JPH0352408B2 - - Google Patents

Info

Publication number
JPH0352408B2
JPH0352408B2 JP8275983A JP8275983A JPH0352408B2 JP H0352408 B2 JPH0352408 B2 JP H0352408B2 JP 8275983 A JP8275983 A JP 8275983A JP 8275983 A JP8275983 A JP 8275983A JP H0352408 B2 JPH0352408 B2 JP H0352408B2
Authority
JP
Japan
Prior art keywords
silicon
chlorinated silicon
chlorinated
raw material
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8275983A
Other languages
Japanese (ja)
Other versions
JPS59207830A (en
Inventor
Toshihiro Abe
Hiroji Myagawa
Masayoshi Ito
Kenji Iwata
Toshuki Tsukahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP8275983A priority Critical patent/JPS59207830A/en
Publication of JPS59207830A publication Critical patent/JPS59207830A/en
Publication of JPH0352408B2 publication Critical patent/JPH0352408B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、一般式SikCl2k+2(kは2以上の整
数)で表される高級塩素化ケイ素から、SilCl2l+2
(lはl〓kなる1以上の整数)を製造する方法
に関する。 近年、エレクトロニクス工業の発展に伴い、多
結晶シリコンあるいはアモルフアスシリコン等の
半導体用シリコンの需要が急激に増大している。 式()で表される塩素化ケイ素 SilCl2l+2 () (n≧1なる整数) は、かかる半導体用シリコンの製造原料として最
近特にその重要性を増している。 これらはそのまま熱分解してアモルフアスシリ
コン等とすることも勿論出来るが(ベルギー特許
明細書第889523号)、さらに還元して、()式で
表されるポリシランとし、 SioH2o+2 () (n≧1なる整数) これを、熱分解等して半導体用シリコンを製造
することが普通である。 しかして、ポリシラン、特にジシランSi2H6
は、熱分解、グロー放電分解によりアモルフアス
シリコン膜を形成する場合、モノシランSiH4
比較して、基盤上へ形成される膜の堆積速度がは
るかに大きく、かつ、該膜は電気特性に優れてい
る等の利点があり、太陽電池用または感光ドラム
用半導体の原料等として今後大幅な需要増加が期
待されている(特開昭56−83929号公報)。 従来、塩素化ケイ素たとえばヘキサクロロジシ
ラン自体の製造方法は公知であり、通常、カルシ
ウムシリコン、マグネシウムシリコン、あるいは
フエロシリコン等金属とシリコンとの合金の粒子
を高温で塩素化するかまたはシリコン粒子自体を
高温で塩素化することにより行われる(米国特許
明細書第2602728号、同第2621111号)。 しかしながら、この場合、目的物である塩素化
ケイ素たとえばヘキサクロロジシランのみを選択
的に生産することは困難であり、通常ヘキサクロ
ロジシラン以外にも相当量の四塩化ケイ素(一般
式()においてn=1)、オクタクロロトリシ
ラン(同じくn=3)およびそれ以上の高級塩化
物(以下n≧3のものを単に高級塩化物という)
がかなり副生することは避けられなかつた。特
に、このオクタクロロトリシラン以上の高級塩化
物が大量に副生することは、目的物であるヘキサ
クロロジシランの収率を減少せしめるばかりでな
く、廃棄処理を困難にしかつ操作の安全性をそこ
なうことになるので非常に大きな問題となつてい
た(該高級塩化物は水の存在により容易に衝撃発
火性の白色固体を生じる)。 従来、高級塩素化ケイ素に関し、たとえば次式
に示すような不均化反応が知られている。(ジヤ
ーナル オブ インオーガニツク アンド ニユ
クレア ケミストリー(J.Inorg.Nucl.Chem.)
