JPS63117906A - Member for production apparatus of polycrystalline silicon - Google Patents

Member for production apparatus of polycrystalline silicon

Info

Publication number
JPS63117906A
JPS63117906A JP26497286A JP26497286A JPS63117906A JP S63117906 A JPS63117906 A JP S63117906A JP 26497286 A JP26497286 A JP 26497286A JP 26497286 A JP26497286 A JP 26497286A JP S63117906 A JPS63117906 A JP S63117906A
Authority
JP
Japan
Prior art keywords
silicon
silicon nitride
polycrystalline silicon
nitride film
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26497286A
Other languages
Japanese (ja)
Inventor
Tatsuhiko Motomiya
本宮 達彦
Hiroyuki Watabe
弘行 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP26497286A priority Critical patent/JPS63117906A/en
Publication of JPS63117906A publication Critical patent/JPS63117906A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To prolong the service life of members and to prevent deterioration of the purity of polycrystalline silicon by providing gas-impermeable silicon nitride film on an internal surface of a base material which forms a fluidized reaction tube member for production apparatus of polycrystalline silicon is formed. CONSTITUTION:The gas-impermeable silicon nitride film with >=10mum thickness is provided on the internal surface of the base material. Silicon carbide, silicon - silicon carbide, silicon nitride, silicon nitride - silicon carbide, quartz glass, carbon, zirconia and alumina are exemplified as the base material. The above- mentioned silicon nitride film is formed by a chemical vapor deposition from a mixed gas of silicon tetrachloride - ammonia - hydrogen or a mixed gas of silicon tetrachloride - nitrogen - hydrogen.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多結晶シリコン製造装置用部材、特には1−リ
クロロシランの熱分解、水素還元を流動床式の反応炉に
おいて行わせるために使用される反応炉として好適とさ
れる多結晶シリコン製造装置用部材に関するものである
Detailed Description of the Invention (Industrial Application Field) The present invention is a member for polycrystalline silicon manufacturing equipment, particularly for use in thermal decomposition and hydrogen reduction of 1-lichlorosilane in a fluidized bed reactor. The present invention relates to a member for a polycrystalline silicon manufacturing apparatus that is suitable as a reactor for producing polycrystalline silicon.

(従来の技術) 半導体の多結晶シリコンの製造は通常トリクロロシラン
(S j、 HCQa)の熱分解、水素還元によるエピ
タキシャル成長によって行われている。
(Prior Art) Semiconductor polycrystalline silicon is usually manufactured by thermal decomposition of trichlorosilane (S j , HCQa) and epitaxial growth by hydrogen reduction.

この方法は石英ガラスのペルジャーの中に高純度の多結
晶シリコン捧を設置して通電によってこれを1,000
−1..200℃に加熱し、こ〜にトリクロロシランと
水素ガスとの混合ガスを流し、次式 %式%(1) による熱分解、水素還元によって生成したシリコンをシ
リコン棒上に析出させるという方法で行われており、こ
の方法にはシリコン捧とこれに付着するシリコンが反応
容器とは非接触であるために比較的高純度の多結晶シリ
コンが得られるという利点があるが、これにはシリコン
の析出速度が遅いこと、またこれがバッチ式であるため
に生産性がわるく、したがってコストが高くなるという
不利がある。
In this method, a high-purity polycrystalline silicon plate is placed inside a quartz glass Pelger, and it is heated to 1,000 m
-1. .. The process was carried out by heating to 200°C, flowing a mixed gas of trichlorosilane and hydrogen gas, and depositing silicon produced by thermal decomposition and hydrogen reduction on a silicon rod according to the following formula (% formula (1)). This method has the advantage that polycrystalline silicon of relatively high purity can be obtained because the silicon substrate and the silicon attached to it are not in contact with the reaction vessel, but this method also It has the disadvantages of slow speed and, because it is a batch process, low productivity and therefore high cost.

