JPH05102047A - Diamond substrate and its manufacture - Google Patents

Diamond substrate and its manufacture

Info

Publication number
JPH05102047A
JPH05102047A JP28393891A JP28393891A JPH05102047A JP H05102047 A JPH05102047 A JP H05102047A JP 28393891 A JP28393891 A JP 28393891A JP 28393891 A JP28393891 A JP 28393891A JP H05102047 A JPH05102047 A JP H05102047A
Authority
JP
Japan
Prior art keywords
substrate
diamond
single crystal
plane
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28393891A
Other languages
Japanese (ja)
Inventor
Naohiro Toda
直大 戸田
Tadashi Tomikawa
唯司 富川
Nobuhiko Fujita
順彦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP28393891A priority Critical patent/JPH05102047A/en
Publication of JPH05102047A publication Critical patent/JPH05102047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To manufacture and provide large-area single crystal diamond substrates suitable for semiconductor devices and the like in a large quantity and at a low cost. CONSTITUTION:A diamond substrate having a single crystal diamond layer grown on a carbon atom face of a single silicon carbon substrate by preparing a carbon substrate whose growing surface is a carbon atom face with appearance of only carbon atoms out of a crystal face of single crystal silicon carbide and by growing a single crystal diamond layer by a vapor composition method such as CVD on the carbon atom face of this growing surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トランジスターやセン
サー等の各種半導体デバイス、ヒートシンクや絶縁膜、
或は超硬工具に用いる高硬度被膜として有用なダイヤモ
ンド基板、及びその製造方法に関する。
The present invention relates to various semiconductor devices such as transistors and sensors, heat sinks and insulating films,
Alternatively, the present invention relates to a diamond substrate useful as a high-hardness coating used for a cemented carbide tool and a method for producing the diamond substrate.

【0002】[0002]

【従来の技術】ダイヤモンドは炭素が共有結合した立方
晶の結晶であり、最も高い硬度を有する物質であると同
時に、多くの優れた性質を有している。例えば、ダイヤ
モンドは非常に広いバンドギャップを有し、不純物をド
ーピングすることによって半導体とすることができるの
で、高温でも安定して作動するトランジスターやセンサ
ー又は短波長発光素子等の半導体デバイスとしての用途
が考えられている。又、ダイヤモンドは熱伝導率が高い
ことから、ヒートシンク等としての用途にも期待が持た
れている。
2. Description of the Related Art Diamond is a cubic crystal in which carbon is covalently bonded, is a substance having the highest hardness, and at the same time has many excellent properties. For example, diamond has a very wide band gap and can be made into a semiconductor by doping impurities, so that it can be used as a semiconductor device such as a transistor or a sensor or a short-wavelength light-emitting element that operates stably even at high temperature. It is considered. Further, since diamond has a high thermal conductivity, it is expected to be used as a heat sink or the like.

【0003】ダイヤモンドを合成する試みは古くから行
われ、1950年代には高圧合成法によって粒状のダイヤモ
ンドを合成することに成功している。しかし、上記のよ
うに半導体デバイス等として利用する場合には高純度で
大面積の単結晶が望まれるが、現在高圧合成法で得られ
るダイヤモンドは僅か数mm程度の板状か粒状の結晶だけ
である。又、高圧合成法は非常に高価な高圧発生装置を
必要とするため、単結晶の単価が極めて高価なものとな
ってしまう。
Attempts to synthesize diamond have been made for a long time, and in the 1950s, it was successful to synthesize granular diamond by a high pressure synthesis method. However, as described above, when used as a semiconductor device or the like, a high-purity and large-area single crystal is desired, but the diamond currently obtained by the high-pressure synthesis method is only a plate-like or granular crystal of about several mm. is there. Further, the high-pressure synthesis method requires a very expensive high-pressure generator, so that the unit price of a single crystal becomes extremely expensive.

【0004】一方で、半導体デバイス等に適したダイヤ
モンドの薄膜を形成するため、気相からの合成も盛んに
研究され、マイクロ波プラズマCVD法、高周波プラズ
マCVD法、熱フィラメントCVD法、ECRプラズマ
CVD法、アーク放電プラズマジェットCVD法のよう
な気相合成法により、ダイヤモンドの合成に成功したと
の報告もなされている。
On the other hand, in order to form a diamond thin film suitable for semiconductor devices and the like, synthesis from the gas phase has also been actively studied, and microwave plasma CVD method, high frequency plasma CVD method, hot filament CVD method, ECR plasma CVD method. It has also been reported that diamond has been successfully synthesized by a vapor phase synthesis method such as an arc discharge plasma jet CVD method.

