JPH04175295A - Production of semiconductive diamond - Google Patents

Production of semiconductive diamond

Info

Publication number
JPH04175295A
JPH04175295A JP30134090A JP30134090A JPH04175295A JP H04175295 A JPH04175295 A JP H04175295A JP 30134090 A JP30134090 A JP 30134090A JP 30134090 A JP30134090 A JP 30134090A JP H04175295 A JPH04175295 A JP H04175295A
Authority
JP
Japan
Prior art keywords
diamond
lithium
gas
semiconductor
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30134090A
Other languages
Japanese (ja)
Inventor
Keiji Hirabayashi
敬二 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30134090A priority Critical patent/JPH04175295A/en
Publication of JPH04175295A publication Critical patent/JPH04175295A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To accomplish the vapor phase synthesis of n-type semiconductive diamond with a resistance value at low cost in good reproducibility by mixing a feedstock gas with a gas produced by heating and evaporating Li or its compound. CONSTITUTION:A feedstock gas for diamond crystal production is mixed with a gas produced by heating and evaporating metallic Li or its compound such as LiCl or Li2O at the element ratio (Li/C) of 10<-2>-10<-6>, thus obtaining the objective semiconductive diamond containing the Li as doner through vapor phase synthesis.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、リチウムをドナーとして含む半導体ダイヤモ
ンドの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing semiconductor diamond containing lithium as a donor.

[従来の技術] 従来より、周期律表のIII b族の元素またはvb族
の元素などがドーピングされたいわゆるダイヤモンド半
導体は、Siなどの半導体よりもバンドギャップが極め
て大きい(5,4eV程度)、正孔の移動度が大きい、
電子の移動度もSiとほぼ同じである、比誘電率が小さ
い、熱伝導率が大きい等の利点を有している。
[Prior Art] Conventionally, so-called diamond semiconductors doped with elements of group IIIB or group VB of the periodic table have an extremely larger band gap (approximately 5.4 eV) than semiconductors such as Si. High hole mobility,
It has advantages such as having almost the same electron mobility as Si, a low dielectric constant, and high thermal conductivity.

このダイヤモンド半導体の製造方法としては、従来より
下記(a)〜(C)の方法が知られている。
As methods for manufacturing this diamond semiconductor, the following methods (a) to (C) are conventionally known.

(a)不純物のイオンを高エネルギー状態にして、それ
をダイヤモンド結晶に照射することにより、その不純物
イオンをダイヤモンド結晶内に注入する方法(イオン注
入法)。
(a) A method of implanting impurity ions into a diamond crystal by bringing the impurity ions into a high energy state and irradiating the impurity ions into the diamond crystal (ion implantation method).

(b)基体上にダイヤモンド結晶を気相合成する際に、
ダイヤモンド結晶用原料ガスの導入と一緒に不純物を含
むガス(ドーピングガス)を導入する方法。
(b) When performing vapor phase synthesis of diamond crystals on a substrate,
A method in which a gas containing impurities (doping gas) is introduced together with the raw material gas for diamond crystals.

(C)基体上にダイヤモンド結晶を気相合成する際に、
ダイヤモンド結晶原料の液状有機化合物中にII、II
I、V、■族の元素を含む化合物を溶解して、不純物を
導入する方法。
(C) When performing vapor phase synthesis of diamond crystals on a substrate,
II, II in the liquid organic compound of diamond crystal raw material
A method of introducing impurities by dissolving a compound containing elements of Groups I, V, and ■.

C発明が解決しようとする課題] しかしながら、上記(a)〜(C)の従来の方法には、
各々以下のような課題があった。
Problems to be Solved by Invention C] However, the conventional methods (a) to (C) above have the following problems:
Each of them had the following issues.

まず(a)のイオンを注入する方法においては、20k
eV以上という高エネルギーでイオンを注入するので、
得られるダイヤモンド半導体に放射線損傷による欠陥が
生じゃすく、また、イオン注入の為の高価な装置を必要
とする。
First, in the method (a) of implanting ions, 20k
Because ions are implanted with high energy of eV or more,
The resulting diamond semiconductor is prone to defects due to radiation damage, and requires expensive equipment for ion implantation.

