JPS63107808A - Preparation of octachlorotrisilane - Google Patents

Preparation of octachlorotrisilane

Info

Publication number
JPS63107808A
JPS63107808A JP25193986A JP25193986A JPS63107808A JP S63107808 A JPS63107808 A JP S63107808A JP 25193986 A JP25193986 A JP 25193986A JP 25193986 A JP25193986 A JP 25193986A JP S63107808 A JPS63107808 A JP S63107808A
Authority
JP
Japan
Prior art keywords
contact
copper
octachlorotrisilane
chlorine gas
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25193986A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
洋 池田
Makoto Tsunashima
綱島 真
Akihiko Saegusa
明彦 三枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP25193986A priority Critical patent/JPS63107808A/en
Publication of JPS63107808A publication Critical patent/JPS63107808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To prepare octachlorotrisilane which is useful as a starting material for the prepn. of semiconductor silicon in high rate of preparation by previously allowing gaseous chlorine to contact with hot copper (or Cu compd.) then chlorinating Si particles by allowing the above described gaseous chlorine to contact with the Si particles. CONSTITUTION:Gaseous chlorine is allowed to contact with hot copper or Cu compd. (e.g. Cu2Cl2, CuCl2) before the gaseous chlorine is allowed to contact with Si particles. Suitable contact temp. is 50-350 deg.C. Then, the chlorine gas is introduced into Si particles and the Si particles are chlorinated at 100-250 deg.C. Aimed octachlorotrisilane is thus prepd. Since the gaseous chlorine is previously allowed to contact with copper (or Cu compd.), generation of SiCl4 is retarded, and octachlorotrisilane is obtd. in high prepn. rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はシリコン粒子を塩素化してクロロシランを製造
する方法において、オクタクロロトリシランの生成率の
高い製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing chlorosilane by chlorinating silicon particles, which produces a high production rate of octachlorotrisilane.

〔従来技術と問題点〕[Conventional technology and problems]

オクタクロロトリシラン5i3C1Bは熱分解してエピ
タキシャルシリコン等とする事も勿論出来るが、更に還
元してトリシラン(Si3Hs)とし、半導体用シリコ
ンやアモルファスシリコンが製造される。
Of course, octachlorotrisilane 5i3C1B can be thermally decomposed to produce epitaxial silicon or the like, but it is further reduced to trisilane (Si3Hs) to produce silicon for semiconductors or amorphous silicon.

従来オクタクロロトリシランはカルシウムシリサイド等
の金属とケイ素の合金や金属ケイ素を塩素化してクロロ
シランを製造する際に、テトラクロロシラン(SiC1
4)やヘキサクロロジシラン(Si2C1e)と共に生
成されている。
Conventionally, octachlorotrisilane was used as tetrachlorosilane (SiC1
4) and hexachlorodisilane (Si2C1e).

また他にはマグネシウムシリサイドを酸によって分解し
て、シラン(SiH4)やジシラン(Si2Ha)、ト
リシラン(Si3H8)を生成した後、該トリシランを
塩素化して製造する方法がある。
Another method is to decompose magnesium silicide with an acid to produce silane (SiH4), disilane (Si2Ha), or trisilane (Si3H8), and then chlorinate the trisilane.

ところが、上記いずれの方法においてもオクタクロロト
リシラン5i3C1Bの生成率は極めて低く、例えば金
属シリコンに塩素ガスを通じる従来方法においては、主
な生成物は5iC14であり、5i3C14は5iC1
4生成に伴って副生するものを利用しているに過ぎない
。囚に従来方法によって得られる5i3C16の生成率
が5%を越えるのは極めて稀であり1通常1%未満であ
る。
However, in any of the above methods, the production rate of octachlorotrisilane 5i3C1B is extremely low. For example, in the conventional method of passing chlorine gas through metal silicon, the main product is 5iC14, and 5i3C14 is 5iC1
4.It merely utilizes the by-products that accompany the production. It is extremely rare for the production rate of 5i3C16 obtained by conventional methods to exceed 5%, and is usually less than 1%.

