JPS59121109A - Production of high purity silicon - Google Patents

Production of high purity silicon

Info

Publication number
JPS59121109A
JPS59121109A JP22898582A JP22898582A JPS59121109A JP S59121109 A JPS59121109 A JP S59121109A JP 22898582 A JP22898582 A JP 22898582A JP 22898582 A JP22898582 A JP 22898582A JP S59121109 A JPS59121109 A JP S59121109A
Authority
JP
Japan
Prior art keywords
silicon
purity
gas
reactor
monosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22898582A
Other languages
Japanese (ja)
Inventor
Mitsunori Yamada
山田 光矩
Masaji Ishii
石井 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP22898582A priority Critical patent/JPS59121109A/en
Publication of JPS59121109A publication Critical patent/JPS59121109A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce high-purity Si in molten state, in an extremely high yield, by thermally cracking a high-purity monosilane gas at a specific high temperature. CONSTITUTION:A high-purity monosilane (SiH4) gas 4 is supplied and decomposed in the reaction zone of the reactor 1 maintained at >=1,400 deg.C by the graphite heater 2 to obtain high purity molten Si and H2 gas. The H2 gas is exhausted from the outlet pipe 6, and the high-purity Si is collected in the receiver 3 in molten state, and sent through the delivery pipe 5 to the process for the production of Si single crystal. The used SiH4 gas can be thermally decomposed to the high-purity Si in an extremely high yield.

Description

【発明の詳細な説明】 本発明はモノシランから高純度シリコンを製造する方法
に関する。高純度シリコンは半導体、太陽光発電等の素
子の原材料であるため、近年その需要が益々増大するも
のと予測されており、これを大量にしかも効率よく製造
する方法が要望されている。高純度シリコンの製法は従
来から種々提案されている。例えば(1)通電により加
熱した高純度の種シリコン棒を内部に存在させたペンジ
ャーに高純度ノトリクロルシランと水素の混合ガスある
いは高純度のモノシランと水素の混合ガスを送り、高純
変種シリコン棒上にシリコンを析出成長させるいわゆる
シーノンス法がある。この方法は電力を多量に必要とす
る他、種シリコン棒上に一定量シリコンを析出させてこ
れを取り出し、再び種シリコン棒を装着してシリコン析
出させなければならず、その操業はバッチ式となるので
大量生産してもその製造コストは高価となる欠点がある
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high purity silicon from monosilane. Since high-purity silicon is a raw material for devices such as semiconductors and solar power generation, the demand for it is expected to increase in recent years, and there is a need for a method for efficiently manufacturing it in large quantities. Various methods for producing high-purity silicon have been proposed. For example, (1) A mixed gas of high-purity notorichlorosilane and hydrogen or a mixed gas of high-purity monosilane and hydrogen is sent to a penger containing a high-purity seed silicon rod heated by electricity, and a high-purity variant silicon rod is There is a so-called seanonce method in which silicon is deposited and grown on top. In addition to requiring a large amount of electricity, this method requires depositing a certain amount of silicon on a seed silicon rod, taking it out, attaching the seed silicon rod again and depositing silicon, and the operation is batch-type. Therefore, even if mass-produced, the manufacturing cost is high.

(2)高純度の無機シラン化合物例えば四温化珪素、ト
リクロルシラン、ジクロル7ラン、モノクロルシランお
よびモノシラン等ヲ粒子径50〜500μの種シリコン
粒子金存在させた流動床反応器に供給し温度4000〜
1,200℃、圧力1〜3気圧の条件で還元及び熱分解
反応させ、反応器内に存在する種シリコンの表面にシリ
コンを析出させる流動床法がある。
(2) High-purity inorganic silane compounds such as tetrawarm silicon, trichlorosilane, dichlorosilane, monochlorosilane, and monosilane are supplied to a fluidized bed reactor in which seed silicon particles with a particle size of 50 to 500 μm are present and heated to a temperature of 4000 μm. ~
There is a fluidized bed method in which reduction and thermal decomposition reactions are carried out at 1,200° C. and a pressure of 1 to 3 atmospheres to deposit silicon on the surface of seed silicon present in a reactor.