また、(a)〜(C)いずれの方法においても、ホウ素
を導入することにより、安定にp型半導体を作成するこ
とができるが、窒素、リンの導入により作成したn型半
導体は、再現性が悪く、また、抵抗値も103Ω・cm
程度以上であり、102Ω・0m以下の低抵抗値が得ら
れない。また、イオン注入法でリチウムイオンをダイヤ
モンドに導入しn型半導体を得ることができるが、イオ
ン注入後に十数百度℃でアニール処理する必要があるな
ど生産性に問題がある。
Furthermore, in any of the methods (a) to (C), a p-type semiconductor can be stably created by introducing boron, but an n-type semiconductor created by introducing nitrogen or phosphorus cannot be reproducibly produced. is poor, and the resistance value is also 103Ω・cm.
It is not possible to obtain a low resistance value of 102Ω・0m or less. Furthermore, although it is possible to obtain an n-type semiconductor by introducing lithium ions into diamond using the ion implantation method, there are problems in productivity, such as the need for annealing at a temperature of several hundred degrees Celsius after ion implantation.

このように、従来は、安価で再現性のよい、低抵抗のn
型半導体ダイヤモンドを作成することができなかった。
In this way, conventionally, low-resistance n
type semiconductor diamond could not be created.

本発明は、前記従来技術の問題点に鑑みなされたもので
、その目的は、ダイヤモンドの気相合成において安価で
再現性よく、低抵抗値のn型半導体ダイヤモンドを製造
することができる半導体ダイヤモンドの製造方法を提供
することにある。
The present invention has been made in view of the problems of the prior art, and its object is to produce semiconductor diamond that can be produced inexpensively, with good reproducibility, and with low resistance in the vapor phase synthesis of diamond. The purpose is to provide a manufacturing method.

[課題を解決するための手段] 本発明の半導体ダイヤモンドの製造方法は、リチウムま
たはリチウムを含有する化合物を、加熱・蒸発させてダ
イヤモンド結晶用原料ガス中に混入させることにより、
トナーとしてリチウムを含む半導体ダイヤモンドを気相
合成により製造することを特徴とする。
[Means for Solving the Problems] The method for producing semiconductor diamond of the present invention includes heating and evaporating lithium or a compound containing lithium to mix it into a diamond crystal raw material gas.
It is characterized by producing semiconductor diamond containing lithium as a toner by vapor phase synthesis.

〔作用コ 以下に本発明の作用を本発明の詳細な構成とともに説明
する。
[Function] The function of the present invention will be explained below along with the detailed structure of the present invention.

本発明によれば、リチウムまたはリチウムを含有する化
合物を、加熱・蒸発させダイヤモンド結晶用原料ガス中
に混入させることによりトナーとしてリチウムを含むn
型半導体ダイヤモンドの製造を可能としたものである。
According to the present invention, by heating and evaporating lithium or a compound containing lithium and mixing it into a raw material gas for diamond crystal, a toner containing lithium can be produced.
This made it possible to manufacture diamond-shaped semiconductor diamonds.

本発明者は、鋭意検討の結果、従来の窒素やリンを添加
することにより形成されるn型半導体に比べ、リチウム
またはリチウムを含有する化合物を加熱・蒸発させ、原
料ガス中に混入させ、リチウムを添加することにより形
成されるn型半導体が再現性にすぐれ、低抵抗値を得る
ことが可能であることを見い出した。
As a result of extensive studies, the inventors of the present invention have discovered that compared to conventional n-type semiconductors formed by adding nitrogen or phosphorus, lithium or lithium-containing compounds are heated and evaporated and mixed into the raw material gas to produce lithium. It has been found that an n-type semiconductor formed by adding 20% of the total number of nanotubes has excellent reproducibility and can obtain a low resistance value.

以下、本発明の製造方法を詳細に説明する。The manufacturing method of the present invention will be explained in detail below.