〔問題解決についての知見〕[Knowledge about problem solving]

前述したようにシリコン粒子に塩素ガスを通じて塩素化
する方法においては5iC14が生成し易く、クロロポ
リシラン5inChn+z (口≧2)の生成率は低い
。本発明者等は1本発明に先立ち、上記シリコンの塩素
化法において、シリコン粒子に銅、銅化合物を添加して
塩素化すれば、5iC14の生成が抑制され、クロロポ
リシランの生成が促進されることを見出した。本発明者
等は、5i3C14の生成率を高める観点から上記製造
方法を更に改善し、塩素ガスをシリコン粒子に接触させ
る前に予め銅ないし銅触媒に接触させ、次いでシリコン
粒子に接触させれば、クロロポリシラン(Si2C16
、Si3C]4)のうち、特にオクタクロロトリシラン
5i3C14の生成率が格段に向上することを見出した
As described above, in the method of chlorinating silicon particles by passing chlorine gas, 5iC14 is easily produced, and the production rate of chloropolysilane 5inChn+z (mouth≧2) is low. Prior to the present invention, the present inventors discovered that in the silicon chlorination method described above, by adding copper or a copper compound to silicon particles and chlorinating them, the production of 5iC14 is suppressed and the production of chloropolysilane is promoted. I discovered that. The present inventors have further improved the above production method from the viewpoint of increasing the production rate of 5i3C14, by bringing the chlorine gas into contact with copper or a copper catalyst in advance before contacting the silicon particles, and then bringing it into contact with the silicon particles. Chloropolysilane (Si2C16
, Si3C]4), the production rate of octachlorotrisilane 5i3C14 was particularly found to be significantly improved.

〔発明の構成〕[Structure of the invention]

本発明によれば、シリコン粒子に塩素ガスを通じ、シリ
コン粒子の塩素化によりクロロシランを製造する際、塩
素ガスをシリコン粒子に接触させる前に予め加熱した銅
ないし銅化合物に塩素ガスを接触させ、次いでシリコン
粒子に導入することを特徴とするオクタクロロトリシラ
ンの製造方法が提供される。
According to the present invention, when producing chlorosilane by passing chlorine gas through silicon particles and chlorinating the silicon particles, before bringing the chlorine gas into contact with the silicon particles, the chlorine gas is brought into contact with pre-heated copper or a copper compound, and then A method for producing octachlorotrisilane is provided, which comprises introducing octachlorotrisilane into silicon particles.

またその好適な実施態様として、塩素化の反応温度が1
00℃以上250℃以下である製造方法、あるいは、銅
ないし銅化合物と塩素ガスとの接触温度が50℃以上3
50℃以下である製造方法、あるいは銅化合物が塩化第
一銅、塩化第二銅、酸化第一銅、酸化第二銅である製造
方法が夫々提供される。
In a preferred embodiment, the chlorination reaction temperature is 1
A manufacturing method in which the temperature is 00°C or more and 250°C or less, or the contact temperature between copper or a copper compound and chlorine gas is 50°C or more3
A manufacturing method in which the temperature is 50° C. or lower, or a manufacturing method in which the copper compound is cuprous chloride, cupric chloride, cuprous oxide, or cupric oxide is provided.

本発明において、塩素ガスをシリコン粒子に接触させて
、シリコンを塩素化するに際し、予め塩素ガスを銅ない
し銅化合物に接触させ、次いでシリコン粒子に接触させ
る。
In the present invention, when bringing chlorine gas into contact with silicon particles to chlorinate silicon, the chlorine gas is brought into contact with copper or a copper compound in advance, and then brought into contact with the silicon particles.

銅化合物としては、シリコン粒子ないし生成ガスを汚染
しないものが用いられる。塩素化反応に用いることがら
該銅化合物としては塩化第一銅CuC1,塩化第二銅C
uCl2が好適に用いられる。また酸化銅CuO1Cu
20を用いることができる。該銅、銅化合物は、例えば
、塩素ガスの供給路に沿って。
As the copper compound, one that does not contaminate the silicon particles or the generated gas is used. The copper compounds used in the chlorination reaction include cuprous chloride CuC1, cupric chloride C
uCl2 is preferably used. Also, copper oxide CuO1Cu
20 can be used. The copper and copper compound are applied, for example, along the chlorine gas supply path.