そのため、この多結晶シリコンの製造については流動床
式反応炉を使用した連続式製造法の開発が進められてい
る。このものは例えば第1図に示したように外部加熱源
2で1,000〜1,200℃に加熱されている竪型反
応管1の上部の種結晶槽3から多結晶シリコンの種結晶
を反応管中に投入すると共に、反応管下部のガス送入口
4からトリクロロシランと水素ガスとの混合ガスを送入
して反応管内に種結晶を流動状に保持させ、排ガスをガ
ス出口5から外部に放出するようにしたものであり、こ
れによればトリクロロシランの熱分解、還元で得られた
シリコンの析出によって大きくなり、重くなった種結晶
は多結晶シリコン粒となって反応管下部の多結晶シリコ
ン槽6に落下するので、これを回収すれば容易に多結晶
シリコンを得ることができる。この方法は種結晶を連続
的に送入するだけで連続化することができるし、シリコ
ンの析出速度も速いので、結果として多結晶シリコンを
安価に得ることができるけれども、これには反応温度が
高いためにこの反応管を石英ガラスとすると失透が起こ
り、割れの原因となるので石英ガラスを使用することが
できず、耐熱性のすぐれた炭化けい素管が使用されるの
であるが、これには種結晶が流動時に管壁に接触したと
きの摩擦によって炭化けい素が多結晶シリコン中に微量
混入して目的とする多結晶シリコンの純度が低下すると
いう不利がある。
Therefore, for the production of polycrystalline silicon, a continuous production method using a fluidized bed reactor is being developed. For example, as shown in FIG. 1, a polycrystalline silicon seed crystal is grown from a seed crystal tank 3 at the top of a vertical reaction tube 1 which is heated to 1,000 to 1,200°C by an external heating source 2. At the same time, a mixed gas of trichlorosilane and hydrogen gas is fed into the reaction tube from the gas inlet 4 at the bottom of the reaction tube to keep the seed crystals in a fluid state inside the reaction tube, and the exhaust gas is released from the gas outlet 5 to the outside. According to this method, the seed crystals, which have become larger and heavier due to the precipitation of silicon obtained by thermal decomposition and reduction of trichlorosilane, turn into polycrystalline silicon particles and form polycrystalline silicon grains at the bottom of the reaction tube. Since it falls into the crystalline silicon tank 6, polycrystalline silicon can be easily obtained by collecting it. This method can be made continuous by simply feeding seed crystals continuously, and the silicon precipitation rate is fast, so polycrystalline silicon can be obtained at low cost, but this method requires a reaction temperature. Because of the high heat resistance, quartz glass cannot be used for this reaction tube because it causes devitrification and cracks, so silicon carbide tubes, which have excellent heat resistance, are used. This method has the disadvantage that trace amounts of silicon carbide are mixed into the polycrystalline silicon due to friction when the seed crystal comes into contact with the tube wall during flow, reducing the purity of the desired polycrystalline silicon.

(発明の構成) 本発明はこのような不利を解決した多結晶シリコン製造
装置用部Hに関するものであり、これは基材内面に膜厚
が1107z以上であるガス不透過性の窒化けい素膜を
設けてなることを特徴とするものである。
(Structure of the Invention) The present invention relates to a part H for a polycrystalline silicon manufacturing apparatus that solves the above-mentioned disadvantages. It is characterized by providing the following.

すなわち、本発明者らは流動床式の高純度多結晶シリコ
ン製造用に使用される反応管材料について種々検討した
結果、これを適宜の基材の表面に不純物量を調節したガ
ス不透過性の窒化けい素膜を設けたものとすれば目的と
する多結晶シリコン中にこの窒化けい素が混入してもそ
の純度が低下しないことを見出し、この窒化けい素膜に
許容される不純物量などについての研究を進めて本発明
を完成させた。
That is, as a result of various studies on reaction tube materials used for fluidized-bed production of high-purity polycrystalline silicon, the present inventors prepared gas-impermeable materials on the surface of an appropriate base material with a controlled amount of impurities. We discovered that if a silicon nitride film is provided, the purity will not decrease even if silicon nitride mixes into the target polycrystalline silicon, and we have discussed the allowable amount of impurities in this silicon nitride film. The present invention was completed by conducting research on the following.