vol26.p409−444(1964))。 ) 4Si2Cl6→Si5Cl12+3SiCl4 ) 5Si2Cl6→Si6Cl14・SiCl4 +3SiCl4(→Si6Cl14+4SiCl4) ) 3Si3Cl8→Si5Cl12+2Si2Cl6 ) 15Si3Cl8→6Si6Cl14・SiCl4 +3SiCl4(→6Si6Cl14+9SiCl4) 上記反応は、いずれも、触媒としてN(CH33
(CH33N・HCl、(CH33N・BCl3等のアミンを
使用する低温液相反応である。したがつて、上記
反応を利用すれば、たとえば不要のオクタクロロ
トリシランSi3Cl8を有用なヘキサクロロジシラン
Si2Cl6や四塩化ケイ素SiCl4に転化せしめ得るは
ずである。 しかしながら、上記アミン触媒を利用する不均
化反応は転化率が低く、かつ、生成液中から触媒
であるアミン化合物を分離除去しなければならな
いという欠点がある。 本発明者らは、上記点にかんがみ鋭意検討した
結果、意外にも高級塩素化ケイ素をガス状で、触
媒不存在下に高温で加熱処理することにより、他
の所望の塩素化ケイ素に転化せしめることができ
ることを見出し、本発明を完成した。 すなわち、本発明は、一般式() SikCl2k+2 () (kは2以上の整数) で表わされる高級塩素化ケイ素を原料とし、これ
を単独あるいは希釈剤の存在下に200℃乃至1000
℃で加熱処理し少くともその一部分を一般式
() SilCl2l+2 () (lはl〓kなる1以上の整数) で表わされる()と異る別の塩素化ケイ素に転
化せしめることを特徴とする塩素化ケイ素Sil
Cl2l+2の製造方法に存する。 以下、本発明を詳細に説明する。 本発明における原料たる高級塩素化ケイ素は一
般式() SikCl2k+2 () (kは2以上の整数) で表わされるものであり、たとえば、ヘキサクロ
ロジシラン、オクタクロロトリシラン、デカクロ
ロテトラシラン等があげられる。 これらは、もちろん、いかなる方法で得られた
ものであつてもかまわないが、たとえば前記した
ごとく、カルシウムシリコン、マグネシウムシリ
コン、あるいはフエロシリコン等金属とシリコン
との合金の粒子を高温で塩素化するかまたはシリ
コン粒子自体を高温で塩素化することにより得ら
れた生成物から、所望の塩素化ケイ素たとえば、
四塩化ケイ素やヘキサクロロジシラン等を蒸留等
の手段で分離したより高沸成分の高級塩素化ケイ
素などが好適に使用できる。また、該高級塩素化
ケイ素は単独でも混合物でもかまわないことはも
ちろんである。 本発明は上記のごとき高級塩素化ケイ素を原料
とし、これを単独あるいは希釈剤の存在下に200
℃乃至1000℃で加熱処理し少くともその一部分を
一般式() SilCl2l+2 () (lはl〓kなる1以上の整数) で表わされる()と異る別の塩素化ケイ素に転
化せしめるものである。 加熱処理温度が200℃未満の場合は高級塩素化
ケイ素の転化がほとんど行なわれずまた1000℃を
越えた場合には、高級塩素化ケイ素の分解によつ
て塩素ガスおよび金属ケイ素が生成するので好ま
しくない。 なお、加熱温度は上記範囲であればより高温の
方が四塩化ケイ素SiCl4への転化生成割合が増加
し、一方より低温の方が、高級塩素化ケイ素の割
合が増加するので、高級塩素化ケイ素の製造を目
的とする場合には300℃乃至700℃であることが好
ましい。特にオクタクロロトリシランSi3Cl8から
ヘキサクロロジシランSi2Cl6を収率良く製造する
場合には、400℃乃至600℃であることが好まし
い。 本発明を実施するための転化器の構造は、原料
気体の加熱処理操作が効果的に行えるものであ
り、かつ、冷却および/または加熱手段を備えて
おり、処理温度(反応温度)を所望の範囲に制御
できるものであれば管型、撹拌層型等いかなる形
式のものでもかまわない。 なお、加熱手段は特に制限はなく、電熱あるい
はジフエニル等の熱媒体等が用いられる。たとえ
ば、管型の反応器の場合は、これを空塔(空管)
でそのまま使用してもよいしα−アルミナビー
ズ、ラシヒリング、バールサドルリング等の充填
物を充填して熱交換操作をより効果的にすること
も好ましい。 本発明の反応を実施させる態様としては、原料
の高級塩素化ケイ素(これらは通常常温で液体あ
るいは固体である)を予熱器等であらかじめ転化
温度程度に予熱し転化器に供給してもよいし、ま
たは該高級塩素化ケイ素を液体のまま高温に保持
した転化器に供給し、該転化器に於て該高級塩素
化ケイ素の加熱および転化反応を共に起さしめて