これは種シリコン粒を使用するので反応表面積が大きい
ためシリコンの析出生長速度が犬きく、小さい反応容器
で高い生産性が得られるという利点がある一方反応器内
壁にもシリコンが析出生長し長期の連続運転が不可能と
なる欠点がある。又この方法において、反応器材質とし
て石英、炭化珪素又は窒化珪素等を使用した場合には反
応器材質の温度による膨張係数と析出付着したシリコン
の熱膨張係数の相異に寄因して、反応器の昇臨時あるい
は降温時に反応器−が破壊するという致命的欠点がある
Since this method uses seed silicon grains, the reaction surface area is large, so the rate of silicon precipitation and growth is very high.This has the advantage that high productivity can be obtained with a small reaction vessel. The disadvantage is that continuous operation is not possible. In addition, in this method, if quartz, silicon carbide, silicon nitride, etc. are used as the reactor material, the reaction will be delayed due to the difference in the coefficient of expansion due to temperature of the reactor material and the thermal expansion coefficient of the precipitated silicon. A fatal drawback is that the reactor breaks down when the reactor rises or cools.

さらにこれらの方法について説明すると、シーメンス法
および流動床法は高純度のトリクロルシラン、ジクロル
シラン及ヒモノシラン等のシラン類と水素との混合ガス
を原料ガスとして用いるが、トリクロルシランやジクロ
ルシラン等の水素化塩化珪素からシリコンを析出させる
場合、反応生成ガスと析出シリコン固体の間に熱力学的
平衡値が存在し原料ガス全100%シリコンに転換する
ことは出来ない。この転換効率全向上させるには原料ガ
スに水素を混合して原料ガス中の塩素原子と水素原子の
比を不妊<シなければならない。
To further explain these methods, the Siemens method and the fluidized bed method use a mixed gas of hydrogen and silanes such as high-purity trichlorosilane, dichlorosilane, and hismonosilane as a raw material gas, but hydrogen chlorination of trichlorosilane, dichlorosilane, etc. When silicon is precipitated from silicon, there is a thermodynamic equilibrium value between the reaction product gas and the precipitated silicon solid, and it is not possible to convert all of the raw material gas into silicon. In order to fully improve this conversion efficiency, hydrogen must be mixed with the raw material gas to reduce the ratio of chlorine atoms to hydrogen atoms in the raw material gas.

そのため一般に原料水素化塩化珪素100部に対して3
00部〜5.000部程度の水素を混合している。又モ
ノシランの場合にはその分子中に塩素原子がないので熱
力学的平衡値の制約がなく、はぼ100%シリコンに転
換するが、気相分解析出してアモルファス粉状物となっ
てしまい種シリコンの固体表面上に析出成長してこない
。これを避けるには水素を原料ガスに混合して気相分解
反応全抑制する必要があり、一般的に析出原料モノシラ
ンガス100部に対してl、000部〜10,000部
の水素を混合している。このようにシラン類のガスを原
料にして高純度シリコンを製造するには大量の水素ガス
を用いなければならず経済的でなく又、反応に使用した
水素ガスは回収して再使用するとしても反応温度である
700〜1.”a00℃に水素ガスを加熱しなければな
らずこれに多量のエネルギーが必要とする等の問題があ
った。
Therefore, in general, 3 parts per 100 parts of raw material hydrogenated silicon chloride.
About 0.00 to 5.000 parts of hydrogen is mixed. In the case of monosilane, there is no chlorine atom in its molecule, so there is no restriction on thermodynamic equilibrium values, and it converts almost 100% to silicon, but when analyzed in the gas phase, it becomes an amorphous powder and no seeds are formed. It does not precipitate and grow on the solid surface of silicon. To avoid this, it is necessary to completely suppress the gas phase decomposition reaction by mixing hydrogen with the raw material gas.Generally, 1,000 to 10,000 parts of hydrogen is mixed with 100 parts of monosilane gas as the raw material for precipitation. There is. In this way, producing high-purity silicon using silane gases as raw materials requires the use of large amounts of hydrogen gas, which is not economical, and even if the hydrogen gas used in the reaction can be recovered and reused. The reaction temperature is 700-1. ``Hydrogen gas had to be heated to 00°C, which required a large amount of energy.