【0005】しかし、上記の気相合成法によって単結晶
ダイヤモンド薄膜が得られるのは、天然のダイヤモンド
か、又は高圧合成法で合成した単結晶ダイヤモンド或は
閃亜鉛鉱型の窒化ホウ素単結晶(cBN)を基板とした場
合に限られている。従って、ダイヤモンド成長のための
基板そのものが極めて高価であり、更には大面積の基板
を得ることが難しく、半導体デバイス等の用途に適した
安価で大面積の単結晶ダイヤモンド基板を大量に製造す
ることはできなかった。
However, a single crystal diamond thin film can be obtained by the above vapor phase synthesis method from natural diamond, or single crystal diamond synthesized by a high pressure synthesis method or a zinc blende type boron nitride single crystal (cBN). ) Is limited to the substrate. Therefore, the substrate itself for diamond growth is extremely expensive, and it is difficult to obtain a large-area substrate. Therefore, it is necessary to mass-produce an inexpensive large-area single crystal diamond substrate suitable for applications such as semiconductor devices. I couldn't.

【0006】又、上記のダイヤモンド及びcBN以外に
は、ケイ素(Si)や酸化アルミニウム(Al2O3)がダイ
ヤモンド成長用の基板として用いられているが、これら
の基板では多結晶のダイヤモンド膜か或はダイヤモンド
状炭素膜しか得られていない現状である。
Besides diamond and cBN mentioned above, silicon (Si) and aluminum oxide (Al 2 O 3 ) are used as substrates for diamond growth. Or, at present, only diamond-like carbon films are obtained.

【0007】[0007]

【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、安価で大面積の基板を用いて気相合成法に
よりダイヤモンドを成長させ、半導体デバイス等の用途
に適した大面積の単結晶ダイヤモンド基板を大量且つ安
価に製造し、提供することを目的とする。
In view of the above conventional circumstances, the present invention grows diamond by a vapor phase synthesis method using a large-sized substrate which is inexpensive and has a large area suitable for use in semiconductor devices and the like. It is an object of the present invention to manufacture and provide a crystalline diamond substrate in large quantities and at low cost.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明においては、単結晶炭化ケイ素の結晶面のう
ち炭素原子のみが現れる炭素原子面を成長用表面とする
基板を準備し、この成長用表面の炭素原子面上に気相合
成法により単結晶ダイヤモンド層を成長させることを特
徴とする方法により、ダイヤモンド基板を製造する。
In order to achieve the above-mentioned object, in the present invention, a substrate having a carbon atom plane in which only carbon atoms appear among the crystal planes of single crystal silicon carbide as a growth surface is prepared. A diamond substrate is manufactured by a method characterized by growing a single crystal diamond layer on a carbon atom plane of a growth surface by a vapor phase synthesis method.

【0009】又、上記本発明方法によって製造されるダ
イヤモンド基板は、単結晶炭化ケイ素からなる基板と、
この基板の結晶面のうち炭素原子のみが現れる炭素原子
面の上に成長した単結晶ダイヤモンド層とを有するもの
である。
The diamond substrate produced by the method of the present invention is a substrate made of single crystal silicon carbide,
This substrate has a single crystal diamond layer grown on a carbon atom plane in which only carbon atoms appear.

【0010】[0010]

【作用】炭化ケイ素(SiC)基板は従来から使用されて
いたが、多結晶SiCを用いることが多く、単結晶SiCを用
いる場合でもどの結晶面をダイヤモンド成長用の表面と
するか確定されておらず、いずれの場合においても単結
晶ダイヤモンド層を安定的に得ることは困難とされてい
た。
[Function] Silicon carbide (SiC) substrates have been used in the past, but polycrystalline SiC is often used, and even when single-crystal SiC is used, it has not been determined which crystal plane is to be the surface for diamond growth. In all cases, it was difficult to stably obtain a single crystal diamond layer.