本発明に用いられる、リチウムまたはリチウムを含有す
る化合物とは、リチウム車体、酸化リチウム(Li2o
)、水酸化リチウム(LiOH)、塩化リチウム(Li
C1)などをあげることができるが、Liを含有するも
のであればいずれのものでもよい。また、Li源として
は、固体に限らず、Li含有有材化合物液体でもよい。
The lithium or lithium-containing compound used in the present invention includes lithium car bodies, lithium oxide (Li2O
), lithium hydroxide (LiOH), lithium chloride (Li
Examples include C1), but any material containing Li may be used. Furthermore, the Li source is not limited to a solid one, and may be a Li-containing organic compound liquid.

これらのリチウム車体及びリチウム含有の化合物の原料
ガス中への導入方法を第1図を用いて説明する。なお、
本発明のリチウムまたはリチウムを含有する化合物の導
入方法はこの図の方法に限定されるものではない。
The lithium vehicle body and the method of introducing the lithium-containing compound into the raw material gas will be described with reference to FIG. In addition,
The method of introducing lithium or a lithium-containing compound of the present invention is not limited to the method shown in this figure.

第1図は、熱フィラメントCVD (化学的気相蒸着)
法によるダイヤモンド形成においてリチウムを不純物と
してダイヤモンドに添加する方法を模式的に示したもの
である。
Figure 1 shows hot filament CVD (chemical vapor deposition)
This figure schematically shows a method of adding lithium as an impurity to diamond in the process of diamond formation.

図中1は石英反応管、2はダイヤモンド結晶用原料ガス
を加熱するための電気炉、3はタングステン製フィラメ
ント、4は基体、5はリチウム源加熱用電気炉、6はリ
チウム源(リチウムまたはリチウム含有の化合物)、7
はキャリアガスまたは原料ガス導入口であり、不図示の
ガスボンベ及びガス流量計に接続されている。8は原料
カス導入口であり不図示のガスボンベ及びガス流量計に
接続されている。9は排気口であり不図示の圧力調整用
バルブ及び排気系に接続されている。この熱フイラメン
トCVD法において、7または8のガス導入口から炭素
を含有するガス(1〜1000Torr、好ましくは1
0〜400T o r r、最適には20〜100To
rr)を導人し、このガスを、1600〜2800℃程
度に加熱したフィラメント3により分解して、基体4上
にダイヤモンドを形成することができる。フィラメント
としては、たとえばタングステン、タンタル、白金単体
または合金またはその炭化物などを用いることができる
。本実施例ではタンタルを用い、あらかじめ水素−メタ
ン雰囲気中で焼き出しく〜2000℃)を行い、炭化さ
せたものをダイヤ形成時に用いている。このとき7のガ
ス導入口からキャリアガスまたは原料ガスを流しなから
リチウムまたはリチウム含有の化合物を入れたリチウム
源6を加熱・蒸発させキャリアガスまたは原料ガスと共
に1の石英反応管に導入し、析出したダイヤモンド中に
リチウムを添加する。
In the figure, 1 is a quartz reaction tube, 2 is an electric furnace for heating raw material gas for diamond crystal, 3 is a tungsten filament, 4 is a substrate, 5 is an electric furnace for heating a lithium source, and 6 is a lithium source (lithium or lithium (compounds containing), 7
is a carrier gas or raw material gas inlet, which is connected to a gas cylinder and a gas flow meter (not shown). Reference numeral 8 denotes a raw material waste inlet port, which is connected to a gas cylinder and a gas flow meter (not shown). Reference numeral 9 denotes an exhaust port, which is connected to a pressure regulating valve and an exhaust system (not shown). In this hot filament CVD method, a carbon-containing gas (1 to 1000 Torr, preferably 1
0-400T o r r, optimally 20-100To
rr), and this gas is decomposed by the filament 3 heated to about 1,600 to 2,800° C., thereby forming diamond on the substrate 4. As the filament, for example, tungsten, tantalum, simple platinum, an alloy thereof, or a carbide thereof can be used. In this embodiment, tantalum is used, which has been previously baked out in a hydrogen-methane atmosphere (~2000°C) and then carbonized for use in diamond formation. At this time, without flowing the carrier gas or raw material gas from the gas inlet 7, the lithium source 6 containing lithium or a lithium-containing compound is heated and evaporated, and introduced into the quartz reaction tube 1 together with the carrier gas or raw material gas to cause precipitation. Lithium is added to the diamond.