本発明の多結晶シリコン製造装置用部材としての流動床
式反応管を形成する基材としては炭化けい素、けい素−
炭化けい素、窒化けい素、窒化けい素−炭化けい素、石
英ガラス、炭素、ジルコニア、アルミナなどが例示され
るが、この選択に当ってはその使用条件、純度、熱膨張
などを考慮する必要がある。これらの中では耐熱性、純
度、熱膨張率から炭化けい素、けい素−炭化けい素、窒
化けい素、窒化けい素−炭化けい素、石英ガラスが好ま
しいものとされる。この基材は後記の方法で窒化けい素
膜が設けられるものであり、この窒化けい素膜を高純度
のものとするためには基材からの汚染を防ぐ必要があり
、したがってこの基材も高純度のものとする必要がある
ので、炭素質のものについては1,800℃前後におけ
る塩化水素やフッ化水素ガスを用いた純化を行なったも
のとし、炭化けい素、けい素−炭化けい素、窒化けい素
、窒化けい素−炭化けい素についても1,200℃程度
での塩酸処理をしたものとすることがよい。しかし、ジ
ルコニヤやアルミナは高純度化が難しく、ゾル−ゲル法
で製造したものは高価になるという不利がある。
The base material for forming the fluidized bed reaction tube as a member for the polycrystalline silicon manufacturing apparatus of the present invention is silicon carbide, silicon-
Examples include silicon carbide, silicon nitride, silicon nitride-silicon carbide, quartz glass, carbon, zirconia, alumina, etc., but when making this selection, it is necessary to consider the usage conditions, purity, thermal expansion, etc. There is. Among these, silicon carbide, silicon-silicon carbide, silicon nitride, silicon nitride-silicon carbide, and quartz glass are preferred from the viewpoint of heat resistance, purity, and coefficient of thermal expansion. This base material is provided with a silicon nitride film using the method described below, and in order to make this silicon nitride film highly pure, it is necessary to prevent contamination from the base material, so this base material is also Since it is necessary to have a high purity, carbonaceous materials are purified using hydrogen chloride or hydrogen fluoride gas at around 1,800°C. , silicon nitride, and silicon nitride-silicon carbide are also preferably treated with hydrochloric acid at about 1,200°C. However, zirconia and alumina have the disadvantage of being difficult to achieve high purity, and those produced by the sol-gel method are expensive.

この基材はついでその表面に窒化けい素膜を設けること
が必要とさオしるが、この窒化けい素膜は流動床式反応
管中で流動している種結晶と接触するので高純度のもの
とする必要がある。したがって、この窒化けい素につい
ては蒸留等で充分精製した原料を使用する必要があるが
、このものは鉄、銅の含有猷が110PP以下で、ナ1
−リウム、カリウム、リチウムの含有」1(:が1.P
Pm以下のものとすることがよい。また、この窒化けい
素膜は流動している種結晶と接触するのである程度以上
の膜厚をもつものとする必要があり、これは少なくとも
]、 O/111とすることがよいが、50庫以上とす
ることがよい。
This substrate then needs to be coated with a silicon nitride film on its surface, and since this silicon nitride film comes into contact with the seed crystal flowing in the fluidized bed reaction tube, it is possible to obtain high purity. It is necessary to make it a thing. Therefore, for this silicon nitride, it is necessary to use a raw material that has been sufficiently purified by distillation, etc., but this material contains less than 110 PP of iron and copper, and is
- Contains lithium, potassium, and lithium” 1 (: is 1.P
It is preferable to set it to below Pm. In addition, since this silicon nitride film comes into contact with the flowing seed crystal, it needs to have a certain thickness or more, and this should be at least O/111, but it should be at least 50 O/111. It is better to

