JP6944699B2 - Method for manufacturing hexagonal boron nitride film - Google Patents

Method for manufacturing hexagonal boron nitride film Download PDF

Info

Publication number
JP6944699B2
JP6944699B2 JP2017161017A JP2017161017A JP6944699B2 JP 6944699 B2 JP6944699 B2 JP 6944699B2 JP 2017161017 A JP2017161017 A JP 2017161017A JP 2017161017 A JP2017161017 A JP 2017161017A JP 6944699 B2 JP6944699 B2 JP 6944699B2
Authority
JP
Japan
Prior art keywords
boron nitride
hexagonal boron
nitride film
substrate
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017161017A
Other languages
Japanese (ja)
Other versions
JP2019040974A (en
Inventor
正義 梅野
正義 梅野
ゴラップ カリタ
ゴラップ カリタ
Original Assignee
シーズテクノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シーズテクノ株式会社 filed Critical シーズテクノ株式会社
Priority to JP2017161017A priority Critical patent/JP6944699B2/en
Publication of JP2019040974A publication Critical patent/JP2019040974A/en
Application granted granted Critical
Publication of JP6944699B2 publication Critical patent/JP6944699B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マイクロ波励起表面波プラズマCVDにより、六方晶系窒化ホウ素膜を製造する方法に関する。 The present invention relates to a method for producing a hexagonal boron nitride film by microwave-excited surface wave plasma CVD.

六方晶系窒化ホウ素は、約6eVに近い大きなバンドギャップを持つ絶縁体である。電子特性がGaNに近く、半導体化により機能性材料として電子デバイス等に適用できる可能性があるため、大いに注目を集めている。電子デバイス等に使用する際には薄膜化するのが好都合であるため、薄膜化の研究が進められている。下記非特許文献1には熱CVD法により薄膜化した六方晶系窒化ホウ素膜が開示されている。熱CVD法により製造された六方晶系窒化ホウ素薄膜は結晶性が良い。 Hexagonal boron nitride is an insulator having a large bandgap close to about 6 eV. Since its electronic properties are close to those of GaN and it may be applied to electronic devices as a functional material by semiconductorization, it has attracted a great deal of attention. Since it is convenient to make a thin film when it is used for an electronic device or the like, research on thinning the film is underway. Non-Patent Document 1 below discloses a hexagonal boron nitride film thinned by a thermal CVD method. The hexagonal boron nitride thin film produced by the thermal CVD method has good crystallinity.

また、下記特許文献1には、SiC基板上にSiONから成る中間層をエピタキシャル成長させ、その中間層の上に温度1000℃での熱CVD法により六方晶系窒化ホウ素層から成るゲート絶縁膜を積層させたMOSFETが開示されている。そして、熱CVDの他に、プラズマCVDを用いても良いことが開示され、原料ガスとしてボラジンやアンモニアボランなどのホウ素原子と窒素原子との両方を含む化合物を原料としても良いことが開示されている。 Further, in Patent Document 1 below, an intermediate layer made of SiON is epitaxially grown on a SiC substrate, and a gate insulating film made of a hexagonal boron nitride layer is laminated on the intermediate layer by a thermal CVD method at a temperature of 1000 ° C. The MOSFET that has been made is disclosed. Then, it is disclosed that plasma CVD may be used in addition to thermal CVD, and that a compound containing both boron atoms and nitrogen atoms such as borazin and ammonia borane may be used as a raw material gas. There is.

また、下記特許文献2には、立方晶系窒化ホウ素をアミノボラン、ボラジンなどの窒素ホウ素化合物を原料にして、表面波励起プラズマにより成膜することが開示されている。 Further, Patent Document 2 below discloses that cubic boron nitride is formed by surface wave excitation plasma using a nitrogen boron compound such as aminoborane and borazine as a raw material.