本発明はこれらの欠点を解決することを目的とするもの
であって、高純度のモノシランを温度1.400℃以上
の反応部域に導入して分解させ、生成した高純度シリコ
ンを溶融体として反応系外に排出させることにより・水
素ガスを原料ガスに混合することなく、原料ガスを完全
にシリコンに、しかも経済的に転換させることができる
高純度シリコンの製造方法を提供しようとするものであ
る。
The purpose of the present invention is to solve these drawbacks by introducing high-purity monosilane into a reaction zone at a temperature of 1.400°C or higher, decomposing it, and using the resulting high-purity silicon as a melt. The purpose is to provide a method for producing high-purity silicon that can completely convert the raw material gas into silicon by discharging it outside the reaction system and without mixing hydrogen gas with the raw material gas, and moreover economically. be.

すなわち、本発明はモノシランを熱分解して、シリコン
を取得する際に反応器の温度1400℃以上の反応部域
にモノシランを供給し熱分解させてシリコン溶融体とし
、これを系外に排出させることを特徴とする。
That is, in the present invention, when monosilane is thermally decomposed to obtain silicon, monosilane is supplied to a reaction zone of a reactor at a temperature of 1400° C. or higher, thermally decomposed to form a silicon melt, and this is discharged from the system. It is characterized by

以下さらに本発明について詳しく説明する、本発明は高
純度モノシランを温度1400℃以上の温度で熱分解さ
せ生成したシリコンを溶融体として取得する方法である
。その反応は次式に従って行われる。
The present invention will be explained in more detail below. The present invention is a method of obtaining silicon as a melt produced by thermally decomposing high-purity monosilane at a temperature of 1400° C. or higher. The reaction is carried out according to the following formula.

5jH4−−9Si+2H2 この式の反応は500℃程度の温度から開始され、又シ
リコンの融点は1400℃であることが従来から知られ
ているが、本発明は原料モノシランに水素を添加しない
ものを用い反応部域の温度を1400℃以上に保持した
反応器にモノシランを供給してモノシランを熱分解し、
生成するシリコンヲ直ちに溶融体として取得する高純度
シリコンの製造方法である。
5jH4--9Si+2H2 The reaction of this formula starts at a temperature of about 500°C, and it has been known that the melting point of silicon is 1400°C, but the present invention uses monosilane as a raw material without adding hydrogen. Monosilane is thermally decomposed by supplying monosilane to a reactor in which the temperature of the reaction zone is maintained at 1400°C or higher,
This is a method for producing high-purity silicon in which the produced silicon is immediately obtained as a melt.

本発明において、原料ガスとしてはモノシランを使用す
るが、水素化塩化シラン例えばトリクロルシラン又はジ
クロルシランは前述した如く、析出反応の熱力学的平衡
収率が低いため多量混入は好ましくないが20モルチ以
下であれば本発明の原料ガスとして使用することができ
る。
In the present invention, monosilane is used as the raw material gas, but as mentioned above, it is not preferable to mix a large amount of hydrogenated chlorinated silane such as trichlorosilane or dichlorosilane because the thermodynamic equilibrium yield of the precipitation reaction is low. If it exists, it can be used as a raw material gas in the present invention.

次に熱分解温度はシリコンの融点以上の温度、好ましく
は1400〜2000℃である。
Next, the thermal decomposition temperature is a temperature higher than the melting point of silicon, preferably 1400 to 2000°C.

1400℃未満ではシリコン溶融体として取得は困難で
あり、2000℃をこえる高温では反応器材質の腐蝕お
よび反応器材質からの不純物質の汚染があり好ましくな
い。
At temperatures below 1400°C, it is difficult to obtain a silicon melt, and at high temperatures exceeding 2000°C, corrosion of the reactor material and contamination with impurities from the reactor material are undesirable.

本発明で使用される反応器は反応温度を1.400℃以
上に保持することが可能であれば何ら反応器の形式に拘
束を受けるものではない。好1]7い反応器の具体例と
しては円筒状縦型反応器で、析出融解したシリコンを捕
集する受器を下部に備えたものである。又反応器材質と
しては1.40’O℃以上に耐える材料例えばグラファ
イト、カーポランダム等が用いられる。
The type of reactor used in the present invention is not restricted in any way as long as the reaction temperature can be maintained at 1.400° C. or higher. A specific example of the reactor is a cylindrical vertical reactor equipped with a receiver at the bottom for collecting precipitated and melted silicon. As the material for the reactor, a material that can withstand temperatures of 1.40'O<0>C or higher, such as graphite or carporundum, is used.

以下図面により不発BAヲさらに詳しく説明する。図面
は本発明の実施例に用いる反応器の断面図である。
The misfiring BA will be explained in more detail below with reference to the drawings. The drawing is a sectional view of a reactor used in an example of the present invention.