【0011】本発明においてダイヤモンド層の成長に使
用する基板は、単結晶の炭化ケイ素であり、その結晶面
のうち炭素原子のみが現れる炭素原子面をダイヤモンド
成長用の表面とする。単結晶SiC基板の炭素原子面をダ
イヤモンド成長用の表面とすることにより、その表面上
に常に単結晶ダイヤモンド層がエピタキシャル成長する
ことが確認された。これは、基板表面の炭素原子と気相
中の炭素原子含有活性種とが化学的に結合しやすく、ダ
イヤモンドの核成長が促進されたためと考えられる。
The substrate used for the growth of the diamond layer in the present invention is a single crystal silicon carbide, and the carbon atom plane in which only carbon atoms appear is the surface for diamond growth. It was confirmed that the single crystal diamond layer was always epitaxially grown on the surface by using the carbon atomic plane of the single crystal SiC substrate as the surface for diamond growth. It is considered that this is because the carbon atoms on the surface of the substrate and the carbon atom-containing active species in the vapor phase were easily chemically bonded to each other, which promoted the diamond nucleus growth.

【0012】単結晶SiCの結晶構造には、立方晶系に属
するものと六方晶系に属するものとがある。立方晶系の
SiCはダイヤモンド構造の炭素原子の半分を交互にケイ
素原子で置き換えた閃亜鉛鉱型構造であり、結晶面のう
ち(100)面と(111)面に炭素原子のみ又はケイ
素原子のみが現れる。又、六方晶系のSiCはウルツ鉱型
構造であり、結晶面のうち(001)面に炭素原子のみ
又はケイ素原子のみが現れる。しかし、立方晶系の(1
00)面は精度良く平滑に切り出すことが困難であるか
ら、立方晶系では(111)面を及び六方晶系では(0
01)面を使用することが好ましい。
Crystal structures of single crystal SiC include those belonging to the cubic system and those belonging to the hexagonal system. Cubic
SiC is a zinc blende type structure in which half of the carbon atoms of the diamond structure are alternately replaced by silicon atoms, and only carbon atoms or only silicon atoms appear on the (100) and (111) faces of the crystal planes. Hexagonal system SiC has a wurtzite structure, and only carbon atoms or silicon atoms appear on the (001) plane of the crystal planes. However, the cubic system (1
Since it is difficult to cut out the (00) plane accurately and smoothly, the (111) plane in the cubic system and (0) in the hexagonal system
It is preferred to use the 01) plane.

【0013】尚、立方晶系の(111)面或は六方晶系
の(001)面が、炭素原子のみが現れる炭素原子面で
あるか又はケイ素原子のみが現れるケイ素原子面である
かの判定は、硝酸カリウム等を用いたエッチングによる
表面状態(エッチングの程度)により、即ち炭素原子面
はケイ素原子面よりもエッチングされやすく、粗大な食
像が現れて表面が粗になることで判定できる。又、X線
回折による回折線の反射強度の違いによって炭素原子面
の同定を行うことも出来る。
Whether the cubic (111) plane or hexagonal (001) plane is a carbon atom plane in which only carbon atoms appear or a silicon atom plane in which only silicon atoms appear. Can be determined by the surface condition (degree of etching) by etching with potassium nitrate or the like, that is, the carbon atom surface is more easily etched than the silicon atom surface, and a coarse eclipse image appears and the surface becomes rough. It is also possible to identify the carbon atom surface by the difference in the reflection intensity of the diffraction line by X-ray diffraction.

【0014】又、立方晶系のSiCは格子定数が0.43596nm
であり、Siの格子定数0.5430nmに比べても、立方晶系で
あるダイヤモンドの格子定数0.3543nmに近い。このた
め、立方晶系SiC基板の炭素原子面上では、一層ダイヤ
モンドがエピタキシャル成長しやすいものと考えられ
る。
Cubic SiC has a lattice constant of 0.43596 nm.
Thus, even when compared with the lattice constant of Si of 0.5430 nm, it is close to the lattice constant of 0.3543 nm of cubic diamond. Therefore, it is considered that diamond is more likely to grow epitaxially on the carbon atomic planes of the cubic SiC substrate.

【0015】本発明で用いる単結晶SiC基板は、昇華法
やAcheson法又は熱CVD法等の公知の方法により製造
できる。これらの方法により製造される単結晶SiC基板
は、従来の天然又は合成のダイヤモンドやcBNに比べ、
合成が容易であり、大面積化も可能であって、価格的に
も安価であると言う利点がある。
The single crystal SiC substrate used in the present invention can be manufactured by a known method such as a sublimation method, an Acheson method or a thermal CVD method. Single-crystal SiC substrates manufactured by these methods are, compared to conventional natural or synthetic diamond or cBN,
It has the advantages of easy synthesis, large area, and low price.