もよい。 上記転化反応は発熱反応であるから、特に反応
の開始時にはある程度の熱を供給してやる必要が
ある。 しかして転化器は自己熱交換型のものとし、原
料高級塩素化ケイ素液体と生液高温ガスとを転化
器管壁を通して関接的に接触せしめ、熱回収を行
つてもよいし、好ましくは冷却した希釈剤たる四
塩化ケイ素を転化器内に噴霧したり、もしくは原
料高級塩素化ケイ素を四塩化ケイ素等であらかじ
め希釈して転化器に供給してもよい(なお、この
場合、希釈剤は原料高級塩素化ケイ素の流動性を
向上して取り扱い易くする効果をも有する)。ま
た、かかる希釈剤としては、その他反応系に対し
て不活性なフロン、メチレンクロライド、シリコ
ンオイル等も使用可能である。 また、反応速度を制御できる範囲におさえて反
応熱を的確にコントロールするため、上記転化反
応をヘリウム、ネオン、アルゴン、キセノン、窒
素等の不活性なガスの雰囲気下に行つてもよい。 なお、転化反応速度は非常に速いので、1秒〜
100秒程度の反応時間(連続流通反応の場合は空
塔基準の平均滞留時間)で転化反応は完結する。 反応完結後、原料高級塩素化ケイ素とは異る別
の塩素化ケイ素に転化した生成ガスは所望の塩素
化ケイ素を含む種々の塩素化ケイ素からなる組成
物(未反応の原料高級塩素化ケイ素も含まれう
る)として転化器より排出されるので、これを凝
縮して蒸留分離することにより、容易に所望の塩
素化ケイ素を回収することができる。 本発明によれば、高級塩素化ケイ素を原料とし
て、公知の方法を使用する場合よりはるかに容易
にかつ収率良く四塩化ケイ素および/または所望
の高級塩素化ケイ素等の塩素化ケイ素を製造する
ことが可能である。また、転化生成物の一部であ
るより高級塩素化ケイ素は互に重合不活性化し、
取り扱いの安全な物質(たとえば後記実施例では
釜残成分)となり容易に廃棄することができる。 以下、実施例により本発明を具体的に説明す
る。 実施例 1 転化器として100mmφ*980mmの石英ガラス管
に平均粒径5mmのα−アルミナビーズを充填した
ものを使用しこれを予め500℃に設定した。原料
の高級塩素化ケイ素Si3Cl82.7Kgを希釈剤たる
SiCl46.3Kgに希釈したものを定量ポンプにより
0.15Kg/minの速さで転化器に供給しアルゴンガ
ス雰囲気下で60分間転化反応を行つた。なお、空
塔基準の平均滞留時間は8秒であつた。生成ガス
を約0℃に冷却し、生成凝縮液9.0Kgを捕集した。 次にこの生成凝縮液を常圧下で単蒸留して
SiCl46.4Kgを得、更にひきつづいて減圧下(125
mmHg)で単蒸留することによりSi2Cl62.1Kg、
Si3Cl80.2Kg、Si4Cl100.2Kgを含む釜残0.1Kgを得
た。 すなわち、原料Si3Cl8の71%(Si原子基準)が
Si2Cl6に転化回収されたことになる。 比較例 1 転化器として撹拌機を備えた200mlの丸底フラ
スコを使用し、これに原料高級塩素化ケイ素
Si3Cl824gを装入した。 次に転化器を液体窒素バスで−196℃に冷却し
た後系内を真空にし、その中に触媒として微量の
トリメチルアミン約1mlをガス状で注入した。転
化器を常温まで昇温し、3時間放置後に転化器内
容物を減圧下(数mmHg)で蒸留した。留出ガス
を約0℃に冷却し、Si2Cl611.5gを含む生成凝縮
液を捕集した。 また釜残として12.5gの白色結晶物を得た。得
られたSi2Cl6の仕込Si3Cl8に対する収率は44%
(Si原子基準)であつた。 実施例 2 実施例1において、転化温度を400℃で行なつ
た以外は、実施例1と同様の実験を行なつた。 結果を第1表に示す。 実施例 3 実施例1において、仕込み原料としてSi3Cl81.9
KgとSi5Cl12以上の高級塩素化ケイ素混合物0.7Kg
(Siとして108g)を希釈剤たるSiCl40.63Kgに希釈
した混合液を用いた以外は、実施例1と同様の実
験を行なつた。 結果を第1表に示す。 実施例 4 実施例3において、反応温度を400℃とした以
外は、実施例3と同様の実験を行なつた。 結果を第1表に示す。 【表】
[Detailed Description of the Invention] The present invention provides Si l Cl 2l+ 2 from higher chlorinated silicon represented by the general formula SikCl 2k+2 (k is an integer of 2 or more).