反応容器のシリコン粒子充填層の直前に該シリコン層と
は分離して充填される。
Immediately before the silicon particle packed layer of the reaction vessel, it is filled separately from the silicon layer.

銅、銅化合物と塩素ガスとの接触温度は50℃〜350
℃が好ましい。50℃より低いと、塩素ガスを接触させ
る効果が不充分であり、 また350℃を超えて高温に
しても効果に大差なく、経済的設備的観点から350℃
以下とするのが良い。
The contact temperature between copper, copper compounds and chlorine gas is 50°C to 350°C.
°C is preferred. If it is lower than 50℃, the effect of contacting chlorine gas will be insufficient, and even if the temperature is higher than 350℃, there will be no significant difference in the effect.
It is best to set it to the following.

塩素ガスを銅、銅化合物に接触させた後に、シリコン粒
子に接触させ、シリコンを塩素化する。
After bringing chlorine gas into contact with copper and a copper compound, it is brought into contact with silicon particles to chlorinate the silicon.

該塩素化の反応温度は100℃〜250℃が好適である
The reaction temperature for the chlorination is preferably 100°C to 250°C.

100℃より低いと、塩素化が進行せず、また250℃
を超えると生成物が分解し易くなる。該シリコンの塩素
化により、主に5iC14と5i3C1B、および微址
の5i2C16等を含むクロロシランガスが生成し、こ
れを凝縮液として捕集し、蒸留分離することによりSi
3C1gを得ることができる。上記塩素化によって得ら
れるクロロシランガスには5iC14が約70%前後、
5i3C1Bが約30%前後含有されており。
If the temperature is lower than 100℃, chlorination will not proceed, and if the temperature is lower than 250℃
If it exceeds 100%, the product will be easily decomposed. Chlorination of silicon produces chlorosilane gas containing mainly 5iC14, 5i3C1B, and a small amount of 5i2C16, which is collected as a condensate and separated by distillation.
3C1g can be obtained. The chlorosilane gas obtained by the above chlorination contains about 70% 5iC14,
Contains approximately 30% of 5i3C1B.

5iC14の量が多いものの、従来の製造方法に比較す
ると、従来Si3C]4の生成率が通常1%以下である
ことを考えれば、5i3C14の生成率が飛躍的に向上
すると云える。
Although the amount of 5iC14 is large, it can be said that the production rate of 5i3C14 is dramatically improved considering that the production rate of conventional Si3C]4 is usually 1% or less compared to the conventional manufacturing method.

本発明において使用されるシリコンは可及的に高純度で
ある方が不純物に起因する固形副生物の生成量が少ない
。純度はこのことを考慮して決定される問題であるが、
97%以上が望ましい。
The higher the purity of the silicon used in the present invention, the lower the amount of solid by-products caused by impurities produced. Purity is a matter to be determined with this in mind,
97% or more is desirable.

本発明方法において、シリコン粒の平均粒径は50μm
以上2IIII11以下が望ましく、塩素化は140℃
以上300℃以下で行なう事が望ましい。シリコン粒の
平均粒径が2m+++より大きいと活性に乏しくクロロ
ポリシランの生成率が下がり、好ましくなく。
In the method of the present invention, the average particle size of silicon particles is 50 μm.
Above 2III and below 11 is desirable, and chlorination is at 140℃
It is desirable to carry out the process at a temperature of 300°C or less. If the average particle diameter of the silicon particles is larger than 2 m+++, the activity is poor and the production rate of chloropolysilane decreases, which is not preferable.

50μmより小さいと反応中に粉塵が発生しやはり好ま
しくない。
If it is smaller than 50 μm, dust will be generated during the reaction, which is also not preferable.

〔発明の効果〕〔Effect of the invention〕

本発明により、カルシウムシリサイドの塩素化等の従来
方法では実現出来なかった高い生成率でオクタクロロト
リシランを製造する事ができる。
According to the present invention, octachlorotrisilane can be produced at a high production rate that could not be achieved by conventional methods such as chlorination of calcium silicide.

〔実施例〕〔Example〕

次に本発明を実施例によってより具体的に説明するが、
以下の実施例は本発明の範囲を限定するものではない。
Next, the present invention will be explained more specifically by examples.
The following examples are not intended to limit the scope of the invention.

