallinity on a diamond single crystal substrate. To do.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する手段
として本発明は、基板上にダイヤモンド及び/又は閃亜
鉛鉱型化合物を気相からエピタキシャル成長させる合成
方法において、該基板として面方位が<001>から<
110>±15°の方向に2°〜20°の範囲内でずれ
た単結晶ダイヤモンド基板を用いることを特徴とする合
成方法を提供する。 本発明における特に好ましい上記
閃亜鉛鉱型化合物としては、窒化ホウ素,GaAs又は
SiCを挙げることができる。
As a means for solving the above problems, the present invention provides a synthetic method of epitaxially growing a diamond and / or a zinc blende type compound on a substrate from a vapor phase, wherein the substrate has a plane orientation of <001. > To <
There is provided a synthetic method characterized by using a single crystal diamond substrate deviated within a range of 2 ° to 20 ° in a direction of 110> ± 15 °. Particularly preferable zinc blende type compounds in the present invention are boron nitride, GaAs or SiC.

【0007】[0007]

【作用】ダイヤモンドは、最も硬い物質であり、研磨が
困難であるため、主な結晶面である(111)、(00
1)、(110)などについてのエピタキシャル成長の
研究例は従来からあったものの、面方位を少しずらせた
微妙な条件下での研究例は全くなかった。本発明者ら
は、電子回折、電子顕微鏡、トンネル顕微鏡などを用い
て、様々な面方位に切断及び研磨したダイヤモンド基板
上に気相合成法によるダイヤモンド及び/又は異種物質
の成長を試みる詳細な実験を行った。その結果、ダイヤ
モンド上にダイヤモンドを成長させるホモエピタキシャ
ル成長では、成長面方位が<001>から<110>方
位に数°ずれている場合に、最も良好な表面モフォロジ
ーが得られた。これは、気相合成法の如何にかかわら
ず、マイクロ波プラズマCVD法、熱フィラメントCV
D法、直流プラズマCVD法のいずれにおいても、前述
の面方位の基板を用いた場合には、他の試料基板よりも
平坦な表面形状が得られた。本発明によりダイヤモンド
基板上にエピタキシャル成長させる閃亜鉛鉱型化合物と
しては、cBN、SiC、GaAs、GaP、InA
s、InPなどを挙げることができるが、ダイヤモンド
との格子定数を考えるとcBN、SiC、GaAsが特
に好ましい。
Since diamond is the hardest substance and it is difficult to polish it, the main crystal faces are (111), (00
Although there have been studies of epitaxial growth for 1) and (110), there have been no studies under delicate conditions in which the plane orientation is slightly shifted. The inventors of the present invention have conducted detailed experiments to try to grow diamond and / or a different substance by a vapor phase synthesis method on a diamond substrate cut and polished in various plane directions by using electron diffraction, an electron microscope, a tunnel microscope and the like. I went. As a result, in homoepitaxial growth in which diamond is grown on diamond, the best surface morphology was obtained when the growth plane orientation was deviated from the <001> orientation to the <110> orientation by several degrees. This is a microwave plasma CVD method, a hot filament CV, regardless of the vapor phase synthesis method.
In both the D method and the DC plasma CVD method, when the substrate having the above-mentioned plane orientation was used, a flatter surface shape was obtained as compared with the other sample substrates. Examples of zinc blende type compounds epitaxially grown on a diamond substrate according to the present invention include cBN, SiC, GaAs, GaP and InA.
Although s, InP and the like can be mentioned, cBN, SiC and GaAs are particularly preferable in view of the lattice constant with diamond.