図面の符号1は反応器、2はグラファイト発熱体、3は
シリコン受器、4はモノシラン供給管、5はシリコン抜
き出し管、6は排気管、である。
In the drawings, reference numeral 1 is a reactor, 2 is a graphite heating element, 3 is a silicon receiver, 4 is a monosilane supply pipe, 5 is a silicon extraction pipe, and 6 is an exhaust pipe.

まず図面に示すように原料モノシランはモノシラン供給
管4より反応器1に供給される。
First, as shown in the drawing, raw material monosilane is supplied to the reactor 1 through the monosilane supply pipe 4.

モノシランはグラファイト発熱体2により温度1400
℃以上に加熱された反応部域で熱分解されシリコンが析
出されると共に溶融体となる。グラファイト発熱体2に
より加熱されたシリコン受器3に集められ温度1400
℃以上に加熱されたU字管からなるシリコン抜き出し管
5を通じて系外に排出される。又排気ガスは排気管6か
ら系外に排出される。なお排気ガスはモノシランの除害
装置例えば苛性ソーダ水溶液全充填した装置等の中を通
過させると、排気ガス中に含まれる微量の未反応原料ガ
スが吸収除去される。
Monosilane is heated to a temperature of 1400 by graphite heating element 2.
Silicon is thermally decomposed in the reaction zone heated to temperatures above 0.degree. C., and silicon is precipitated and becomes a melt. It is collected in a silicon receiver 3 heated by a graphite heating element 2, and the temperature is 1400.
It is discharged out of the system through a silicon extraction pipe 5 made of a U-shaped tube heated to a temperature above .degree. Further, the exhaust gas is discharged from the exhaust pipe 6 to the outside of the system. Note that when the exhaust gas is passed through a monosilane abatement device, such as a device completely filled with an aqueous caustic soda solution, trace amounts of unreacted raw material gas contained in the exhaust gas are absorbed and removed.

以上説明したように本発明はモノシランを反応器の温度
1400℃以上に加熱された反応部域に供給し熱分解さ
せシリコン溶融体とし、これを反応系外に排出させる方
法である。
As explained above, the present invention is a method in which monosilane is supplied to a reaction zone heated to a temperature of 1400° C. or higher in a reactor, thermally decomposed to form a silicon melt, and this is discharged from the reaction system.

本発明の方法によれば(1)シリコンの融点以上の温度
に反応器を加熱するので、反応器表面にシリコンが析出
成長することはなく順調な長期運転が可能である。(2
)大量の水素で原料モノシランを希釈する必要はなく、
前述したシーメンス法や流動床法に比較して反応器が小
型になるばかりか、大量の水素ガスを反応器に導入し、
700〜1,200℃の反応温度にまで昇温する必要が
なく、大巾な省エネルギーとなる。(3)シーメンス法
や流動床法で製造した多結晶シリコンは常温にまで冷却
してから、単結晶シリコンを製造するために1.400
℃以上の温度で融解しなければならないが、本発明は高
純度シリコン製造工程において溶融体として取得するの
でこれを直接単結晶シリコン製造工程に送ることが出来
る。
According to the method of the present invention, (1) since the reactor is heated to a temperature higher than the melting point of silicon, silicon does not precipitate and grow on the surface of the reactor, and smooth long-term operation is possible. (2
) There is no need to dilute the raw material monosilane with large amounts of hydrogen,
Not only is the reactor smaller than the Siemens method and fluidized bed method mentioned above, but a large amount of hydrogen gas is introduced into the reactor.
There is no need to raise the reaction temperature to 700 to 1,200°C, resulting in significant energy savings. (3) Polycrystalline silicon produced by the Siemens method or fluidized bed method is cooled to room temperature, and then heated to a temperature of 1.400 to produce single crystal silicon.
Although it must be melted at a temperature of .degree. C. or higher, in the present invention, it is obtained as a melt in the high-purity silicon production process, so it can be sent directly to the single-crystal silicon production process.

以下実施例をあけてさらに具体的に本発明の詳細な説明
する。
The present invention will be described in more detail below with reference to Examples.