ここで、ダイヤモンド結晶用原料ガスとしては、メタン
、エタン、プロパン等の炭化水素ガスやメタノール、エ
タノール、アセトン等の有機化合物を用いることができ
、さらにこれらの炭素源ガスを水素、酸素、等のガスで
希釈して用いることもできる。キャリアガスとしては水
素や希ガスなどを用いることができる。
Here, as the raw material gas for diamond crystals, hydrocarbon gases such as methane, ethane, and propane, and organic compounds such as methanol, ethanol, and acetone can be used. It can also be used diluted with gas. Hydrogen, rare gas, etc. can be used as the carrier gas.

リチウムまたはリチウム含有化合物の加熱の温度は、物
質により異なるが、混入後のダイヤモンド結晶用原料ガ
ス中におけるリチウムと炭素の元素比(L i / C
)が10−2〜10−’程度、好ましくは10−3〜1
0−7、より好ましくは10−4〜10−6、最適には
5xto−’〜5xlO−’になるようにその物質の蒸
気圧を調整することが望ましい。(L i / C)が
10−8以上の場合には、ダイヤモンド半導体膜の比抵
抗値がより低くなり、10−2以下の場合には結晶性が
より良好になる。
The heating temperature of lithium or a lithium-containing compound varies depending on the substance, but the elemental ratio of lithium and carbon in the raw material gas for diamond crystals after mixing (L i / C
) is about 10-2 to 10-', preferably 10-3 to 1
It is desirable to adjust the vapor pressure of the material to be 0-7, more preferably 10-4 to 10-6, optimally 5xto-' to 5xlO-'. When (Li/C) is 10-8 or more, the specific resistance value of the diamond semiconductor film becomes lower, and when it is 10-2 or less, the crystallinity becomes better.

例えばメタン分圧が100Torrのとき、Liの蒸気
圧が10−’TorrからITorrになるようにリチ
ウムまたはリチウム含有化合物を加熱すればよい。たと
えばLi金属の場合は、306℃で10−’Torr、
744℃でITorrの蒸気圧となる。
For example, when the methane partial pressure is 100 Torr, lithium or a lithium-containing compound may be heated so that the vapor pressure of Li changes from 10-'Torr to ITorr. For example, in the case of Li metal, 10-'Torr at 306°C,
The vapor pressure is ITorr at 744°C.

また、リチウム含有化合物中に含まれるリチウム以外の
元素(例えばLiCj!であればC1゜Li2Oであれ
ば0なと)は、−船釣にLiより原子半径が大きく、ダ
イヤモンド格子中に入る量がLlに比へ極めて少なく、
n型半導体としての電気的特性を劣化させる影響は小さ
い。このため、Li金属単体以外のLi化合物もドーピ
ング源として使用することが可能である。
In addition, elements other than lithium contained in lithium-containing compounds (for example, C1 for LiCj, 0 for Li2O) have a larger atomic radius than Li, and the amount that can fit into the diamond lattice is Very little compared to Ll,
The effect of deteriorating the electrical characteristics as an n-type semiconductor is small. Therefore, Li compounds other than Li metal alone can also be used as doping sources.

なお、ダイヤモンドを形成すべき基体の材質は特に問わ
ず、例えばSi、SiO2,SiC。
The material of the substrate on which the diamond is to be formed is not particularly limited and may be, for example, Si, SiO2, or SiC.

AIL203 、GaAs、W等の半導体、絶縁体、金
属などからなる基体を用いることができる。
A substrate made of a semiconductor such as AIL203, GaAs, or W, an insulator, or a metal can be used.