【0016】昇華法やAcheson法等で製造した六方晶系S
iCの場合には、インゴットから(001)面を切り出す
ことにより、単結晶の六方晶SiC基板が得られる。又、
立方晶系SiCの場合は、熱CVD法等によりSi基板の
(111)面上或は六方晶系SiC基板の(001)面上
に成長させることによって、(111)面の単結晶の立
方晶SiC基板が得られる。その後それぞれの基板につい
て、上記のごとくエッチング等により炭素原子面を同定
又は確認すればよい。ただし、熱CVD法等の基板とし
たSi基板は、後に除去して自立膜としての単結晶SiCの
みをダイヤモンド成長用の基板としても良いし、除去せ
ずそのままダイヤモンド成長用の基板とすることも可能
である。
Hexagonal S produced by sublimation method or Acheson method
In the case of iC, a (001) plane is cut out from an ingot to obtain a single crystal hexagonal SiC substrate. or,
In the case of cubic system SiC, by growing it on the (111) plane of a Si substrate or the (001) plane of a hexagonal system SiC substrate by a thermal CVD method or the like, a cubic crystal of a single crystal of the (111) plane is obtained. SiC substrate is obtained. Then, for each substrate, the carbon atomic planes may be identified or confirmed by etching or the like as described above. However, the Si substrate used as the substrate for the thermal CVD method or the like may be removed later and only the single crystal SiC as the self-supporting film may be used as the substrate for diamond growth, or it may be directly used as the substrate for diamond growth without removal. It is possible.

【0017】本発明において上記単結晶SiC基板上に成
長する単結晶ダイヤモンド層は、良質な単結晶ないし双
晶を含む単結晶からなる。従って、ダイヤモンド層の表
面が極めて平滑であり、表面粗さ計による測定で表面粗
さ(Rmax)が膜厚の5%程度以下となっている。尚、単
結晶SiC基板との熱膨張係数の差によるダイヤモンド基
板の反りを防止するため、単結晶ダイヤモンド層の厚さ
は10μm以下とすることが好ましい。ただし、単結晶SiC
基板を後に除去し、単結晶ダイヤモンド層のみを自立膜
として用いる場合には、厚さが10μmを越えても良い。
In the present invention, the single crystal diamond layer grown on the single crystal SiC substrate is made of a single crystal containing a good quality single crystal or twin crystal. Therefore, the surface of the diamond layer is extremely smooth, and the surface roughness (R max ) measured by a surface roughness meter is about 5% or less of the film thickness. The thickness of the single crystal diamond layer is preferably 10 μm or less in order to prevent warpage of the diamond substrate due to the difference in thermal expansion coefficient from the single crystal SiC substrate. However, single crystal SiC
When the substrate is later removed and only the single crystal diamond layer is used as a self-supporting film, the thickness may exceed 10 μm.

【0018】又、単結晶ダイヤモンド層はその用途に応
じて、ノンドープ層でもドープ層でも良く、特に半導体
デバイスの能動層として用いる場合にはホウ素やリン等
の不純物をドーピングしたp型又はn型の半導体とす
る。
Further, the single crystal diamond layer may be either a non-doped layer or a doped layer depending on its use. Especially when it is used as an active layer of a semiconductor device, it is of p-type or n-type doped with impurities such as boron and phosphorus. Use semiconductor.

【0019】[0019]

【実施例1】公知の昇華法により六方晶SiC単結晶のイ
ンゴットを製造し、得られたインゴットから面方位(0
01)で直径1インチの六方晶SiC単結晶ウエハーを切り
出した。この面方位(001)のSiC単結晶ウエハーの
両面を硝酸カリウムでエッチングし、エッチング面の状
態からこの面が炭素原子面であることを確認した。その
後、この炭素原子面を研磨し、酸及び有機溶媒で洗浄し
てダイヤモンド成長用の基板とした。
Example 1 A hexagonal SiC single crystal ingot was manufactured by a known sublimation method, and a plane orientation (0
In 01), a hexagonal SiC single crystal wafer having a diameter of 1 inch was cut out. Both sides of the SiC single crystal wafer of this plane orientation (001) were etched with potassium nitrate, and it was confirmed from the state of the etched surface that this plane was a carbon atom plane. Then, the carbon atom surface was polished and washed with an acid and an organic solvent to obtain a substrate for diamond growth.