【0008】このように本発明の方法で表面モフォロジ
ーが良好となる機構については明解に解明されてはいな
いが、<110>方位は(001)表面のステップに対
応する方向であり、数度ずらすことにより、ステップの
密度が増える結果、結晶成長が表面全体にわたって均一
におこるようになったと考えられる。面方位が<001
>から数°程度ずれていることが好ましい。2°未満で
は、(001)±0.1°の基板を用いた場合と同じで
殆ど効果がなかった。20°を越える場合には逆効果で
あった。ずれをつける方向としては<110>方向が最
も好ましく、<110>±15°の範囲では(001)
よりも良い結果が得られた。従って、<001>方位か
ら<110>±15°の方向に2〜20°の範囲内でず
れていることが好ましい。特に、5±1°程度のずれを
<110>±5°の方向につけた場合が最も好ましく、
(001)基板ではかなり凸凹な膜が形成されるような
条件(例えばメタン、水素系でのマイクロ波プラズマC
VD法で、メタン濃度を1%とした場合等)において
も、平坦なモフォロジーであった。
Although the mechanism by which the surface morphology is improved by the method of the present invention is not clearly understood, the <110> orientation is the direction corresponding to the step of the (001) surface and is shifted by several degrees. It is considered that, as a result, the step density increased, and as a result, crystal growth became uniform over the entire surface. Face orientation is <001
It is preferable that it is deviated by several degrees from>. Below 2 °, there was almost no effect as in the case of using the (001) ± 0.1 ° substrate. If it exceeds 20 °, the effect is opposite. The <110> direction is most preferable as the direction of deviation, and (001) is within the range of <110> ± 15 °.
Better results were obtained. Therefore, it is preferable that the angle is deviated from the <001> direction in the direction of <110> ± 15 ° within the range of 2 to 20 °. In particular, it is most preferable to add a deviation of about 5 ± 1 ° in the direction of <110> ± 5 °,
Conditions such that a considerably uneven film is formed on the (001) substrate (for example, microwave plasma C in methane or hydrogen system).
The morphology was flat even when the methane concentration was set to 1% by the VD method).

【0009】(001)±3°の基板を用いた場合に
は、成長後の表面は図4に示すように2×1構造と1×
2構造の2つの超構造が形成されており(ダブルドメイ
ン)、表面上には一原子層のステップが存在している。
図5はダイヤモンド(001)の一原子層ステップ上に
成長させたcBNの模式図を示す。結晶が不連続(アン
チフェーズドバンダリー)となっていることがわかる。
これに対し、ホモエピタキシャル成長で良好な結果が得
られた基板、即ち面方位を<001>から5±1°程度
のずれを<110>±5°の方向につけた場合には、図
2に示すように表面に形成される超構造は2×1構造の
み(シングルドメイン)であることが、電子回折、トン
ネル顕微鏡により確認できた。このダイヤモンドの二原
子層ステップの上に成長させたcBNの模式図を図3に
示す。即ち、本発明による基板が閃亜鉛鉱型材料を図3
のようにヘテロエピタキシャル成長させる基板として有
力であることがわかった。
When a (001) ± 3 ° substrate was used, the surface after growth had a 2 × 1 structure and a 1 × structure as shown in FIG.
Two superstructures of two structures are formed (double domain), and there is a monolayer of steps on the surface.
FIG. 5 shows a schematic diagram of cBN grown on one atomic layer step of diamond (001). It can be seen that the crystals are discontinuous (anti-phased bandary).
On the other hand, a substrate for which good results are obtained by homoepitaxial growth, that is, when the plane orientation is shifted from <001> by about 5 ± 1 ° in the direction of <110> ± 5 °, the results are shown in FIG. It was confirmed by electron diffraction and a tunnel microscope that the superstructure formed on the surface was only a 2 × 1 structure (single domain). A schematic diagram of cBN grown on this diatomic layer step of diamond is shown in FIG. That is, the substrate according to the present invention is a zinc blende type material.
It was found that this is an effective substrate for heteroepitaxial growth.

【0010】[0010]

【実施例】【Example】

実施例1 高圧合成法によるダイヤモンド基板を、図1に示すよう
に基板面がその法線方向が<001>から<110>方
向に5°ずれた方位となるように研磨し、マイクロ波プ
ラズマCVD法によりエピタキシャル成長を行った。合
成条件は、圧力40Torr、基板温度880℃、マイクロ
波パワー400W、成長時間10時間であった。成長後
の面は、ノマルスキー型顕微鏡による観察の結果、2次
的な粒成長の密度は1個/mm2 以下であり、平坦な面
であることがわかった。殆どずれのない(001)基板
(±2°以内)を用いて実施例1と同じ条件でダイヤモ
ンドを成長させた場合には、100〜10000/mm
2 の2次的な粒が観察された(比較例1)。
Example 1 As shown in FIG. 1, a diamond substrate prepared by a high-pressure synthesis method was polished so that the substrate surface had a direction deviated by 5 ° from the <001> direction to the <110> direction, and microwave plasma CVD was performed. The epitaxial growth was performed by the method. The synthesis conditions were a pressure of 40 Torr, a substrate temperature of 880 ° C., a microwave power of 400 W, and a growth time of 10 hours. As a result of observation with a Nomarski microscope, the surface after growth was found to be a flat surface with a secondary grain growth density of 1 particle / mm 2 or less. When diamond is grown under the same conditions as in Example 1 using a (001) substrate (within ± 2 °) with almost no deviation, 100 to 10,000 / mm
2 of secondary grains was observed (Comparative Example 1).