また、ダイヤモンド半導体結晶の形成方法は、上述の熱
フイラメントCVD法に限らずマイクロ波プラズマCV
D法、高周波プラズマCVD法、直流プラズマCVD法
などいずれの方法でもよい。
In addition, the method for forming diamond semiconductor crystals is not limited to the above-mentioned hot filament CVD method, but also microwave plasma CVD method.
Any method such as the D method, high frequency plasma CVD method, or direct current plasma CVD method may be used.

[実施例] 次に本発明の実施例を示す。[Example] Next, examples of the present invention will be shown.

(実施例1) 第1図に示す装置を用いてダイヤント半導体の形成を行
なった。
(Example 1) A diamond semiconductor was formed using the apparatus shown in FIG.

まず、単結晶シリコン基板(φ25mm、厚さ0.5m
m)を基体4として、石英反応管1の中に置いた。また
、リチウム源6としてリチウム金属を白金製ボートに入
れ石英反応管1の中に置いた。
First, a single crystal silicon substrate (φ25 mm, thickness 0.5 m
m) was placed in a quartz reaction tube 1 as a substrate 4. Further, as a lithium source 6, lithium metal was placed in a platinum boat and placed in the quartz reaction tube 1.

不図示の排気装置を用いて石英反応管中を10−’To
rrまで真空引きした後、不図示のガスボンベ及び流量
計を用いてガス導入ロアから水素ガスを100mj2/
min、ガス導入口8から水素ガスとメタンガスをそれ
ぞれ2mλ/mi n、100mu/mi nづつ石英
反応管中に導入した。
The inside of the quartz reaction tube was heated to 10-'To
After evacuation to rr, hydrogen gas was pumped to 100 mj2/
Hydrogen gas and methane gas were introduced into the quartz reaction tube at a rate of 2 mλ/min and 100 mu/min, respectively, from the gas inlet 8.

その後、不図示の圧力調整用バルブを用いて反応管内の
圧力を100Torrにした後、電気炉2を用いてシリ
コン基板を800℃、電気炉5を用いてリチウム源6を
402℃に加熱した。このときのリチウムの蒸気圧は約
10−’Torrとなり、原料ガス中のリチウムと炭素
の比(Li/C)は1100pp (=10−’)であ
った。
Thereafter, the pressure inside the reaction tube was set to 100 Torr using a pressure regulating valve (not shown), and then the silicon substrate was heated to 800° C. using the electric furnace 2 and the lithium source 6 was heated to 402° C. using the electric furnace 5. At this time, the vapor pressure of lithium was about 10-' Torr, and the ratio of lithium to carbon (Li/C) in the raw material gas was 1100 pp (=10-').

次に、フィラメント3を不図示の電源により通電を行な
い、約2200℃まで赤熱させ、シリコン基板上にダイ
ヤモンドの形成を行なった。
Next, the filament 3 was energized by a power supply (not shown) and heated to about 2200° C., thereby forming a diamond on the silicon substrate.

6時間の反応により約3μmのダイヤモンド薄膜が形成
された。
A diamond thin film of about 3 μm was formed after 6 hours of reaction.

以上のようにして得たダイヤモンド半導体の室温での比
抵抗は、20Ω・cmで、n型半導体であった。また、
このダイヤモンド半導体のラマン・スペクトルは133
3cm−’付近にピークが観測され、ダイヤモンド結晶
であることが確認された。
The diamond semiconductor obtained as described above had a specific resistance at room temperature of 20 Ω·cm, and was an n-type semiconductor. Also,
The Raman spectrum of this diamond semiconductor is 133
A peak was observed around 3 cm-', and it was confirmed that it was a diamond crystal.

(実施例2) リチウムの蒸気圧がf 0−5To r r ((L 
i/C)は10ppm (=1 o−5) )となるよ
うに電気炉2を350℃に調整した以外は、実施例1と
同様にダイヤモンド薄膜を形成した所、得られたダイヤ
モンド半導体は、室温での比抵抗が100Ω・cmのn
型半導体であった。
(Example 2) The vapor pressure of lithium is f 0-5Torr ((L
A diamond thin film was formed in the same manner as in Example 1, except that the electric furnace 2 was adjusted to 350°C so that i/C) was 10 ppm (=1 o-5), and the obtained diamond semiconductor was as follows. n with a specific resistance of 100Ω・cm at room temperature
It was a type semiconductor.