特開2017−41503号公報Japanese Unexamined Patent Publication No. 2017-41503 特開2008−222488号公報Japanese Unexamined Patent Publication No. 2008-222488

表面技術, Vol.58, No12, 2007, p121-124Surface Technology, Vol.58, No12, 2007, p121-124

しかし、熱CVD法では1000℃以上の高温が必要となる。そのため、例えばSi基板上に回路素子を製造した後に、六方晶系窒化ホウ素薄膜を熱CVD法で成膜しようとすると、高温のために回路素子の特性を劣化させてしまう。比較的低温で成膜可能であり、回路素子を劣化させないPE−CVD法で成膜すると、イオン衝撃により欠陥が多くて結晶性の悪い薄膜になってしまい、電子デバイスとしては使用できない。
また、特許文献1の開示の技術は、SiC基板の表面にエヒタキシャル成長させたSiON膜上に、1000℃での熱CVD法により六方晶系窒化ホウ素を成膜する方法である。しかし、特許文献1は六方晶系窒化ホウ素膜が、表面波励起プラズマCVDにより低温て成膜できることは示唆していない。
また、上記特許文献2の技術は、基板に正バイアス電圧を印加してプラズマCVD法により、基板上に立方晶系窒化ホウ素を成膜する方法であって、六方晶系窒化ホウ素膜が形成されることは示唆していない。また、表面波励起プラズマを用いても良い旨を示唆してはいるが、これは立方晶系窒化ホウ素膜の成膜に関してのものであって、六方晶系窒化ホウ素膜が、立方晶系窒化ホウ素の混在のない高純度で表面波励起プラズマを用いて形成されることは全く示唆していない。
However, the thermal CVD method requires a high temperature of 1000 ° C. or higher. Therefore, for example, if a hexagonal boron nitride thin film is formed by a thermal CVD method after manufacturing a circuit element on a Si substrate, the characteristics of the circuit element deteriorate due to the high temperature. When a film is formed by the PE-CVD method, which can form a film at a relatively low temperature and does not deteriorate the circuit element, it becomes a thin film having many defects due to ionic impact and has poor crystallinity, and cannot be used as an electronic device.
The technique disclosed in Patent Document 1 is a method of forming a hexagonal boron nitride film on a SiON film optically grown on the surface of a SiC substrate by a thermal CVD method at 1000 ° C. However, Patent Document 1 does not suggest that a hexagonal boron nitride film can be formed at a low temperature by surface wave excitation plasma CVD.
Further, the technique of Patent Document 2 is a method of forming a cubic boron nitride film on a substrate by applying a positive bias voltage to the substrate by a plasma CVD method, and a hexagonal boron nitride film is formed. It does not suggest that. It is also suggested that surface wave excitation plasma may be used, but this is related to the formation of a cubic boron nitride film, and the hexagonal boron nitride film is a cubic boron nitride film. It does not suggest that it is formed using surface wave excited plasma with high purity without boron mixture.

本発明は、上記課題を鑑みて創作されたものであり、その目的は、低温で成膜可能であり、結晶性が良く、立方晶系窒化ホウ素の混在のない高純度な六方晶系窒化ホウ素薄膜の製造方法を提供することにある。 The present invention has been created in view of the above problems, and an object of the present invention is to form a high-purity hexagonal boron nitride that can be formed at a low temperature, has good crystallinity, and is not mixed with cubic boron nitride. The purpose is to provide a method for producing a thin film.

本発明は、原料気体をプラズマ分解して、基板上に六方晶系窒化ホウ素膜を製造する方法において、プラズマ生成室にアンモニアボラン(NH3 BH3 の固体を設けて、この固体を加熱して気化させて原料気体を生成し、プラズマ生成室に置かれた基板上に原料気体を流し、基板上にマイクロ波励起により原料気体の表面波プラズマを生成し、基板上に六方晶系窒化ホウ素膜を製造することを特徴とする六方晶系窒化ホウ素膜の製造方法である。 The present invention is a method of producing a hexagonal boron nitride film on a substrate by plasma-decomposing a raw material gas, in which a solid of ammonia borane (NH 3 BH 3 ) is provided in a plasma generation chamber and the solid is heated. The raw material gas is generated by vaporization, the raw material gas is passed on the substrate placed in the plasma generation chamber, the surface wave plasma of the raw material gas is generated by microwave excitation on the substrate, and hexagonal boron nitride is generated on the substrate. It is a method for producing a hexagonal boron nitride film, which comprises producing a film.