【0011】実施例2 実施例1と同じ条件で作製した基板の上に、基板温度9
00℃、マイクロ波プラズマパワー400Wでダイヤモ
ンドを1時間成長させ、その上にSiCを2時間成長さ
せた。ダイヤモンド成長後、及びSiC成長後に反射電
子回折(RHEED)パターンを観察した。ダイヤモン
ド成長後のRHEEDパターンでは、2倍の周期構造が
<110>方向にのみ形成されており、<110>方向
の長周期は観察されなかった。RHEED観察によりS
iC層は完全な単結晶であることがわかった。殆どずれ
のない(001)基板(±1°以内)について実施例2
と同じ実験を行ったところ、ダイヤモンド成長後には2
つの方向について2倍の周期が観察された。SiC層は
結晶性が悪く、多結晶成分をかなり含むことがわかっ
た。
Example 2 On the substrate manufactured under the same conditions as in Example 1, the substrate temperature 9
Diamond was grown for 1 hour at 00 ° C. with microwave plasma power of 400 W, and SiC was grown for 2 hours on it. A backscattered electron diffraction (RHEED) pattern was observed after diamond growth and after SiC growth. In the RHEED pattern after diamond growth, a doubled periodic structure was formed only in the <110> direction, and a long period in the <110> direction was not observed. S by RHEED observation
It was found that the iC layer was a perfect single crystal. Example 2 for (001) substrate (within ± 1 °) with almost no deviation
After performing the same experiment as above, 2
Twice the period was observed in one direction. It was found that the SiC layer had poor crystallinity and contained a large amount of polycrystalline components.

【0012】[0012]

【発明の効果】本発明によれば、結晶性、表面平滑性に
優れた単結晶ダイヤモンド及び/又は閃亜鉛鉱型化合物
の単結晶をダイヤモンド単結晶基板上に合成することが
できる。
According to the present invention, single crystals of single crystal diamond and / or zinc blende type compound having excellent crystallinity and surface smoothness can be synthesized on a diamond single crystal substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1におけるダイヤモンド基板のずれを示
す模式図である。
FIG. 1 is a schematic diagram showing a shift of a diamond substrate in Example 1.

【図2】2×1のみの構造からなる表面を示す模式図で
ある。
FIG. 2 is a schematic view showing a surface having a structure of only 2 × 1.

【図3】ダイヤモンド(001)の二原子層ステップ上
に成長したcBNの模式図である。
FIG. 3 is a schematic diagram of cBN grown on a diatomic layer step of diamond (001).

【図4】2×1、1×2構造からなる表面に示す模式図
である。
FIG. 4 is a schematic view showing a surface having a 2 × 1, 1 × 2 structure.

【図5】ダイヤモンド(001)の一原子層ステップ上
に成長したcBNの模式図である。
FIG. 5 is a schematic diagram of cBN grown on one atomic layer step of diamond (001).

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 基板上にダイヤモンド及び/又は閃亜鉛
鉱型化合物を気相からエピタキシャル成長させる合成方
法において、該基板として面方位が<001>から<1
10>±15°の方向に2°〜20°の範囲内でずれた
単結晶ダイヤモンド基板を用いることを特徴とする合成
方法。
1. A synthetic method for epitaxially growing diamond and / or sphalerite compound from a vapor phase on a substrate, wherein the substrate has a plane orientation of <001> to <1.
A method for synthesizing, characterized in that a single crystal diamond substrate deviated within a range of 2 ° to 20 ° in a direction of 10> ± 15 ° is used.
【請求項2】 上記閃亜鉛鉱型化合物が窒化ホウ素,G
aAs又はSiCであることを特徴とする請求項1記載
の合成方法。
2. The zinc blende type compound is boron nitride, G
It is aAs or SiC, The synthetic method of Claim 1 characterized by the above-mentioned.
JP03175464A 1991-07-16 1991-07-16 Method for synthesizing diamond and zinc blende type compounds Expired - Lifetime JP3079653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03175464A JP3079653B2 (en) 1991-07-16 1991-07-16 Method for synthesizing diamond and zinc blende type compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03175464A JP3079653B2 (en) 1991-07-16 1991-07-16 Method for synthesizing diamond and zinc blende type compounds

Publications (2)

Publication Number Publication Date
JPH0524989A true JPH0524989A (en) 1993-02-02
JP3079653B2 JP3079653B2 (en) 2000-08-21

Family

ID=15996523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03175464A Expired - Lifetime JP3079653B2 (en) 1991-07-16 1991-07-16 Method for synthesizing diamond and zinc blende type compounds

Country Status (1)