【0020】図1に示すマイクロ波プラズマCVD装置
の反応チャンバー2内に上記成長用基板1を配置し、真
空にした反応チャンバー2内に反応ガスとしてCH4ガス1
sccmとH2ガス100sccmを同時に導入して、反応チャンバ
ー2内の圧力を7×103Paに調節した。この状態におい
て、2.45GHzのマイクロ波発生装置3から導波管4を通
して400Wのマイクロ波を反応チャンバー2内に供給する
ことにより、成長用基板1上に原料ガスのプラズマを形
成した。このとき基板温度は1070Kであり、成長用基板
1の上にダイヤモンド層を1μmの厚さに形成した。
The growth substrate 1 is placed in a reaction chamber 2 of the microwave plasma CVD apparatus shown in FIG. 1, and CH 4 gas 1 is used as a reaction gas in the reaction chamber 2 which is evacuated.
Sccm and 100 sccm of H 2 gas were simultaneously introduced to adjust the pressure inside the reaction chamber 2 to 7 × 10 3 Pa. In this state, 400 W microwaves were supplied from the 2.45 GHz microwave generator 3 through the waveguide 4 into the reaction chamber 2 to form plasma of the source gas on the growth substrate 1. At this time, the substrate temperature was 1070 K, and a diamond layer was formed on the growth substrate 1 to a thickness of 1 μm.

【0021】得られたダイヤモンド層を高速反射電子線
回折法(以下RHEED法と略記)により解析した結果、双
晶を若干含んだ単結晶ダイヤモンドの(111)面であ
ることが分かった。又、このダイヤモンド層の表面粗さ
Rmaxは35nmであり、極めて平滑な表面であることが分か
った。
As a result of analyzing the obtained diamond layer by a high-speed reflection electron diffraction method (hereinafter abbreviated as RHEED method), it was found to be a (111) plane of a single crystal diamond containing a small amount of twin crystals. Also, the surface roughness of this diamond layer
Rmax was 35 nm, which was found to be an extremely smooth surface.

【0022】比較のため、成長用基板として面方位(1
00)の六方晶の単結晶SiC基板及び面方位(111)
の単結晶Si鏡面基板を用いた以外は上記実施例1と同様
にしてダイヤモンド層の形成を試みたが、いずれの場合
も極めて一部にダイヤモンドの粒子が観察されるのみ
で、単結晶ダイヤモンド層を得ることは出来なかった。
又、上記面方位(111)の単結晶Si鏡面基板を粒径20
〜40μmのダイヤモンド砥粒で傷付け処理した後、実施
例1と同様にダイヤモンド層を形成したところ厚さ1μm
のダイヤモンド層が得られたが、RHEED法によればスポ
ッティなリングパターンのみが得られ、多結晶ダイヤモ
ンドであることが確認された。
For comparison, the plane orientation (1
00) hexagonal single crystal SiC substrate and plane orientation (111)
An attempt was made to form a diamond layer in the same manner as in Example 1 except that the single crystal Si mirror-finished substrate was used. However, in each case, only a very small amount of diamond particles were observed. Couldn't get.
In addition, the grain size of the single crystal Si mirror surface substrate with the above-mentioned plane orientation (111) is 20
A diamond layer was formed in the same manner as in Example 1 after being scratched with diamond abrasive grains of -40 μm, and the thickness was 1 μm.
Although a diamond layer was obtained, a spotty ring pattern was obtained by the RHEED method, and it was confirmed that the diamond layer was polycrystalline diamond.