本発明においては、原料気体は、プラズマ生成室にアンモニアボランの固体を設けて、この固体を加熱して気化させて生成している。また、本発明ではないが、プラズマ生成室とは別室において、アンモニアボランの固体を気化させて、アンモニアボラン気体をプラズマ生成室に供給するようにすることもできる。 In the present invention, the raw material gas is generated by providing a solid of ammonia borane in the plasma generation chamber and heating and vaporizing this solid . Further, although it is not the present invention, it is also possible to vaporize the solid ammonia borane and supply the ammonia borane gas to the plasma generation chamber in a chamber separate from the plasma generation chamber .

六方晶系窒化ホウ素膜の成膜時の基板の温度は400℃以上、600℃以下とすることが望ましい。この温度範囲の時に、結晶性と純度が高い六方晶系窒化ホウ素膜を成膜することができる。純度が高いとは、立方晶系窒化ホウ素膜の混在割合がないか、少ないことを意味する。
また、六方晶系窒化ホウ素膜が成膜される基板は、特に限定されないが、Si基板を用いることができる。また、触媒としてCuで被覆されたSi基板を用いても良い。また、基板は少なくともその表面全体に、鉄、コバルト、ニッケル又はこれらの合金或いはそれらの化合物、又は白金その他の貴金属が形成されていても良い。
It is desirable that the temperature of the substrate at the time of forming the hexagonal boron nitride film is 400 ° C. or higher and 600 ° C. or lower. In this temperature range, a hexagonal boron nitride film having high crystallinity and purity can be formed. High purity means that the mixing ratio of the cubic boron nitride film is absent or small.
The substrate on which the hexagonal boron nitride film is formed is not particularly limited, but a Si substrate can be used. Further, a Si substrate coated with Cu may be used as a catalyst. Further, iron, cobalt, nickel, alloys thereof or compounds thereof, platinum or other noble metals may be formed on at least the entire surface of the substrate.

本発明によると、プラズマ生成室に置かれた固体のアンモニアボランを加熱して気化させた原料気体をプラズマ生成室に置かれた基板上に流し、基板上にマイクロ波励起により原料気体の表面波プラズマを生成して、基板上に六方晶系窒化ホウ素膜を製造しているので、低温成長が可能となり、結晶性と純度の高い六方晶系窒化ホウ素膜を成膜することができる。
本発明によると、触媒を用いることなく基板上(例えば、Si、GaNなど)に直接、六方晶系窒化ホウ素膜を成膜できることから、FETにおけるゲート絶縁膜、素子の保護絶縁膜、素子間絶縁分離膜などに用いることができる。
According to the present invention, a raw material gas obtained by heating and vaporizing solid ammonia boron nitride placed in a plasma generation chamber is allowed to flow on a substrate placed in the plasma generation chamber, and a surface wave of the raw material gas is applied onto the substrate by microwave excitation. Since plasma is generated to produce a hexagonal boron nitride film on the substrate, low-temperature growth is possible, and a hexagonal boron nitride film having high crystallinity and purity can be formed.
According to the present invention, since a hexagonal boron nitride film can be directly formed on a substrate (for example, Si, GaN, etc.) without using a catalyst, a gate insulating film in FET, a protective insulating film of an element, and inter-element insulation can be formed. It can be used as a separation membrane or the like.