実施例1 図面に示した反応器を用いたモノシランガスを熱分解し
た。なお反応器1は内径50口高さ1000+wのグラ
ファイトの円筒状もの、又反応器の下部に設けたシリコ
ン受器2は内径300s+w+のものを用いた。
Example 1 Monosilane gas was thermally decomposed using the reactor shown in the drawing. The reactor 1 was a graphite cylinder with an inner diameter of 50 ports and a height of 1000 mm, and the silicon receiver 2 provided at the bottom of the reactor had an inner diameter of 300 mm.

まず反応器1内を十分にアルゴンガスで置換した後、ア
ルゴンガス気流中で反応器1に付帯させたグラファイト
発熱体2を高周波加熱して反応器内部の温度kl、60
0℃に加熱した。温度が安定したことを確かめたのち、
高純度モノシランガスを常温で3t/minの速度でモ
ノシランガス供給管4より反応器1に連続的に導入した
。反応器の排気ガスは排気管6より除害装置に送った。
First, the inside of the reactor 1 is sufficiently replaced with argon gas, and then the graphite heating element 2 attached to the reactor 1 is heated with high frequency in an argon gas stream to raise the temperature inside the reactor to 60 kl.
Heated to 0°C. After confirming that the temperature has stabilized,
High purity monosilane gas was continuously introduced into the reactor 1 from the monosilane gas supply pipe 4 at a rate of 3 t/min at room temperature. The exhaust gas from the reactor was sent to the abatement device through the exhaust pipe 6.

3時間運転ののちシリ・・受器3お゛よびU字型のシリ
・ン抜き出し管5に付帯させたグラファイト発熱体2を
高周波加熱することにより1,500℃に加熱して、析
出融解したシリコンを連続的に抜き出し100時間運転
した。その結果高純度シリコンが平均215.9/hr
で得られた。
After 3 hours of operation, the graphite heating element 2 attached to the silicone receiver 3 and the U-shaped silicone extraction pipe 5 was heated to 1,500°C by high-frequency heating to precipitate and melt. Silicon was continuously extracted and the operation was continued for 100 hours. As a result, high purity silicon averages 215.9/hr
Obtained with.

これを冷却した後、単結晶引上げ法により単結晶シリコ
ンを製造しその抵抗率を測定したところ100 ohm
zであジ、充分に半導体に使用可能な原料であることが
分った。
After cooling this, single crystal silicon was manufactured using the single crystal pulling method and its resistivity was measured and found to be 100 ohm.
It was found that z is a raw material that can be fully used for semiconductors.

実施例2 珪素以外の不純金属化合物全十分に除去、精製した高純
度のヅクロルシラン3.1%およびトリクロルシラン1
.2%を含むモノシランガス3々mlnの速度で反応器
1に連続的に供給する以外は実施例1と同様に行った。
Example 2 Highly purified duchlorosilane 3.1% and trichlorosilane 1, which were purified by thoroughly removing all impurity metal compounds other than silicon.
.. Example 1 was carried out in the same manner as in Example 1, except that monosilane gas containing 2% was continuously fed to reactor 1 at a rate of 3 mL.

その結果平均205 g/hr  の速度で高純度シリ
コンが得られた。これを冷却した後単結晶引上げ法によ
り単結晶シリコン全製造し、その抵抗率を測定したとこ
ろ]、 00 ohmαであり、充分に半導体に使用可
能な原料であることが分った。
As a result, high purity silicon was obtained at an average rate of 205 g/hr. After cooling this, a single crystal silicon was completely produced by a single crystal pulling method, and its resistivity was measured], and it was found that it was 00 ohmα, and was a raw material that could be sufficiently used for semiconductors.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例に用いる装置の断面図である。 付号 1・・・反応器   2・・・グラファイト発熱体3・
・・シリコン受器  4・・・モノシランガス供給管5
・・・シリコン抜き出し管 6・・・排気管 手  続  補  正  書 1、事イ1の表示 昭11157年特許19A第228985号2、発明の
名称 高純度シリコンの製造方法 3、補正をする者 事件との関係  特許出願人 4、補正の対象 明細書の発明の詳細な説明の欄 5、補正の内容 明細書第1頁第20行「ベンジャ−」を「ペルジャー」
と訂正する。
The drawing is a cross-sectional view of an apparatus used in an embodiment of the present invention. Number 1... Reactor 2... Graphite heating element 3.
...Silicon receiver 4...Monosilane gas supply pipe 5
...Silicon extraction pipe 6...Exhaust pipe Procedure Amendment 1, Indication of matter A 1, 1982 Patent No. 19A No. 228985 2, Title of invention Process for manufacturing high purity silicon 3, Case of person making amendment Relationship with Patent applicant 4, Detailed explanation of the invention column 5 of the specification subject to amendment, Contents of the amendment, page 1, line 20, "Benger" is replaced with "Pelger"
I am corrected.