【0023】[0023]

【実施例2】面方位(111)の単結晶Si基板の上に、
公知の熱CVD法によりSiCを形成させた。このSiCはRH
EED法により面方位(111)の立方晶SiC単結晶である
ことが分かった。その後、これをフッ硝酸に浸してSiを
エッチング除去し、SiCの自立膜を得た。この面方位
(111)のSiC単結晶を、実施例1と同様にしてこの
面が炭素原子面であることを確認し、この炭素原子面を
研磨し、酸及び有機溶媒で洗浄してダイヤモンド成長用
の基板とした。
Example 2 On a single crystal Si substrate having a plane orientation (111),
SiC was formed by a known thermal CVD method. This SiC is RH
It was found by the EED method that this was a cubic SiC single crystal with a plane orientation (111). Then, this was immersed in hydrofluoric nitric acid to remove Si by etching to obtain a free-standing SiC film. The SiC single crystal of this plane orientation (111) was confirmed to be a carbon atom plane in the same manner as in Example 1, and the carbon atom plane was polished and washed with an acid and an organic solvent to grow diamond. It was used as a substrate.

【0024】図2に示す熱フィラメントCVD装置の反
応チャンバー2内に上記成長用基板1を配置し、基板1
と対向して設置された熱フィラメント5を2273Kに加熱
すると共に、真空にした反応チャンバー2内に反応ガス
としてCH4ガス2sccmとH2ガス200sccmを同時に導入し
て、反応チャンバー2内の圧力を1×104Paに調節した。
尚、基板1と熱フィラメント5の距離を5mmとし、基板
温度が1120Kになるように基板背面を水冷した。この様
にして成長用基板1の上に厚さ10μmのダイヤモンド層
を形成した。得られたダイヤモンド層をRHEED法により
解析した結果、双晶を若干含んだ単結晶ダイヤモンドの
(111)面であることが分かった。
The growth substrate 1 is placed in the reaction chamber 2 of the hot filament CVD apparatus shown in FIG.
While heating the hot filament 5 installed facing to 2273K, CH 2 gas 2sccm and H 2 gas 200sccm are simultaneously introduced as reaction gas into the evacuated reaction chamber 2 to increase the pressure in the reaction chamber 2. Adjusted to 1 × 10 4 Pa.
The distance between the substrate 1 and the hot filament 5 was 5 mm, and the back surface of the substrate was water-cooled so that the substrate temperature was 1120K. Thus, a 10 μm thick diamond layer was formed on the growth substrate 1. As a result of analyzing the obtained diamond layer by the RHEED method, it was found to be a (111) plane of single crystal diamond containing a small amount of twin crystals.

【0025】比較のため、成長用基板として面方位(1
10)の立方晶の単結晶SiC基板及び面方位(111)
の単結晶Si鏡面基板を用いた以外は上記実施例2と同様
にしてダイヤモンド層の形成を試みたが、いずれの場合
も極めて一部にダイヤモンドの粒子が観察されるのみ
で、単結晶ダイヤモンド層を得ることは出来なかった。
又、上記面方位(111)の単結晶Si鏡面基板を粒径20
〜40μmのダイヤモンド砥粒で傷付け処理した後、実施
例2と同様にダイヤモンド層を形成したところ厚さ10μ
mのダイヤモンド層が得られたが、RHEED法により多結晶
ダイヤモンドであることが確認された。
For comparison, the plane orientation (1
10) Cubic single crystal SiC substrate and plane orientation (111)
An attempt was made to form a diamond layer in the same manner as in Example 2 except that the single crystal Si mirror surface substrate was used. However, in each case, only a part of diamond particles were observed. Couldn't get.
In addition, the grain size of the single crystal Si mirror surface substrate with the above-mentioned plane orientation (111) is 20
A diamond layer was formed in the same manner as in Example 2 after being scratched with diamond abrasive grains of -40 μm, and the thickness was 10 μm.
A diamond layer of m was obtained, but it was confirmed by RHEED method that it was polycrystalline diamond.

【0026】[0026]

【実施例3】実施例1と同様に、公知の昇華法により製
造した六方晶SiC単結晶のインゴットから切り出した面
方位(001)のSiC単結晶ウエハーの両面を硝酸カリ
ウムでエッチングし、エッチング面の状態からこの面が
炭素原子面であることを確認し、この炭素原子面を研磨
し、酸及び有機溶媒で洗浄してダイヤモンド成長用の基
板とした。
Example 3 In the same manner as in Example 1, both sides of a SiC single crystal wafer having a plane orientation (001) cut out from an ingot of a hexagonal SiC single crystal produced by a known sublimation method were etched with potassium nitrate to form an etched surface. From this state, it was confirmed that this surface was a carbon atom surface, and this carbon atom surface was polished and washed with an acid and an organic solvent to obtain a substrate for diamond growth.