本発明に実施例の製造方法に用いられる六方晶系窒化ホウ素膜の製造装置を示す構成図。The block diagram which shows the manufacturing apparatus of the hexagonal boron nitride film used in the manufacturing method of an Example in this invention. 実施例の製造方法で製造された六方晶系窒化ホウ素膜の赤外吸収スペクトルの測定図。The measurement figure of the infrared absorption spectrum of the hexagonal boron nitride film manufactured by the manufacturing method of an Example. 実施例の製造方法で製造された六方晶系窒化ホウ素膜のX線光電子分析によるB1sの測定図。FIG. 3 is a measurement diagram of B1s by X-ray photoelectron analysis of a hexagonal boron nitride film produced by the production method of the example. 実施例の製造方法で製造された六方晶系窒化ホウ素膜のX線光電子分析によるN1sの測定図。The measurement figure of N1s by X-ray photoelectron analysis of the hexagonal boron nitride film manufactured by the manufacturing method of an Example.

以下、本発明を実施例に基づいて説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the following examples.

本実施例では、原料気体として、アンモニアボラン(NH3 BH3 )から得られる気体を用いた。アンモニアボランの融点は104℃、沸点は196℃で、室温(25℃)において固体である。 In this example, a gas obtained from ammonia borane (NH 3 BH 3 ) was used as the raw material gas. Ammonia borane has a melting point of 104 ° C. and a boiling point of 196 ° C., and is solid at room temperature (25 ° C.).

図1は本発明に係る六方晶系窒化ホウ素膜の製造装置100の構成を示す構成図である。図1に示されるように、製造装置100は、プラズマ生成室であるCVD反応容器1と、その上部に配設された導波管2とを有する。CVD反応容器1と導波管2との間には、石英から成るプラズマ励振板3が設けられている。プラズマ励振板3のCVD反応容器1側に面した面には多数の微小な凹部30が形成されている。この凹部30に電界が集中することにより、凹部30がプラズマの発生起点となり、低電力でのプラズマの発生が容易になる。また、CVD反応容器1の内部及びプラズマ励振板3をマイクロ波で励振するために導波管2の下部にスロットアンテナ4が設けられている。導波管2には2.45GHzのマイクロ波が供給され、スロットアンテナ4を介して、CVD反応容器1の内部及びプラズマ励振板3に電磁波が供給される。 FIG. 1 is a configuration diagram showing a configuration of a hexagonal boron nitride film manufacturing apparatus 100 according to the present invention. As shown in FIG. 1, the manufacturing apparatus 100 has a CVD reaction vessel 1 which is a plasma generation chamber, and a waveguide 2 arranged above the CVD reaction vessel 1. A plasma excitation plate 3 made of quartz is provided between the CVD reaction vessel 1 and the waveguide 2. A large number of minute recesses 30 are formed on the surface of the plasma excitation plate 3 facing the CVD reaction vessel 1 side. By concentrating the electric field in the recess 30, the recess 30 becomes the starting point for plasma generation, and plasma can be easily generated at low power. Further, a slot antenna 4 is provided below the waveguide 2 in order to excite the inside of the CVD reaction vessel 1 and the plasma excitation plate 3 with microwaves. 2.45 GHz microwaves are supplied to the waveguide 2, and electromagnetic waves are supplied to the inside of the CVD reaction vessel 1 and the plasma excitation plate 3 via the slot antenna 4.