この窒化けい素膜の形成はどのような方法で行なっても
よいが、通常は公知の化学蒸着(以下CVDと略記する
)で行なえばよい。このCVD法による窒化けい素の生
成はけい素と窒素を含むガス系を使用すればよいが、通
常は四塩化けい素−アンモニア−水素系、四塩化けい素
−窒素−水素系の混合ガスを使用し、減圧下に1,20
0〜1 、4. O0℃に加熱すればよい。なお、この
窒化けい素膜をCVD法で形成させるためには第2図に
示したように外壁部に加熱用の高周波コイル12を配置
した石英ガラス製の反応管11の中に予め高温酸処理し
た炭化けい素質管13を設置し、高周波コイル12に高
周波を印加し黒鉛加熱体14を加熱して炉内を1,35
0℃程度に加熱すると共にガス出口15から減圧装置を
用いて炉内空気を吸引して炉内を10ト一ル程度に減圧
してから、こ\にガス入口16から四塩化けい素−アン
モニア−水素の混合ガスを流入させ、この化学反応で生
成した窒化けい素を炭化けい素質管13の表面に膜体と
してCVDさせるようにすればよし1゜ このようにして得られた上記した基材に窒化けい素膜を
設けた本発明の多結晶シリコン製造装置用部材は、これ
を流動床式の多結晶シリコン製造装置における反応管と
して使用すると、この窒化けい素膜が耐熱性のすぐれた
固いものであることからこのものは2,000時間以」
二経過してもなお1分な耐久性を示すので長時間の連続
運転を行なわせることができるという有利性をもつもの
である。また、この装置で作られた多結晶シリコン粒は
流動床中における窒化けい素膜との接触によって数PP
bオーダーの窒化けい素を含んだものとなるが、この窒
化けい素は上記したようにこ5に含まれる不純物量が少
なく、これがけい素と窒素の化合物でこの窒素は溶融シ
リコン(多結晶シリコン)から単結晶シリコンを引き上
げるときに大気中に揮散されてしまうので、単結晶用と
しては全く問題にならない、1むしろこの窒素は単結晶
シリコン引き」二げ用容器(石英ガラスるつぼ)中のシ
7一 リコン融液とのスリップ防止剤となって、石英ガラスの
溶出を抑制するという作用をもち、単結晶の引き上げを
安定させる効果を与え、この面からも好ましいものとさ
れる利点を有するものである。
This silicon nitride film may be formed by any method, but generally known chemical vapor deposition (hereinafter abbreviated as CVD) may be used. Silicon nitride can be produced by this CVD method using a gas system containing silicon and nitrogen, but usually a mixed gas of silicon tetrachloride-ammonia-hydrogen system or silicon tetrachloride-nitrogen-hydrogen system is used. 1,20 ml under reduced pressure
0-1, 4. It may be heated to 00°C. In order to form this silicon nitride film by the CVD method, as shown in FIG. The silicon carbide tube 13 is installed, and a high frequency is applied to the high frequency coil 12 to heat the graphite heating element 14 to heat the inside of the furnace.
After heating to about 0°C and reducing the pressure inside the furnace to about 10 torr by sucking the air inside the furnace using a pressure reducing device from the gas outlet 15, silicon tetrachloride-ammonia is added from the gas inlet 16. - The above-mentioned base material obtained in this way can be made by introducing a hydrogen mixed gas and CVDing the silicon nitride produced by this chemical reaction as a film on the surface of the silicon carbide tube 13. When the member for polycrystalline silicon manufacturing equipment of the present invention is provided with a silicon nitride film on its surface, when it is used as a reaction tube in a fluidized bed type polycrystalline silicon manufacturing equipment, the silicon nitride film becomes hard and has excellent heat resistance. This product has a lifespan of more than 2,000 hours because it is a product.
It has the advantage that it can be operated continuously for a long time because it still shows durability of 1 minute even after 2 hours. In addition, the polycrystalline silicon grains made with this device have several PPs due to contact with the silicon nitride film in the fluidized bed.
This silicon nitride contains silicon nitride of order b, but as mentioned above, this silicon nitride contains a small amount of impurities, and this is a compound of silicon and nitrogen, and this nitrogen is molten silicon (polycrystalline silicon). ) When single-crystal silicon is pulled up, it is volatilized into the atmosphere, so it is not a problem at all for single-crystal silicon.In fact, this nitrogen is vaporized into the atmosphere when pulling single-crystal silicon from a quartz glass crucible. 7- It acts as an anti-slip agent with the licon melt, has the effect of suppressing the elution of quartz glass, and has the effect of stabilizing the pulling of single crystals, and has the advantage of being preferred from this point of view as well. It is.