実施例1 平均粒径2μ償のケイ素粉末30gを内径4crnφの
ガラス製反応管に充填した。別に@線(径約0.11、
長さ約50+++++) 100本を互いに絡ませて径
約40mmφのボール状にして同じ反応管に充填し全体
を加熱した。この時、ケイ素粉末と銅線ボールは接触し
ておらず、またケイ素粉末は200℃に銅線ボールは1
00℃になる様に加熱した。この状態で銅線ボールが充
填されている側から塩素ガスを50+++fl/分の速
度で反応管に導入し15時間反応させ、生成ガスを凝縮
緯として捕し、蒸溜によりオクタクロロトリシランSi
3C1gを単離した。得られた5i3C1aは39.7
 gであり、生成率はケイ素原子換算で30.2%であ
った。囚に、生成ガスの残余は大部分が5iC14であ
った。
Example 1 A glass reaction tube with an inner diameter of 4 crnφ was filled with 30 g of silicon powder having an average particle size of 2 μm. Separately @ wire (diameter approx. 0.11,
100 pieces (length: about 50 +++++) were entwined with each other to form a ball with a diameter of about 40 mm, filled in the same reaction tube, and heated as a whole. At this time, the silicon powder and the copper wire ball are not in contact with each other, and the silicon powder is at 200°C and the copper wire ball is at 1
It was heated to 00°C. In this state, chlorine gas was introduced into the reaction tube from the side filled with copper wire balls at a rate of 50+++ fl/min, and the reaction was allowed to proceed for 15 hours. The produced gas was captured as condensation liquid, and by distillation, octachlorotrisilane Si
1 g of 3C was isolated. The obtained 5i3C1a is 39.7
g, and the production rate was 30.2% in terms of silicon atoms. In fact, the remainder of the produced gas was mostly 5iC14.

実施例2 銅線ボールを酸化第二銅線のボールを用いた他は、実施
例1と同条件で反応を行った。オクタクロロトリシラン
の生成社は33.8 gであり、生成率は25.7%で
あった。
Example 2 A reaction was carried out under the same conditions as in Example 1, except that a cupric oxide wire ball was used as the copper wire ball. The amount of octachlorotrisilane produced was 33.8 g, and the production rate was 25.7%.

実施例3〜4.比較例1 塩素化の反応温度を変えた他は実施例1と同条件で反応
を行った。結果は表1の通りである。
Examples 3-4. Comparative Example 1 A reaction was carried out under the same conditions as in Example 1 except that the reaction temperature for chlorination was changed. The results are shown in Table 1.

表1 比較例1500 実施例3   100         26.111
4   250         28.9参考例  
  300         4.3実施例5〜6.比
較例2、参考例 銅線ボールの温度を変えた他は実施例1と同様の反応を
行った。結果は表2の通りである。
Table 1 Comparative example 1500 Example 3 100 26.111
4 250 28.9 Reference example
300 4.3 Examples 5-6. Comparative Example 2, Reference Example The same reaction as in Example 1 was carried out except that the temperature of the copper wire ball was changed. The results are shown in Table 2.

表2 比較例225゜ 実施例5   50          27.411
6   350          29.7参考例 
   400          29.3実施例7〜
9 銅線ボールに変えて銅化合物粉5gを銅線ボールと同じ
位置に置いた他は実施例1と同条件で反応を行った。結
果は表3の通りである。
Table 2 Comparative example 225° Example 5 50 27.411
6 350 29.7 Reference example
400 29.3 Example 7~
9 The reaction was carried out under the same conditions as in Example 1, except that 5 g of copper compound powder was placed in the same position as the copper wire ball instead of the copper wire ball. The results are shown in Table 3.