CVD反応容器1の内部には、六方晶系窒化ホウ素膜を成長させる基板5が設置されるサセプタ6及び基板5を加熱するための加熱装置7が設けられている。CVD反応容器1の左側には、キャリアガスとしてアルゴン(Ar)と水素(H2 )を導入する導入口1Lが設けられ、右側には、アルゴンガスと水素を外部へ排出する排出口1Rが設けられている。CVD反応容器1の内部は、図示しない真空ポンプにより4.1×10-4Pa程度に減圧している。CVD反応容器1の内部の圧力は、1×10-6Pa〜1×10Paの範囲で六方晶系窒化ホウ素膜の成膜が可能である。また、温度は、400℃以上、600℃以下の範囲、望ましくは450℃以上、550℃以下の範囲で、六方晶系窒化ホウ素膜の成膜が可能である。本実施例では500℃で成膜している。CVD反応容器1内のサセプタ6の上に設けられたボート上に、六方晶系窒化ホウ素膜を製造するための原料気体となるアンモニアボラン11が適量配置される。本実施例では3mgである。 Inside the CVD reaction vessel 1, a susceptor 6 on which a substrate 5 for growing a hexagonal boron nitride film is installed and a heating device 7 for heating the substrate 5 are provided. On the left side of the CVD reaction vessel 1, an introduction port 1L for introducing argon (Ar) and hydrogen (H 2 ) as carrier gas is provided, and on the right side, a discharge port 1R for discharging argon gas and hydrogen to the outside is provided. Has been done. The inside of the CVD reaction vessel 1 is depressurized to about 4.1 × 10 -4 Pa by a vacuum pump (not shown). The pressure inside the CVD reaction vessel 1 is in the range of 1 × 10 -6 Pa to 1 × 10 Pa, and a hexagonal boron nitride film can be formed. Further, the hexagonal boron nitride film can be formed in a temperature range of 400 ° C. or higher and 600 ° C. or lower, preferably 450 ° C. or higher and 550 ° C. or lower. In this example, the film is formed at 500 ° C. An appropriate amount of ammonia borane 11 as a raw material gas for producing a hexagonal boron nitride film is arranged on a boat provided on the susceptor 6 in the CVD reaction vessel 1. In this example, it is 3 mg.

次に、六方晶系窒化ホウ素膜を基板5上に製造する方法について説明する。基板5には、Si基板と、Cuが被膜されたSi基板との2種類が用いられた。基板5の表面は、アセトン、エタノール、及び純粋を用いて洗浄され、その後乾燥され、その基板5はサセプタ6上に設置された。 Next, a method of manufacturing a hexagonal boron nitride film on the substrate 5 will be described. Two types of substrates 5 were used: a Si substrate and a Si substrate coated with Cu. The surface of the substrate 5 was washed with acetone, ethanol, and pure and then dried, the substrate 5 being placed on the susceptor 6.

次に、CVD反応容器1内のサセプタ6 の上に設けられたボートに3mgのアンモニアボラン11が設けられた。次に、CVD反応容器1の内部にアルゴン(Ar)が100sccm、水素(H2 )が5sccmの一定流量で供給された。CVD反応容器1の内部の圧力は4.1×10-4Paに設定された。そして、加熱装置7により基板5は加熱されて、成膜時の基板5の温度500℃とした。この状態で、蒸気化されたアンモニアボランは、アルゴンと水素流により基板5の上に輸送される。次に、電力1000W、2.45GHzのマイクロ波は導波管2に供給され、CVD反応容器1の内部においてアンモニアボランの原料気体とアルゴン気体と水素気体とのプラズマが生成された。マイクロ波の電力は500W〜2000Wの範囲とすることができる。特に、基板5の表面上に、これらの気体の表面波プラズマが生成された。これにより、基板5の上で、アンモニアボランは熱分解されて、B原子とN原子とから成る六方晶系窒化ホウ素膜が基板5上に成膜された。基板5上に六方晶系窒化ホウ素膜が、所定時間(3分)、成長された後、加熱装置7の通電が停止され、基板5の温度は室温(25℃)まで低下された。このようにして、Si基板上に直接六方晶系窒化ホウ素膜を成膜した基板と、表面がCuで被覆されたSi基板上に六方晶系窒化ホウ素膜を成膜した基板とを得た。
なお、基板5の温度は、400〜600℃の範囲の任意の温度にすることができる。
Next, 3 mg of ammonia borane 11 was provided on a boat provided on the susceptor 6 in the CVD reaction vessel 1. Next, argon (Ar) was supplied to the inside of the CVD reaction vessel 1 at a constant flow rate of 100 sccm and hydrogen (H 2 ) at a constant flow rate of 5 sccm. The pressure inside the CVD reaction vessel 1 was set to 4.1 × 10 -4 Pa. Then, the substrate 5 was heated by the heating device 7, and the temperature of the substrate 5 at the time of film formation was set to 500 ° C. In this state, the vaporized ammonia borane is transported onto the substrate 5 by a stream of argon and hydrogen. Next, microwaves having a power of 1000 W and 2.45 GHz were supplied to the waveguide 2, and plasma of a raw material gas of ammonia borane, an argon gas, and a hydrogen gas was generated inside the CVD reaction vessel 1. The microwave power can be in the range of 500W to 2000W. In particular, surface wave plasmas of these gases were generated on the surface of the substrate 5. As a result, the ammonia borane was thermally decomposed on the substrate 5, and a hexagonal boron nitride film composed of B atoms and N atoms was formed on the substrate 5. After the hexagonal boron nitride film was grown on the substrate 5 for a predetermined time (3 minutes), the energization of the heating device 7 was stopped, and the temperature of the substrate 5 was lowered to room temperature (25 ° C.). In this way, a substrate on which a hexagonal boron nitride film was directly formed on a Si substrate and a substrate on which a hexagonal boron nitride film was formed on a Si substrate whose surface was coated with Cu were obtained.
The temperature of the substrate 5 can be any temperature in the range of 400 to 600 ° C.