(l is an integer of 1 or more such as l〓k). In recent years, with the development of the electronics industry, the demand for silicon for semiconductors such as polycrystalline silicon or amorphous silicon has increased rapidly. Chlorinated silicon Si l Cl 2l+2 () (integer n≧1) represented by the formula () has recently become particularly important as a raw material for producing silicon for semiconductors. Of course, these can be thermally decomposed as they are to produce amorphous silicon etc. (Belgian Patent Specification No. 889523), but they can be further reduced to form polysilane represented by the formula (), Si o H 2o +2 ( ) (an integer where n≧1) This is usually thermally decomposed to produce silicon for semiconductors. However, polysilanes, especially disilane Si 2 H 6
When forming an amorphous silicon film by thermal decomposition or glow discharge decomposition, the deposition rate of the film formed on the substrate is much higher than that of monosilane SiH4 , and the film has excellent electrical properties. It is expected that demand will increase significantly in the future as a raw material for semiconductors for solar cells and photosensitive drums (Japanese Unexamined Patent Publication No. 83929/1983). Conventionally, methods for producing chlorinated silicon, such as hexachlorodisilane itself, are well known, and are usually made by chlorinating particles of an alloy of metal and silicon, such as calcium silicon, magnesium silicon, or ferrosilicon, at high temperatures, or by chlorinating silicon particles themselves. This is done by chlorination at high temperatures (US Pat. No. 2,602,728, US Pat. No. 2,621,111). However, in this case, it is difficult to selectively produce only the target chlorinated silicon, such as hexachlorodisilane, and usually a considerable amount of silicon tetrachloride (n = 1 in general formula ()) in addition to hexachlorodisilane is difficult to produce. , octachlorotrisilane (also n=3) and higher chlorides (hereinafter, those with n≧3 are simply referred to as higher chlorides)
It was inevitable that there would be a considerable amount of side effects. In particular, the production of large amounts of higher chlorides higher than octachlorotrisilane not only reduces the yield of the target hexachlorodisilane, but also makes disposal difficult and impairs operational safety. (The higher chloride easily forms a white solid that can ignite on impact in the presence of water.) Conventionally, regarding higher chlorinated silicon, for example, a disproportionation reaction as shown in the following formula is known. (J.Inorg.Nucl.Chem.)
vol 26 . p409−444 (1964)). ) 4Si 2 Cl 6 →Si 5 Cl 12 +3SiCl 4 ) 5Si 2 Cl 6 →Si 6 Cl 14・SiCl 4 +3SiCl 4 (→Si 6 Cl 14 +4SiCl 4 ) ) 3Si 3 Cl 8 →Si 5 Cl 12 +2Si 2 Cl 6 ) 15Si 3 Cl 8 →6Si 6 Cl 14・SiCl 4 +3SiCl 4 (→6Si 6 Cl 14 +9SiCl 4 ) All of the above reactions use N(CH 3 ) 3 as a catalyst,
This is a low-temperature liquid phase reaction that uses amines such as (CH 3 ) 3 N·HCl and (CH 3 ) 3 N·BCl 3 . Therefore, by using the above reaction, for example, unnecessary octachlorotrisilane Si 3 Cl 8 can be converted into useful hexachlorodisilane.
It should be possible to convert it into Si 2 Cl 6 or silicon tetrachloride SiCl 4 . However, the above-mentioned disproportionation reaction using an amine catalyst has the disadvantage that the conversion rate is low and that the amine compound serving as the catalyst must be separated and removed from the product liquid. As a result of intensive studies in view of the above points, the present inventors have unexpectedly found that higher chlorinated silicon can be converted into other desired chlorinated silicon by heat-treating it in a gaseous state at high temperature in the absence of a catalyst. They discovered that it is possible to do this, and completed the present invention. That is, the present invention uses higher chlorinated silicon represented by the general formula () Si k Cl 2k+2 () (k is an integer of 2 or more) as a raw material, and heats it alone or in the presence of a diluent at 200°C. 1000
Heat treatment at ℃ to convert at least a part of it into another chlorinated silicon different from () represented by the general formula () Si l Cl 2l+2 () (l is l〓k, an integer of 1 or more) Chlorinated silicon Si l characterized by
It consists in a method for producing Cl 2l+2 . The present invention will be explained in detail below. The higher chlorinated silicon that is the raw material in the present invention is represented by the general formula () Si k Cl 2k+2 () (k is an integer of 2 or more), and includes, for example, hexachlorodisilane, octachlorotrisilane, decachlorotetra Examples include silane. Of course, these can be obtained by any method, but for example, as mentioned above, particles of alloys of metal and silicon, such as calcium silicon, magnesium silicon, or ferrosilicon, are chlorinated at high temperature. or from the product obtained by chlorinating the silicon particles themselves at high temperatures, the desired chlorinated silicon, e.g.