Country Link
JP (1) JP3079653B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058534A1 (en) * 1999-03-26 2000-10-05 Japan Science And Technology Corporation N-type semiconductor diamond and its fabrication method
JP2006306701A (en) * 2005-03-28 2006-11-09 Sumitomo Electric Ind Ltd Method for manufacturing diamond single crystal substrate and diamond single crystal substrate
JP2008130725A (en) * 2006-11-20 2008-06-05 Sumitomo Electric Ind Ltd Semiconductor device and method for manufacturing semiconductor device
JP2009059798A (en) * 2007-08-30 2009-03-19 Sumitomo Electric Ind Ltd Manufacturing method of diamond electronic device
US8878190B2 (en) 2011-09-26 2014-11-04 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US9251920B2 (en) 2012-04-11 2016-02-02 Ge-Hitachi Nuclear Energy America Llc In-situ and external nuclear reactor severe accident temperature and water level probes

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058534A1 (en) * 1999-03-26 2000-10-05 Japan Science And Technology Corporation N-type semiconductor diamond and its fabrication method
US7063742B1 (en) 1999-03-26 2006-06-20 Japan Science And Technology Agency N-type semiconductor diamond and its fabrication method
JP2006306701A (en) * 2005-03-28 2006-11-09 Sumitomo Electric Ind Ltd Method for manufacturing diamond single crystal substrate and diamond single crystal substrate
JP2008130725A (en) * 2006-11-20 2008-06-05 Sumitomo Electric Ind Ltd Semiconductor device and method for manufacturing semiconductor device
JP2009059798A (en) * 2007-08-30 2009-03-19 Sumitomo Electric Ind Ltd Manufacturing method of diamond electronic device
US8878190B2 (en) 2011-09-26 2014-11-04 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
US9251920B2 (en) 2012-04-11 2016-02-02 Ge-Hitachi Nuclear Energy America Llc In-situ and external nuclear reactor severe accident temperature and water level probes

Also Published As

Publication number Publication date
JP3079653B2 (en) 2000-08-21

Similar Documents

Publication Publication Date Title
Lee et al. Molecular beam epitaxy of 2D-layered gallium selenide on GaN substrates
JP3239622B2 (en) Method of forming semiconductor thin film
WO2003027363A1 (en) Method for growing low-defect single crystal heteroepitaxial films
JP2002338395A (en) Compound crystal and method for producing the same
EP0269439B1 (en) A heteroepitaxial growth method
KR102138334B1 (en) MANUFACTURING METHOD OF α-Ga2O3 THIN FILM USING STEP-UP PRI-TREATMENT MODE
JP3750622B2 (en) SiC wafer with epitaxial film, manufacturing method thereof, and SiC electronic device
JP2006225232A (en) Method for producing silicon carbide single crystal, silicon carbide single crystal ingot, silicon carbide single crystal substrate, silicon carbide epitaxial wafer and thin film epitaxial wafer
CN102268737A (en) Method for producing III-N layers, and III-N layers or III-N substrates, and devices based thereon
Claudel et al. Influence of the V/III ratio in the gas phase on thin epitaxial AlN layers grown on (0001) sapphire by high temperature hydride vapor phase epitaxy
Mizuguchi et al. MOCVD GaAs growth on Ge (100) and Si (100) substrates
Xie et al. Enforced c-axis growth of ZnO epitaxial chemical vapor deposition films on a-plane sapphire
JP3776374B2 (en) Method for producing SiC single crystal and method for producing SiC wafer with epitaxial film
JP2009543946A (en) Wide band gap semiconductor materials
Claudel et al. Investigation on AlN epitaxial growth and related etching phenomenon at high temperature using high temperature chemical vapor deposition process
Takahashi et al. Growth of ZnO on sapphire (0001) by the vapor phase epitaxy using a chloride source
JP3079653B2 (en) Method for synthesizing diamond and zinc blende type compounds
Liu et al. Growth of thick AlN layer by hydride vapor phase epitaxy
US5653798A (en) Method of making substrates for the growth of 3C-silicon carbide
JPS63224225A (en) Substrate of thin film single crystal diamond
KR20030019151A (en) Method for preparing compound single crystal
Chung et al. Heteroepitaxial growth of single 3C-SiC thin films on Si (100) substrates using a single-source precursor of hexamethyldisilane by APCVD
Zhao et al. Single crystal titanium carbide, epitaxially grown on zincblend and wurtzite structures of silicon carbide
Jeong et al. Homoepitaxial growth of 6H–SiC thin films by metal-organic chemical vapor deposition using bis-trimethylsilylmethane precursor
JP3466314B2 (en) Substrates for growing single crystals

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 12