表3 実施例 銅化合物の種類 オクタクロロトリシランの生
成率〔%〕
Table 3 Example Type of copper compound Production rate of octachlorotrisilane [%]

Claims (4)

【特許請求の範囲】[Claims] (1)シリコン粒子に塩素ガスを通じ、シリコン粒子の
塩素化によりクロロシランを製造する際、塩素ガスをシ
リコン粒子に接触させる前に予め加熱した銅ないし銅化
合物に塩素ガスを接触させ、次いでシリコン粒子に導入
することを特徴とするオクタクロロトリシランの製造方
法。
(1) When producing chlorosilane by passing chlorine gas through silicon particles and chlorinating the silicon particles, before bringing the chlorine gas into contact with the silicon particles, the chlorine gas is brought into contact with pre-heated copper or a copper compound, and then the silicon particles are exposed to the chlorine gas. A method for producing octachlorotrisilane, which comprises introducing octachlorotrisilane.
(2)塩素化の反応温度が100℃以上250℃以下で
ある特許請求の範囲第1項の製造方法。
(2) The manufacturing method according to claim 1, wherein the chlorination reaction temperature is 100°C or more and 250°C or less.
(3)銅ないし銅化合物と塩素ガスとの接触温度が50
℃以上350℃以下である特許請求の範囲第1項の製造
方法。
(3) The contact temperature between copper or copper compound and chlorine gas is 50
2. The manufacturing method according to claim 1, wherein the temperature is from .degree. C. to 350.degree.
(4)銅化合物が塩化第一銅、塩化第二銅、酸化第一銅
、酸化第二銅である特許請求の範囲第1項の製造方法。
(4) The manufacturing method according to claim 1, wherein the copper compound is cuprous chloride, cupric chloride, cuprous oxide, or cupric oxide.
JP25193986A 1986-10-24 1986-10-24 Preparation of octachlorotrisilane Pending JPS63107808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25193986A JPS63107808A (en) 1986-10-24 1986-10-24 Preparation of octachlorotrisilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25193986A JPS63107808A (en) 1986-10-24 1986-10-24 Preparation of octachlorotrisilane

Publications (1)

Publication Number Publication Date
JPS63107808A true JPS63107808A (en) 1988-05-12

Family

ID=17230221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25193986A Pending JPS63107808A (en) 1986-10-24 1986-10-24 Preparation of octachlorotrisilane

Country Status (1)

Country Link
JP (1) JPS63107808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061672A (en) * 1990-01-30 1991-10-29 Elkem Metals Company Active mass for making organohalosilanes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061672A (en) * 1990-01-30 1991-10-29 Elkem Metals Company Active mass for making organohalosilanes

Similar Documents

Publication Publication Date Title
JP5726294B2 (en) Method for preparing diorganodihalosilane
US4861574A (en) Process for preparing chloropolysilanes
WO2013089014A1 (en) Method for producing high-purity chloropolysilane
JPH07315829A (en) Recovering method for chloride in vent gas stram
JP3272689B2 (en) Direct synthesis of methylchlorosilane
JPS63107808A (en) Preparation of octachlorotrisilane
JP3631938B2 (en) Direct synthesis of methylchlorosilane.
JP2508798B2 (en) Method for producing hexachlorodisilane and octachlorotrisilane
US5051248A (en) Silane products from reaction of silicon monoxide with hydrogen halides
JPS6389414A (en) Production of chloropolysilane
JP2001002682A (en) Highly pure dialkylaminosilane and its production
Gelmboldt FLUOROSILICIC ACID: SECONDARY RAW MATERIAL AND REAGENT IN TECHNOLOGICAL PRACTICE AND PREPARATIVE SYNTHESIS (A REVIEW).
JPH0352408B2 (en)
JP2001002683A (en) Highly pure dialkylaminosilane and its production
JPS61275125A (en) Stabilizing method for hexachlorodisilane
RU2637690C1 (en) Method of producing chlorosilanes from amorphous silica to produce high purity silicon
JPS62256715A (en) Production of chlorosilane
JP2864037B2 (en) Method for producing antimony pentafluoride
JP2523123B2 (en) Silane gas manufacturing method
JP3188519B2 (en) Method for producing tert-butyl chloride
JPH10287682A (en) Alkoxysilane of extremely small halogen content, and its production
JPS627605A (en) Method for recovering hydrochloric acid from silicon tetrachloride
JPH0829930B2 (en) Method for producing chloropolysilane
JPH04349111A (en) Production of high purity phosphorus
JPH11269181A (en) Highly purified alkoxysilane and its production