Highly chlorinated silicon having a higher boiling point than silicon tetrachloride, hexachlorodisilane, etc. separated by means such as distillation can be preferably used. Further, it goes without saying that the higher chlorinated silicon may be used alone or as a mixture. The present invention uses the above-mentioned higher chlorinated silicon as a raw material, and uses it alone or in the presence of a diluent to
Another chlorinated silicon different from (), which is heat treated at ℃ to 1000℃ and at least a part thereof is expressed by the general formula () Si l Cl 2l+2 () (l is l〓k, an integer of 1 or more) This will transform it into If the heat treatment temperature is less than 200°C, almost no conversion of higher chlorinated silicon will take place, and if it exceeds 1000°C, chlorine gas and metallic silicon will be generated due to the decomposition of higher chlorinated silicon, which is undesirable. . If the heating temperature is within the above range, the higher the heating temperature, the higher the conversion production rate to silicon tetrachloride SiCl 4 , while the lower the heating temperature, the higher chlorinated silicon increases. When the purpose is to produce silicon, the temperature is preferably 300°C to 700°C. In particular, when producing hexachlorodisilane Si 2 Cl 6 from octachlorotrisilane Si 3 Cl 8 with good yield, the temperature is preferably 400°C to 600°C. The structure of the converter for carrying out the present invention is such that the heating treatment operation of the raw material gas can be carried out effectively, and it is equipped with cooling and/or heating means, so that the treatment temperature (reaction temperature) can be adjusted to the desired temperature. Any type, such as a tube type or a stirred bed type, may be used as long as it can be controlled within a certain range. Note that the heating means is not particularly limited, and electric heating, a heating medium such as diphenyl, or the like may be used. For example, in the case of a tubular reactor, this is an empty column (empty tube).
It may be used as it is, or it is preferable to fill it with a filler such as α-alumina beads, Raschig rings, Burl saddle rings, etc. to make the heat exchange operation more effective. In an embodiment of carrying out the reaction of the present invention, the raw material higher chlorinated silicon (which is usually liquid or solid at room temperature) may be preheated to about the conversion temperature using a preheater or the like and then supplied to the converter. Alternatively, the higher chlorinated silicon may be supplied as a liquid to a converter maintained at a high temperature, and the heating and conversion reaction of the higher chlorinated silicon may occur in the converter. Since the above conversion reaction is an exothermic reaction, it is necessary to supply a certain amount of heat, especially at the beginning of the reaction. Therefore, the converter may be of a self-heat exchange type, and the raw high-grade chlorinated silicon liquid and the raw high-temperature gas are brought into direct contact through the converter tube wall, and heat recovery may be performed or preferably cooling may be performed. Silicon tetrachloride as a diluent may be sprayed into the converter, or the raw material high grade chlorinated silicon may be diluted with silicon tetrachloride etc. beforehand and supplied to the converter (in this case, the diluent may be sprayed into the converter). It also has the effect of improving the fluidity of higher chlorinated silicon and making it easier to handle). In addition, other diluents that are inert to the reaction system, such as chlorofluorocarbons, methylene chloride, and silicone oil, can also be used. Further, in order to keep the reaction rate within a controllable range and accurately control the reaction heat, the above conversion reaction may be carried out in an atmosphere of an inert gas such as helium, neon, argon, xenon, nitrogen, or the like. Note that the conversion reaction rate is very fast, so it takes 1 second to
The conversion reaction is completed in a reaction time of about 100 seconds (in the case of a continuous flow reaction, the average residence time based on the empty column). After the reaction is completed, the generated gas, which has been converted into chlorinated silicon different from the raw material high chlorinated silicon, is a composition consisting of various chlorinated silicones including the desired chlorinated silicon (including the unreacted raw material high chlorinated silicon). The desired chlorinated silicon can be easily recovered by condensing it and separating it by distillation. According to the present invention, chlorinated silicon such as silicon tetrachloride and/or desired higher chlorinated silicon can be produced using higher chlorinated silicon as a raw material much more easily and with higher yield than when using known methods. Is possible. In addition, the higher chlorinated silicones that are part of the conversion product polymerize and deactivate each other,
It becomes a substance that is safe to handle (for example, a pot residue component in the examples described later) and can be easily disposed of. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 A 100 mmφ*980 mm quartz glass tube filled with α-alumina beads with an average particle size of 5 mm was used as a converter, and the temperature was set in advance at 500°C. The raw material, high chlorinated silicon Si 3 Cl 8 2.7Kg, is used as a diluent.