次に、Si基板上に直接、500℃で成膜された六方晶系窒化ホウ素膜の赤外吸収スペクトル(FTIR)を測定した。その結果を図2に示す。比較のために六方晶系窒化ホウ素膜が形成されていないSi基板のFTIRを測定し、その結果を図2に示す。波数1385cm-1に鋭い吸収ピークが見られる。これは、膜が六方晶系窒化ホウ素であることを示している。立方晶系窒化ホウ素のFTIRは、1000cm-1に吸収ピークが表れるが図2によると、表れていない。したがって、高純度の六方晶系窒化ホウ素膜が得られたことが理解される。FTIRのスペクトルを見る限り、100%の六方晶系窒化ホウ素膜が得られていると考えられる。混在があったとしても、立方晶系窒化ホウ素の割合は1%未満、すなわち、六方晶系窒化ホウ素の純度は99%以上と思われる。
Cuで被覆されたSi基板上に成膜した六方晶系窒化ホウ素膜に関するFTIRスペクツトルも同様な結果が得られた。
Next, the infrared absorption spectrum (FTIR) of the hexagonal boron nitride film formed at 500 ° C. was measured directly on the Si substrate. The result is shown in FIG. For comparison, the FTIR of the Si substrate on which the hexagonal boron nitride film was not formed was measured, and the results are shown in FIG. A sharp absorption peak is seen at wavenumber 1385 cm -1. This indicates that the film is hexagonal boron nitride. The FTIR of cubic boron nitride has an absorption peak at 1000 cm -1 but does not appear according to FIG. Therefore, it is understood that a high-purity hexagonal boron nitride film was obtained. As far as the FTIR spectrum is seen, it is considered that a 100% hexagonal boron nitride film is obtained. Even if there is a mixture, the proportion of cubic boron nitride is less than 1%, that is, the purity of hexagonal boron nitride seems to be 99% or more.
Similar results were obtained for the FTIR spectrum of a hexagonal boron nitride film formed on a Si substrate coated with Cu.