【0027】図3に示す有磁場マイクロ波プラズマCV
D装置の反応チャンバー2内に上記成長用基板1を配置
し、真空にした反応チャンバー2内に反応ガスとしてCH
4ガス4sccmとH2ガス200sccmを同時に導入して、反応チ
ャンバー2内の圧力を10Paに調節した。この状態におい
て、2.45GHzのマイクロ波発生装置3から導波管4を通
して400Wのマイクロ波を反応チャンバー2内に供給する
と同時に、磁場発生用コイル6により875Gの磁場を印加
することにより、有磁場の下で成長用基板1上に原料ガ
スのプラズマを形成した。このとき基板温度は1000Kで
あり、成長用基板1の上にダイヤモンド層を10μmの厚
さに形成した。得られたダイヤモンド層をRHEED法によ
り解析した結果、双晶を若干含んだ単結晶ダイヤモンド
の(111)面であることが分かった。
Magnetic field microwave plasma CV shown in FIG.
The growth substrate 1 is placed in the reaction chamber 2 of the D apparatus, and CH 2 is used as a reaction gas in the reaction chamber 2 which is evacuated.
4 gas 4 sccm and H 2 gas 200 sccm were simultaneously introduced to adjust the pressure inside the reaction chamber 2 to 10 Pa. In this state, a microwave of 400 W is supplied from the 2.45 GHz microwave generator 3 through the waveguide 4 into the reaction chamber 2 and, at the same time, a magnetic field of 875 G is applied by the magnetic field generating coil 6 to generate a magnetic field. A source gas plasma was formed on the growth substrate 1 below. At this time, the substrate temperature was 1000 K, and a diamond layer was formed on the growth substrate 1 to a thickness of 10 μm. As a result of analyzing the obtained diamond layer by the RHEED method, it was found to be a (111) plane of single crystal diamond containing a small amount of twin crystals.

【0028】比較のため、成長用基板として面方位(1
00)の六方晶の単結晶SiC基板及び面方位(001)
の単結晶Al2O3鏡面基板を用いた以外は上記実施例3と
同様にしてダイヤモンド層の形成を試みたが、いずれの
場合も極めて一部にダイヤモンドの粒子が観察されるの
みで、単結晶ダイヤモンド層を得ることは出来なかっ
た。又、上記面方位(001)の単結晶Al2O3鏡面基板
を粒径20〜40μmのダイヤモンド砥粒で傷付け処理した
後、実施例3と同様にダイヤモンド層を形成したところ
厚さ10μmのダイヤモンド層が得られたが、RHEED法によ
り多結晶ダイヤモンドであることが確認された。
For comparison, the plane orientation (1
00) hexagonal single crystal SiC substrate and plane orientation (001)
An attempt was made to form a diamond layer in the same manner as in Example 3 except that the single crystal Al 2 O 3 mirror substrate of No. 1 was used, but in each case, only a part of diamond particles were observed. No crystalline diamond layer could be obtained. Further, after the single crystal Al 2 O 3 mirror-finished substrate having the above-mentioned plane orientation (001) was scratched with diamond abrasive grains having a grain size of 20 to 40 μm, a diamond layer was formed in the same manner as in Example 3 to obtain a diamond having a thickness of 10 μm. A layer was obtained, which was confirmed to be polycrystalline diamond by the RHEED method.

【0029】[0029]

【発明の効果】本発明によれば、半導体デバイス等の用
途に適した大面積の単結晶ダイヤモンド基板を大量且つ
安価に製造し、提供することが出来る。
According to the present invention, a large area single crystal diamond substrate suitable for applications such as semiconductor devices can be manufactured and provided in large quantities at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施に用いるマイクロ波プラズマCV
D装置の概略説明図である。
FIG. 1 is a microwave plasma CV used for implementing the present invention.
It is a schematic explanatory drawing of a D apparatus.

【図2】本発明の実施に用いる熱フィラメントCVD装
置の概略説明図である。
FIG. 2 is a schematic explanatory view of a hot filament CVD apparatus used for carrying out the present invention.

【図3】本発明の実施に用いる有磁場マイクロ波プラズ
マCVD装置の概略説明図である。
FIG. 3 is a schematic explanatory diagram of a magnetic field microwave plasma CVD apparatus used for carrying out the present invention.