SiCl 4 diluted to 6.3Kg using a metering pump.
The material was supplied to the converter at a rate of 0.15 kg/min, and the conversion reaction was carried out for 60 minutes under an argon gas atmosphere. Note that the average residence time based on the sky tower was 8 seconds. The produced gas was cooled to about 0°C, and 9.0 kg of produced condensate was collected. Next, the resulting condensate was simply distilled under normal pressure.
6.4Kg of SiCl 4 was obtained, and further under reduced pressure (125
2.1Kg of Si 2 Cl 6 by simple distillation at
0.1 kg of pot residue containing 0.2 kg of Si 3 Cl 8 and 0.2 kg of Si 4 Cl 10 was obtained. In other words, 71% (based on Si atoms) of the raw material Si 3 Cl 8
This means that it was converted and recovered to Si 2 Cl 6 . Comparative Example 1 A 200ml round bottom flask equipped with a stirrer was used as a converter, and the raw material high grade chlorinated silicon was added to it.
24 g of Si 3 Cl 8 was charged. Next, the converter was cooled to -196°C in a liquid nitrogen bath, the system was evacuated, and a small amount of trimethylamine (about 1 ml) was injected in gaseous form as a catalyst. The temperature of the converter was raised to room temperature, and after leaving it for 3 hours, the contents of the converter were distilled under reduced pressure (several mmHg). The distillate gas was cooled to about 0° C. and the resulting condensate containing 11.5 g of Si 2 Cl 6 was collected. In addition, 12.5 g of white crystalline material was obtained as residue from the pot. The yield of the obtained Si 2 Cl 6 relative to the charged Si 3 Cl 8 was 44%.
(based on Si atoms). Example 2 An experiment similar to Example 1 was conducted except that the conversion temperature was 400°C. The results are shown in Table 1. Example 3 In Example 1, Si 3 Cl 8 1.9 was used as the charging raw material.
Kg and Si 5 Cl 12 or more higher chlorinated silicon mixture 0.7Kg
The same experiment as in Example 1 was conducted except that a mixed solution was used in which SiCl 4 (108 g as Si) was diluted with 0.63 Kg of SiCl 4 as a diluent. The results are shown in Table 1. Example 4 An experiment similar to Example 3 was conducted except that the reaction temperature was 400°C. The results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】 1 一般式() SikCl2k+2(kは2以上の整数) () で表わされる高級塩素化ケイ素を原料とし、これ
を単独あるいは希釈剤の存在下に200℃乃至1000
℃で加熱処理し少くともその一部分を一般式
() SilCl2l+2(lはl≠kなる1以上の整数)
() で表わされる()と異る別の塩素化ケイ素に転
化せしめることを特徴とする塩素化ケイ素Sil
Cl2l+2の製造方法。 2 塩素化ケイ素SilCl2l+2がSiCl4である特許請求
の範囲第1項記載の方法。 3 塩素化ケイ素SilCl2l+2がSiCl4を含有する塩素
化ケイ素組成物として得られる特許請求の範囲第
2項記載の方法。 4 塩素化ケイ素SilCl2l+2がSi2Cl6である特許請
求の範囲第1項記載の方法。 5 塩素化ケイ素SilCl2l+2がSi2Cl6を含有する塩
素化ケイ素組成物として得られる特許請求の範囲
第4項記載の方法。 6 原料高級塩素化ケイ素SikCl2k+2がSi3Cl8であ
る特許請求の範囲第1項ないし第5項のいずれか
に記載の方法。 7 原料高級塩素化ケイ素SikCl2k+2がSi3Cl8を含
有する高級塩素化ケイ素組成物である特許請求の
範囲第6項記載の方法。
[Claims] 1. Higher chlorinated silicon represented by the general formula () SikCl 2k+2 (k is an integer of 2 or more) () is used as a raw material, and it is heated at 200°C to 1000°C alone or in the presence of a diluent.