つぎに本発明の実施例をあげる。Next, examples of the present invention will be given.

実施例 予め1,200℃でHCQ−8iCQ4−H,系ガスで
2時間純化処理した直径230++wnX厚さ10■×
長さ2,000III11の炭化けい素管を第2図で示
したCVD炉内に設置し、高周波加熱で1,350℃に
昇温すると共に炉内を減圧装置を用いて10トールにま
で減圧してから、こ\に四塩化けい素20c、c、/分
、水素ガス2Q/分を流入させて5時間反応させたとこ
ろ、炭化けい素管の表面に窒化けい素膜が50庫の厚さ
で均一に設けられたものが得られた。
Example: Diameter: 230++wn x Thickness: 10mm
A silicon carbide tube with a length of 2,000III11 was placed in the CVD furnace shown in Figure 2, and the temperature was raised to 1,350°C using high-frequency heating, and the pressure inside the furnace was reduced to 10 Torr using a pressure reducing device. After that, silicon tetrachloride 20 c, c/min and hydrogen gas 2 Q/min were flowed into the tube and reacted for 5 hours, resulting in a silicon nitride film with a thickness of 50 cm on the surface of the silicon carbide tube. A uniformly distributed product was obtained.

ついでこの窒化けい素膜を設けた炭化けい素管を第1図
に示した流動床式多結晶シリコン製造装置の反応管とし
、炉内温度を1,150℃としてこの下部からトリクロ
ロシラン2.77kg/時、水素ガス]、、07Nrn
’/時を流入させ、上部からは粒径が0.3〜0.5w
nの種結晶シリコンをo、。
Next, the silicon carbide tube provided with this silicon nitride film was used as a reaction tube of the fluidized bed type polycrystalline silicon production apparatus shown in Fig. 1, and the temperature inside the furnace was set to 1,150°C, and 2.77 kg of trichlorosilane was injected from the bottom of the tube. /hour, hydrogen gas],,07Nrn
'/hour flows in, and the particle size is 0.3~0.5w from the top.
Seed silicon with n and o.

08kg/時で落下させてこれを」1記のガス流で流動
させたところ、種結晶の成長で粒径が1〜2nwnとな
った多結晶シリコン粒をiokg/時で得ることができ
、この反応は2,000時間後も通常のまNで推移した
ので反応を停止させた。
By dropping it at a rate of 0.8 kg/hour and flowing it with the gas flow described in 1., polycrystalline silicon grains with a grain size of 1 to 2 nwn due to the growth of seed crystals could be obtained at a rate of iokg/hour. The reaction remained normal even after 2,000 hours, so the reaction was stopped.

つぎにこのようにして多結晶シリコンを引き上げ法で単
結晶シリコンとしたところ、歩留りは95%で従来法の
ものど同じ結果を示し、このシリコンについての純度、
比抵抗をしらべたところ。
Next, when the polycrystalline silicon was made into single crystal silicon by the pulling method, the yield was 95%, the same result as the conventional method, and the purity of this silicon was
I checked the resistivity.