Claims (1)

【特許請求の範囲】[Claims] 高純度モノシランを熱分解してシリコンを取得する際に
、反応器の温度1400℃以上の反応部域にモノシラン
を供給して熱分解させ、シリコン溶融体とし、これ全反
応系外に排出させることを特徴とする高純度シリコンの
製造方法。
When obtaining silicon by thermally decomposing high-purity monosilane, monosilane is supplied to the reaction zone of the reactor at a temperature of 1,400°C or higher and is thermally decomposed to form a silicon melt, which is then completely discharged from the reaction system. A method for producing high-purity silicon characterized by:
JP22898582A 1982-12-24 1982-12-24 Production of high purity silicon Pending JPS59121109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22898582A JPS59121109A (en) 1982-12-24 1982-12-24 Production of high purity silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22898582A JPS59121109A (en) 1982-12-24 1982-12-24 Production of high purity silicon

Publications (1)

Publication Number Publication Date
JPS59121109A true JPS59121109A (en) 1984-07-13

Family

ID=16884958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22898582A Pending JPS59121109A (en) 1982-12-24 1982-12-24 Production of high purity silicon

Country Status (1)

Country Link
JP (1) JPS59121109A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106338A1 (en) * 2002-06-18 2003-12-24 株式会社トクヤマ Reaction apparatus for producing silicon
US6784079B2 (en) 2001-06-06 2004-08-31 Tokuyama Corporation Method of manufacturing silicon
US6861144B2 (en) 2000-05-11 2005-03-01 Tokuyama Corporation Polycrystalline silicon and process and apparatus for producing the same
DE102007035757A1 (en) * 2007-07-27 2009-01-29 Joint Solar Silicon Gmbh & Co. Kg Process and reactor for the production of silicon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6861144B2 (en) 2000-05-11 2005-03-01 Tokuyama Corporation Polycrystalline silicon and process and apparatus for producing the same
US6784079B2 (en) 2001-06-06 2004-08-31 Tokuyama Corporation Method of manufacturing silicon
WO2003106338A1 (en) * 2002-06-18 2003-12-24 株式会社トクヤマ Reaction apparatus for producing silicon
US7413718B2 (en) 2002-06-18 2008-08-19 Tokuyama Corporation Reaction apparatus for producing silicon
DE102007035757A1 (en) * 2007-07-27 2009-01-29 Joint Solar Silicon Gmbh & Co. Kg Process and reactor for the production of silicon

Similar Documents

Publication Publication Date Title
EP1437327B1 (en) Method for producing silicon
US4084024A (en) Process for the production of silicon of high purity
JP4778504B2 (en) Method for producing silicon
US3933985A (en) Process for production of polycrystalline silicon
CN101460398B (en) Production of silicon through a closed-loop process
EP2070871B1 (en) Process for production of multicrystal silicon and facility for production of multicrystal silicon
JP4038110B2 (en) Method for producing silicon
JP2000511154A (en) Preparation method of polysilicon using exothermic reaction
JPS6228083B2 (en)
US4318942A (en) Process for producing polycrystalline silicon
JPWO2010090203A1 (en) Production method of polycrystalline silicon
KR20040025590A (en) Deposition of a solid by thermal decomposition of a gaseous substance in a cup reactor
JPH0317768B2 (en)
JP2003054933A (en) Reaction apparatus for producing silicon
GB1570131A (en) Manufacture of silicon
JPS59121109A (en) Production of high purity silicon
CN101186299A (en) Technique for producing high purity silicon by fluidized bed device
JP4639004B2 (en) Silicon manufacturing apparatus and manufacturing method
JPS61291410A (en) Production of silicon
JPH02164711A (en) Manufacture of high-purity boron
JP4099322B2 (en) Method for producing silicon
JP2003002626A (en) Reaction apparatus for producing silicon
JPH01197309A (en) Production of granular silicon
JPS63117906A (en) Member for production apparatus of polycrystalline silicon
CN103626184B (en) A kind of preparation method of high-purity liquid polysilicon