また、このダイヤモンド半導体のラマン・スペクトルは
、1333cm−’付近にピークが観測され、ダイヤモ
ンド結晶であることが確認された。
Further, in the Raman spectrum of this diamond semiconductor, a peak was observed near 1333 cm-', and it was confirmed that it was a diamond crystal.

(実施例3) リチウム源6のリチウムをフッ化リチウム(LiF)に
交換した。また、原料ガスとして水素、メタンガスを2
mu/mi n、100mJl/minづつ導入し、圧
力を100Torrとした。さらに、フッ化リチウムの
蒸気圧を1O−5Tor r ((Li/C)は50p
pm= (5x10−’))となるように電気炉2を5
56℃に調整した以外は実施例1と同様にダイヤモンド
形成した所、得られたダイヤモンド半導体は比抵抗か5
0Ω・cm程度のn型半導体であった。
(Example 3) Lithium in the lithium source 6 was replaced with lithium fluoride (LiF). In addition, hydrogen and methane gas are used as raw material gases.
The water was introduced at a rate of 100 mJl/min and a pressure of 100 Torr. Furthermore, the vapor pressure of lithium fluoride is set to 1O-5Torr ((Li/C) is 50p
The electric furnace 2 is
Diamond was formed in the same manner as in Example 1 except that the temperature was adjusted to 56°C, and the resulting diamond semiconductor had a specific resistance of 5.
It was an n-type semiconductor with a resistance of about 0Ω·cm.

このダイヤモンド半導体のラマン・スペクトルは、13
33cm−’付近にピークが観測され、ダイヤモンド結
晶であることがi認された。
The Raman spectrum of this diamond semiconductor is 13
A peak was observed around 33 cm-', and it was confirmed that it was a diamond crystal.

[発明の効果] 以上説明したように、本発明によれば、低抵抗値のダイ
ヤモンドを再現性よく、形成することができる。
[Effects of the Invention] As explained above, according to the present invention, diamond with a low resistance value can be formed with good reproducibility.

本発明で得られたn型半導体ダイヤモンドは、高出力半
導体や高温で使用可能な半導体など広し)分野に利用す
ることが可能である。
The n-type semiconductor diamond obtained by the present invention can be used in a wide range of fields such as high-power semiconductors and semiconductors that can be used at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

341図は本発明を実施するに際し、使用したダイヤモ
ンド形成装置の一例を示す概要図である。 (符号の説明) 1・・・石英反応管、2.5・・・電気炉、3・・・熱
フィラメント、4・・・基体、6・・・リチウム源、7
.8・・・ガス導入口、9・・・ガス排気口。 第1図
FIG. 341 is a schematic diagram showing an example of a diamond forming apparatus used in carrying out the present invention. (Explanation of symbols) 1... Quartz reaction tube, 2.5... Electric furnace, 3... Hot filament, 4... Substrate, 6... Lithium source, 7
.. 8...Gas inlet, 9...Gas exhaust port. Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)リチウムまたはリチウムを含有する化合物を、加
熱・蒸発させてダイヤモンド結晶用原料ガス中に混入さ
せることにより、ドナーとしてリチウムを含む半導体ダ
イヤモンドを気相合成により製造することを特徴とする
半導体ダイヤモンドの製造方法。
(1) A semiconductor diamond characterized in that a semiconductor diamond containing lithium as a donor is produced by vapor phase synthesis by heating and evaporating lithium or a compound containing lithium and mixing it into a raw material gas for diamond crystals. manufacturing method.
(2)ダイヤモンド結晶用原料ガス中におけるリチウム
と炭素の元素比(Li/C)を10^−^2〜10^−
^8とすることを特徴とする請求項1記載の半導体ダイ
ヤモンドの製造方法。
(2) The elemental ratio of lithium and carbon (Li/C) in the raw material gas for diamond crystal is 10^-^2 to 10^-
8. The method for producing semiconductor diamond according to claim 1, wherein: ^8.
JP30134090A 1990-11-07 1990-11-07 Production of semiconductive diamond Pending JPH04175295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30134090A JPH04175295A (en) 1990-11-07 1990-11-07 Production of semiconductive diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30134090A JPH04175295A (en) 1990-11-07 1990-11-07 Production of semiconductive diamond