この不純物μはB O,21+)llb、 P O,0
5PPb、A Q O,、OiP’Pb、  A s 
O,01PPb、  C<0.05P円)と少なく、比
抵抗値はPI、500Ω・Gであった・ 比較例 実施例で使用した予め高温で酸処理した炭化けい素管を
流動床式多結晶シリコン製造装置の反応管とし、実施例
と同じ条件で多結晶シリコンを作ったところ1粒径1〜
211111の多結晶シリコン粒を10kg/時で得る
ことができ、この反応は2,000時そのまN継続する
ことができたが、このようにして得た多結晶シリコンを
引き上げ法で単結晶シリコンとしたところ、歩留りは5
5%とわるく、このシリコンについての純度、比抵抗を
測定したところ、この不純物量はB5.9PPb、Po
This impurity μ is B O,21+)llb, P O,0
5PPb, A Q O,, OiP'Pb, A s
O,01PPb, C<0.05P yen), and the specific resistance value was PI, 500Ω・G. Comparative Examples The silicon carbide tubes used in the examples, which had been pretreated with acid at high temperature, were heated to a fluidized bed polycrystalline tube. When polycrystalline silicon was made using the reaction tube of a silicon manufacturing device under the same conditions as in the example, the grain size was 1 to 1.
We were able to obtain polycrystalline silicon grains of 211111 at a rate of 10 kg/hour, and this reaction continued for 2,000 hours. As a result, the yield is 5
When we measured the purity and specific resistance of this silicon, we found that this impurity amount was B5.9PPb, Po
.

40PPb、 A Q 3.7PPb、 A s <0
.04PPb、 CO,50PPbと多く、比抵抗値も
P35Ω・σであった・
40PPb, A Q 3.7PPb, A s <0
.. 04PPb, CO, 50PPb, and the specific resistance value was P35Ω・σ・

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流動床式反応炉を使用した多結晶シリコンの連
続式製造装置の縦断面図、第2図は本発明の多結晶シリ
コン製造装置用部材をCVD法で作るための反応装置の
縦断面図を示したものである。
Fig. 1 is a longitudinal cross-sectional view of a continuous polycrystalline silicon production apparatus using a fluidized bed reactor, and Fig. 2 is a longitudinal cross-section of a reaction apparatus for producing the polycrystalline silicon production apparatus components of the present invention by the CVD method. This shows a top view.

Claims (1)

【特許請求の範囲】 1、基材内面に膜厚が10μm以上であるガス不透過性
の窒化けい素膜を設けてなることを特徴とする多結晶シ
リコン製造装置用部材。 2、基材が炭化けい素、けい素−炭化けい素、窒化けい
素、窒化けい素−炭化けい素、石英ガラス、炭素、ジル
コニア、アルミナで作られたものである特許請求の範囲
第1項記載の多結晶シリコン製造装置用部材。 3、窒化けい素膜が四塩化けい素−アンモニア−水素系
、四塩化けい素−窒素−水素系のガス混合物からの化学
蒸着処理によって作られる特許請求の範囲第1項記載の
多結晶シリコン製造装置用部材。
[Scope of Claims] 1. A member for a polycrystalline silicon manufacturing apparatus, characterized in that a gas-impermeable silicon nitride film having a film thickness of 10 μm or more is provided on the inner surface of a base material. 2. Claim 1, wherein the base material is made of silicon carbide, silicon-silicon carbide, silicon nitride, silicon nitride-silicon carbide, quartz glass, carbon, zirconia, or alumina. The member for polycrystalline silicon manufacturing equipment described above. 3. Polycrystalline silicon production according to claim 1, wherein the silicon nitride film is produced by chemical vapor deposition from a silicon tetrachloride-ammonia-hydrogen gas mixture or a silicon tetrachloride-nitrogen-hydrogen gas mixture. Equipment parts.
JP26497286A 1986-11-07 1986-11-07 Member for production apparatus of polycrystalline silicon Pending JPS63117906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26497286A JPS63117906A (en) 1986-11-07 1986-11-07 Member for production apparatus of polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26497286A JPS63117906A (en) 1986-11-07 1986-11-07 Member for production apparatus of polycrystalline silicon

Publications (1)

Publication Number Publication Date
JPS63117906A true JPS63117906A (en) 1988-05-21