次に、直接Si基板上及びCuで被覆されたSi基板上に成膜した2種の六方晶系窒化ホウ素膜について、X線光電子分析(XPS)を実施した。その測定結果を、B1sピークを図3.Aに、N1sピークを図3.Bに示す。直接Si基板上に成膜した六方晶系窒化ホウ素膜に関するB1sピークは、191.8eV、N1sピークが399.4eVであった。また、Cuが被膜されたSi基板上に成膜した六方晶系窒化ホウ素膜に関するB1sピークは、191.1 eV、N1sピークが398 .4eVであった。基板の相違によるピークの差は、膜中の不純物レベルによるものと思われる。B原子、N原子のスペクトルが観測されていることが分かる。また、C、O、B、N原子以外のスペクトルは観測されなかった。 Next, X-ray photoelectron analysis (XPS) was performed on two types of hexagonal boron nitride films formed directly on the Si substrate and on the Si coated Si substrate. The measurement result is shown in Fig. 3. B1s peak. The N1s peak is shown in A in FIG. Shown in B. The B1s peak for the hexagonal boron nitride film formed directly on the Si substrate was 191.8 eV, and the N1s peak was 399.4 eV. The B1s peak of the hexagonal boron nitride film formed on the Si substrate coated with Cu was 191.1 eV, and the N1s peak was 398. It was 4 eV. The difference in peaks due to the difference in substrates is considered to be due to the level of impurities in the film. It can be seen that the spectra of B and N atoms are observed. In addition, no spectra other than C, O, B, and N atoms were observed.

また、成膜した六方晶系窒化ホウ素膜について表面の平坦性を光学顕微鏡とSEMにより観測したが、結晶粒はサブミクロンサイズであることが確認された。また、成膜した六方晶系窒化ホウ素膜の断面をAFM像を測定したが20層の六方晶系窒化ホウ素膜が観測された。表面の粗さはサブミクロン程度であった。 The surface flatness of the formed hexagonal boron nitride film was observed with an optical microscope and SEM, and it was confirmed that the crystal grains were submicron size. In addition, the AFM image was measured on the cross section of the hexagonal boron nitride film formed, and 20 layers of hexagonal boron nitride film were observed. The surface roughness was about submicron.

また、基板には直径3インチのSi基板を用いているので、上記の方法により少なくとも直径3インチの大きさの平坦性の高い高純度の六方晶系窒化ホウ素膜が、少なくとも20層得られていることが分かる。 Further, since a Si substrate having a diameter of 3 inches is used as the substrate, at least 20 layers of a highly flat and high-purity hexagonal boron nitride film having a diameter of at least 3 inches can be obtained by the above method. You can see that there is.

本発明により、平坦で大面積で且つ高純度の六方晶系窒化ホウ素膜を得ることことで、電子素子の絶縁膜などに用いることができる。 According to the present invention, by obtaining a flat, large-area, and high-purity hexagonal boron nitride film, it can be used as an insulating film for an electronic device or the like.

1:CVD反応容器
3:励振板
5:基板
6:サセプタ
7:加熱装置
11:アンモニアボラン
30:凹部
1: CVD reaction vessel 3: Excitation plate 5: Substrate 6: Suceptor 7: Heating device 11: Ammonia borane 30: Recess

Claims (3)