Publications (1)

Publication Number Publication Date
JPH04175295A true JPH04175295A (en) 1992-06-23

Family

ID=17895685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30134090A Pending JPH04175295A (en) 1990-11-07 1990-11-07 Production of semiconductive diamond

Country Status (1)

Country Link
JP (1) JPH04175295A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508208A (en) * 1993-09-30 1996-04-16 Sony Corporation Method of manufacturing diamond semiconductor
US7255744B2 (en) 2002-12-27 2007-08-14 Sumitomo Electric Industries, Ltd. Low-resistivity n-type semiconductor diamond and method of its manufacture
JP2012041576A (en) * 2010-08-16 2012-03-01 Ulvac Japan Ltd Energization heating wire, film forming apparatus, and method for producing energization heating wire
CN103952681A (en) * 2014-04-23 2014-07-30 南京理工大学 Preparation method of lithium and nitrogen co-doped diamond film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103993A (en) * 1987-10-16 1989-04-21 Sumitomo Electric Ind Ltd Method for growing diamond single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103993A (en) * 1987-10-16 1989-04-21 Sumitomo Electric Ind Ltd Method for growing diamond single crystal

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5508208A (en) * 1993-09-30 1996-04-16 Sony Corporation Method of manufacturing diamond semiconductor
US7255744B2 (en) 2002-12-27 2007-08-14 Sumitomo Electric Industries, Ltd. Low-resistivity n-type semiconductor diamond and method of its manufacture
JP2012041576A (en) * 2010-08-16 2012-03-01 Ulvac Japan Ltd Energization heating wire, film forming apparatus, and method for producing energization heating wire
CN103952681A (en) * 2014-04-23 2014-07-30 南京理工大学 Preparation method of lithium and nitrogen co-doped diamond film

Similar Documents

Publication Publication Date Title
US4213781A (en) Deposition of solid semiconductor compositions and novel semiconductor materials
US3979271A (en) Deposition of solid semiconductor compositions and novel semiconductor materials
EP0519472B1 (en) Process for forming a diamond-metal junction product
KR20070092098A (en) Method of manufacturing substrates for the growth of single crystal diamond
US20170051400A1 (en) Method for manufacturing a doped metal chalcogenide thin film, and same thin film
US7063742B1 (en) N-type semiconductor diamond and its fabrication method
US20200343344A1 (en) Contact structures for n-type diamond
US20090239085A1 (en) SiC SEMICONDUCTOR ELEMENT, METHOD OF MANUFACTURING THE SAME, AND MANUFACTURING APPARATUS THEREOF
JPH04174517A (en) Manufacture of diamond semiconductor
TWI302342B (en)
JPH04175295A (en) Production of semiconductive diamond
JP2000001398A (en) Production of silicon carbide semiconductor substrate
JPS6270295A (en) Production of n-type semiconductive diamond film
CN108046246B (en) Process gas assisted graphene film growth method
US10804104B2 (en) Semiconductor device and method for forming p-type conductive channel in diamond using abrupt heterojunction
JP2019112290A (en) Single crystal diamond, and semiconductor element using the same
JPS62171993A (en) Production of diamond semiconductor
JPS6115150B2 (en)
JPH06345592A (en) Formation of thin diamond film
JPH03205398A (en) Production of diamond
Mandracci et al. Heteroepitaxy of 3C–SiC by electron cyclotron resonance-CVD technique
JP6944699B2 (en) Method for manufacturing hexagonal boron nitride film
JP4345437B2 (en) Method for producing n-type semiconductor diamond and n-type semiconductor diamond
JPS63185894A (en) Production of diamond thin film or diamond-like thin film
WO2019123745A1 (en) Single crystal diamond and semiconductor element using same