【符号の説明】[Explanation of symbols]

1 成長用基板 2 反応チャンバー 3 マイクロ波発生装置 4 導波管 5 熱フィラメント 6 磁場発生用コイル 1 Growth Substrate 2 Reaction Chamber 3 Microwave Generator 4 Waveguide 5 Hot Filament 6 Magnetic Field Generation Coil

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単結晶炭化ケイ素からなる基板と、この
基板の結晶面のうち炭素原子のみが現れる炭素原子面の
上に成長した単結晶ダイヤモンド層とを有するダイヤモ
ンド基板。
1. A diamond substrate having a substrate made of single-crystal silicon carbide and a single-crystal diamond layer grown on a carbon atom plane in which only carbon atoms appear in the crystal plane of the substrate.
【請求項2】 単結晶炭化ケイ素の結晶面のうち炭素原
子のみが現れる炭素原子面を成長用表面とする基板を準
備し、この成長用表面の炭素原子面上に気相合成法によ
り単結晶ダイヤモンド層を成長させることを特徴とする
ダイヤモンド基板の製造方法。
2. A substrate having a growth surface which is a carbon atom surface in which only carbon atoms are present among crystal faces of single crystal silicon carbide is prepared, and a single crystal is formed on the growth surface by the vapor phase synthesis method. A method for manufacturing a diamond substrate, which comprises growing a diamond layer.
JP28393891A 1991-10-04 1991-10-04 Diamond substrate and its manufacture Pending JPH05102047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28393891A JPH05102047A (en) 1991-10-04 1991-10-04 Diamond substrate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28393891A JPH05102047A (en) 1991-10-04 1991-10-04 Diamond substrate and its manufacture

Publications (1)

Publication Number Publication Date
JPH05102047A true JPH05102047A (en) 1993-04-23

Family

ID=17672165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28393891A Pending JPH05102047A (en) 1991-10-04 1991-10-04 Diamond substrate and its manufacture

Country Status (1)

Country Link
JP (1) JPH05102047A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005510056A (en) * 2001-11-13 2005-04-14 エレメント シックス リミテッド Laminated structure
KR20060113450A (en) * 2005-04-27 2006-11-02 키니크 컴퍼니 Diamond substrate and method for fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005510056A (en) * 2001-11-13 2005-04-14 エレメント シックス リミテッド Laminated structure
JP2010272879A (en) * 2001-11-13 2010-12-02 Element Six Ltd Layered structure
KR20060113450A (en) * 2005-04-27 2006-11-02 키니크 컴퍼니 Diamond substrate and method for fabricating the same

Similar Documents

Publication Publication Date Title
JP2654232B2 (en) High pressure phase material single crystal production method
JP3728465B2 (en) Method for forming single crystal diamond film
EP0282054B1 (en) Thin film single crystal diamond substrate
US5807432A (en) Process for producing diamond covered member
US10822718B2 (en) Method for producing aluminum nitride single crystal substrate
EP0348026B1 (en) Diamond growth on a substrate using microwave energy
JP3728464B2 (en) Method for manufacturing substrate for vapor phase synthesis of single crystal diamond film
JPH06107494A (en) Vapor growth method for diamond
JP3549228B2 (en) Highly oriented diamond heat dissipation substrate
JPH0658891B2 (en) Thin film single crystal diamond substrate
JPH05102048A (en) Diamond substrate and its manufacture
US5897705A (en) Process for the production of an epitaxially coated semiconductor wafer
JPH05102047A (en) Diamond substrate and its manufacture
JP2005314167A (en) Seed crystal for use in silicon carbide single crystal growth, manufacturing method thereof, and method for growing crystal using it
JPH0687691A (en) Production of diamond and diamond single crystal substrate used in the same
JP3728466B2 (en) Method for producing single crystal diamond film
JPH04188717A (en) Diamond substrate and manufacture thereof
JPH0524989A (en) Method for synthesizing diamond and sphalerite type compound
US4609424A (en) Plasma enhanced deposition of semiconductors
JPH0666273B2 (en) Thin film single crystal diamond substrate
JPH0769792A (en) Method for epitaxial growth of diamond crystal and method for selective epitacial growth
JPH0558783A (en) Diamond substrate and its production
JPH08239296A (en) Production of diamond single crystal film
JPH0920592A (en) Production of polycrystalline diamond plate
JP3195093B2 (en) Method of forming diamond film