Heat treated at ℃ and at least a part of it converted into the general formula () Si l Cl 2l+2 (l is an integer of 1 or more such that l≠k)
Chlorinated silicon Si l characterized by being converted into another chlorinated silicon different from () represented by ()
Method for producing Cl 2l+2 . 2. The method according to claim 1, wherein the chlorinated silicon Si l Cl 2l+2 is SiCl 4 . 3. The method according to claim 2, wherein the chlorinated silicon Si l Cl 2l+2 is obtained as a chlorinated silicon composition containing SiCl 4 . 4. The method according to claim 1, wherein the chlorinated silicon Si l Cl 2l+2 is Si 2 Cl 6 . 5. The method according to claim 4, wherein the chlorinated silicon Si l Cl 2l+2 is obtained as a chlorinated silicon composition containing Si 2 Cl 6 . 6. The method according to any one of claims 1 to 5, wherein the raw material higher chlorinated silicon SikCl 2k+2 is Si 3 Cl 8 . 7. The method according to claim 6, wherein the raw material higher chlorinated silicon SikCl 2k+2 is a higher chlorinated silicon composition containing Si 3 Cl 8 .
JP8275983A 1983-05-13 1983-05-13 Production of silicon chloride Granted JPS59207830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8275983A JPS59207830A (en) 1983-05-13 1983-05-13 Production of silicon chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8275983A JPS59207830A (en) 1983-05-13 1983-05-13 Production of silicon chloride

Publications (2)

Publication Number Publication Date
JPS59207830A JPS59207830A (en) 1984-11-26
JPH0352408B2 true JPH0352408B2 (en) 1991-08-09

Family

ID=13783365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8275983A Granted JPS59207830A (en) 1983-05-13 1983-05-13 Production of silicon chloride

Country Status (1)

Country Link
JP (1) JPS59207830A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4841083A (en) * 1987-06-03 1989-06-20 Mitsui Toatsu Chemicals, Incorporated Ladder polysilanes
US7922814B2 (en) 2005-11-29 2011-04-12 Chisso Corporation Production process for high purity polycrystal silicon and production apparatus for the same
DE102009056437B4 (en) * 2009-12-02 2013-06-27 Spawnt Private S.À.R.L. Process and apparatus for the preparation of short-chain halogenated polysilanes
DE102010062984A1 (en) * 2010-12-14 2012-06-14 Evonik Degussa Gmbh Process for the preparation of higher halogen and hydridosilanes

Also Published As

Publication number Publication date
JPS59207830A (en) 1984-11-26

Similar Documents

Publication Publication Date Title
JP4465961B2 (en) Method for producing disilicon hexachloride
US7632478B2 (en) Process for producing silicon
TWI602780B (en) Process for workup of chlorosilanes or chlorosilane mixtures contaminated with carbon compounds
WO2003040036A1 (en) Method for producing silicon
JP5601438B2 (en) Trichlorosilane production method and trichlorosilane production apparatus
JP5311014B2 (en) Separation and recovery method of conversion reaction gas.
TWI474976B (en) Production of polycrystalline silicon in substantially closed-loop processes that involve disproportionation operations
JP5621957B2 (en) Method and apparatus for producing trichlorosilane
JP2004002138A (en) Method for manufacturing silicon
TW201233627A (en) Process for preparing trichlorosilane
KR101948332B1 (en) Production of polycrystalline silicon in substantially closed-loop processes and systems
US8974761B2 (en) Methods for producing silane
JPH0352408B2 (en)
JP2710382B2 (en) Method for producing high-purity dichlorosilane
JPH01226712A (en) Production of dichlorosilane
RU2519460C1 (en) Production of silicon with the use of aluminium subchloride
JP2010132536A (en) Method for producing trichlorosilane and method for use thereof
JPS59195519A (en) Manufacture of hexachlorodisilane
KR20160144541A (en) Method for producing trichlorosilane
JPS59121109A (en) Production of high purity silicon
JPS59207829A (en) Production of hexachlorodisilane
JPS59156907A (en) Manufacture of silane
KR20120027382A (en) Method for producing oligohalogen silanes
JPS59162121A (en) Production of high-purity polychlorosilane
JPH0688773B2 (en) Method for producing hexachlorodisilane