原料気体をプラズマ分解して、基板上に六方晶系窒化ホウ素膜を製造する方法において、
プラズマ生成室にアンモニアボラン(NH3 BH3 の固体を設けて、この固体を加熱して気化させて前記原料気体を生成し、
プラズマ生成室に置かれた基板上に前記原料気体を流し、前記基板上にマイクロ波励起により前記原料気体の表面波プラズマを生成し、
前記基板上に六方晶系窒化ホウ素膜を製造する
ことを特徴とする六方晶系窒化ホウ素膜の製造方法。
In a method of plasma-decomposing a raw material gas to produce a hexagonal boron nitride film on a substrate,
A solid of ammonia borane (NH 3 BH 3 ) is provided in the plasma generation chamber, and this solid is heated and vaporized to generate the raw material gas.
The raw material gas is flowed on a substrate placed in a plasma generation chamber, and a surface wave plasma of the raw material gas is generated on the substrate by microwave excitation.
A method for producing a hexagonal boron nitride film, which comprises producing a hexagonal boron nitride film on the substrate.
六方晶系窒化ホウ素膜の成膜時の前記基板の温度を400℃以上、600℃以下とすることを特徴とする請求項1に記載の六方晶系窒化ホウ素膜の製造方法。 The method for producing a hexagonal boron nitride film according to claim 1, wherein the temperature of the substrate at the time of forming the hexagonal boron nitride film is 400 ° C. or higher and 600 ° C. or lower. 前記基板はSi又はCuで表面が被覆されたSiであることを特徴とする請求項1又は請求項2に記載の六方晶系窒化ホウ素膜の製造方法。 The method for producing a hexagonal boron nitride film according to claim 1 or 2, wherein the substrate is Si whose surface is coated with Si or Cu.
JP2017161017A 2017-08-24 2017-08-24 Method for manufacturing hexagonal boron nitride film Active JP6944699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017161017A JP6944699B2 (en) 2017-08-24 2017-08-24 Method for manufacturing hexagonal boron nitride film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017161017A JP6944699B2 (en) 2017-08-24 2017-08-24 Method for manufacturing hexagonal boron nitride film

Publications (2)

Publication Number Publication Date
JP2019040974A JP2019040974A (en) 2019-03-14
JP6944699B2 true JP6944699B2 (en) 2021-10-06

Family

ID=65725912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017161017A Active JP6944699B2 (en) 2017-08-24 2017-08-24 Method for manufacturing hexagonal boron nitride film

Country Status (1)

Country Link
JP (1) JP6944699B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395200A (en) * 1986-10-09 1988-04-26 Sumitomo Electric Ind Ltd Production of hard boron nitride film
KR20130041120A (en) * 2010-07-21 2013-04-24 도쿄엘렉트론가부시키가이샤 Interlayer insulating layer formation method and semiconductor device
JP2017041503A (en) * 2015-08-18 2017-02-23 富士電機株式会社 Semiconductor device and manufacturing method of the same

Also Published As

Publication number Publication date
JP2019040974A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US8637118B2 (en) Method of production of graphene
Deshpandey et al. Diamond and diamondlike films: Deposition processes and properties
US8470400B2 (en) Graphene synthesis by chemical vapor deposition
US7628856B2 (en) Method for producing substrate for single crystal diamond growth
JPH05506064A (en) Diamond mounting substrate for electronic applications
US8859044B2 (en) Method of preparing graphene layer
JP6116004B2 (en) Method for producing graphene film
JP2007266489A (en) Plasma cvd device
CN105568253A (en) Method for growing hexagonal boron nitride by plasma chemical vapor deposition equipment
KR20070057284A (en) Process for film production and semiconductor device utilizing film produced by the process
WO2016149934A1 (en) Growing method for graphene
JPH04174517A (en) Manufacture of diamond semiconductor
JP2013159521A (en) Method for producing graphene film
JP6944699B2 (en) Method for manufacturing hexagonal boron nitride film
KR20210134745A (en) Method and apparatus for forming a hexagonal boron nitride film
JP2008222488A (en) Method for manufacturing cubic boron nitride
CN111676450B (en) Hexagonal boron nitride thick film based on ion beam sputtering deposition and preparation method and application thereof
Huang et al. Low-temperature synthesis of high-quality graphene by controlling the carbon-hydrogen ratio of the precursor
Fei et al. Point‐Arc Remote Plasma Chemical Vapor Deposition for High‐Quality Single‐Crystal Diamond Selective Growth
JP2009235510A (en) Method for forming silicon nitride film, method for producing gas barrier film, and gas barrier film
JP2010225792A (en) Film forming device and film forming method
JP4480192B2 (en) Method for synthesizing high purity diamond
JP6767052B2 (en) Semiconductor film forming method
JPS63265890A (en) Production of thin diamond film or thin diamond-like film
JPH04175295A (en) Production of semiconductive diamond

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210906

R150 Certificate of patent or registration of utility model

Ref document number: 6944699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150