Family

ID=17410768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26497286A Pending JPS63117906A (en) 1986-11-07 1986-11-07 Member for production apparatus of polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPS63117906A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501062A (en) * 1989-04-13 1991-03-07 エンドレス ウント ハウザー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー pressure sensor
US5733610A (en) * 1988-06-06 1998-03-31 Research Development Corporation Of Japan Atmospheric pressure plasma reaction method of forming a hydrophobic film
JP2006124230A (en) * 2004-10-28 2006-05-18 Tosoh Quartz Corp Vessel for melting silicon
JP2008184365A (en) * 2007-01-30 2008-08-14 Ulvac Japan Ltd Manufacturing method of silicon
US20100215562A1 (en) * 2009-02-26 2010-08-26 Siliken Chemicals S.L. Fluidized Bed Reactor for Production of High Purity Silicon
US8875728B2 (en) 2012-07-12 2014-11-04 Siliken Chemicals, S.L. Cooled gas distribution plate, thermal bridge breaking system, and related methods

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733610A (en) * 1988-06-06 1998-03-31 Research Development Corporation Of Japan Atmospheric pressure plasma reaction method of forming a hydrophobic film
JPH03501062A (en) * 1989-04-13 1991-03-07 エンドレス ウント ハウザー ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニー pressure sensor
JP2006124230A (en) * 2004-10-28 2006-05-18 Tosoh Quartz Corp Vessel for melting silicon
JP4712347B2 (en) * 2004-10-28 2011-06-29 東ソー・クォーツ株式会社 Silicon melting container
JP2008184365A (en) * 2007-01-30 2008-08-14 Ulvac Japan Ltd Manufacturing method of silicon
US20100215562A1 (en) * 2009-02-26 2010-08-26 Siliken Chemicals S.L. Fluidized Bed Reactor for Production of High Purity Silicon
US20110027160A1 (en) * 2009-02-26 2011-02-03 Siliken Chemicals S.L. Fluidized bed reactor for production of high purity silicon
US8158093B2 (en) * 2009-02-26 2012-04-17 Siliken Chemicals, S.L. Fluidized bed reactor for production of high purity silicon
US8168123B2 (en) * 2009-02-26 2012-05-01 Siliken Chemicals, S.L. Fluidized bed reactor for production of high purity silicon
US8875728B2 (en) 2012-07-12 2014-11-04 Siliken Chemicals, S.L. Cooled gas distribution plate, thermal bridge breaking system, and related methods

Similar Documents

Publication Publication Date Title
US4444812A (en) Combination gas curtains for continuous chemical vapor deposition production of silicon bodies
CN105209671B (en) Vanadium doping SiC single crystal and its method
JP3122643B2 (en) Method for producing high-purity silicon particles
US4710260A (en) Deposition of silicon at temperatures above its melting point
US4547258A (en) Deposition of silicon at temperatures above its melting point
EP0082343B1 (en) Process for preparing silicon nitride powder
CA1178177A (en) Process for increasing silicon thermal decomposition deposition rates from silicon halide-hydrogen reaction gases
WO1991017952A1 (en) Process for producing crystalline silicon ingot in a fluidized bed reactor
JPS63117906A (en) Member for production apparatus of polycrystalline silicon
US4664944A (en) Deposition method for producing silicon carbide high-temperature semiconductors
KR970007653B1 (en) High purity doping alloys
US5211801A (en) Method for manufacturing single-crystal silicon carbide
GB1570131A (en) Manufacture of silicon
JPH0317768B2 (en)
US5013604A (en) Preparation of high purity boron
US4170667A (en) Process for manufacturing pure polycrystalline silicon
JPH06127923A (en) Fluidized bed reactor for producing polycrystalline silicon
WO2001048277A1 (en) Method and apparatus for producing single crystal of silicon carbide
JP4702712B2 (en) Tubular SiC molded body and method for producing the same
JPH06127922A (en) Fluidized bed reactor for producing polycrystalline silicon
JPS59121109A (en) Production of high purity silicon
KR850001945B1 (en) Method for producing semiconductor grade silicon
JPS6111885B2 (en)
JPH06127925A (en) Heat resistant cylindrical body, reaction tube for production of polycrystalline silicon and its production
JPH06127915A (en) Fluidized bed reactor for producing polycrystalline silicon