JPH06127925A - Heat resistant cylindrical body, reaction tube for production of polycrystalline silicon and its production - Google Patents
Heat resistant cylindrical body, reaction tube for production of polycrystalline silicon and its productionInfo
- Publication number
- JPH06127925A JPH06127925A JP30485492A JP30485492A JPH06127925A JP H06127925 A JPH06127925 A JP H06127925A JP 30485492 A JP30485492 A JP 30485492A JP 30485492 A JP30485492 A JP 30485492A JP H06127925 A JPH06127925 A JP H06127925A
- Authority
- JP
- Japan
- Prior art keywords
- cylindrical body
- silicon
- element pieces
- heat resistant
- production
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/021—Preparation
- C01B33/027—Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は耐熱性筒体、多結晶シリ
コン製造用反応管及びそれらの製造方法に関し、詳しく
は、特に半導体製造用の粒状多結晶シリコンを流動層法
により製造する際に用いられる流動層反応器として好適
な耐熱性筒体及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-resistant cylindrical body, a reaction tube for producing polycrystalline silicon, and a method for producing the same, and more particularly, when producing granular polycrystalline silicon for producing semiconductors by a fluidized bed method. The present invention relates to a heat-resistant cylinder suitable as a fluidized bed reactor used and a method for producing the same.
【0002】[0002]
【従来の技術】従来、多結晶シリコンは、ハロゲン化シ
ランやモノシラン等のシラン化合物の熱分解により生成
するシリコンをシリコン棒上に析出させる、いわゆるジ
ーメンス法で主として製造されてきた。この方法は、通
電加熱したシリコン棒上にシラン化合物を接触させ、そ
の熱分解により生成したシリコンをシリコン棒上に析出
させるものである。ハロゲン化シランの場合、シリコン
棒は抵抗加熱で約1100〜1200℃に加熱され、そ
の上にシリコンが析出するが、石英ガラス製ベルジャー
型反応器の内壁は、約300℃に冷却され、内壁へのシ
リコン析出が防止されている。そのため、このジーメン
ス法は、加熱に要するエネルギーのほとんどが冷却によ
り失われる熱損失の大きいプロセスである。また、この
方法では析出面積が小さいために、時間当たりのシリコ
ン生産量は少なく、この点からも単位シリコン生産量当
りに要するエネルギー消費量が多いという欠点を有して
いる。更に、この方法は、シリコン棒がある程度の太さ
になった時点で回収し、再び新しいものと交換するバッ
チ式であり、大量生産するためには設備を増やさなけれ
ばならず、設備コストが大きいという不利な点を有して
いる。2. Description of the Related Art Conventionally, polycrystalline silicon has been mainly produced by a so-called Siemens method in which silicon produced by thermal decomposition of a silane compound such as halogenated silane or monosilane is deposited on a silicon rod. In this method, a silane compound is brought into contact with a silicon rod that has been electrically heated, and silicon produced by thermal decomposition of the silane compound is deposited on the silicon rod. In the case of halogenated silane, the silicon rod is heated to about 1100 to 1200 ° C. by resistance heating, and silicon is deposited on it, but the inner wall of the quartz glass bell jar reactor is cooled to about 300 ° C. Of silicon is prevented. Therefore, the Siemens method is a process in which most of the energy required for heating is lost due to cooling, resulting in large heat loss. In addition, this method has a drawback in that the amount of silicon produced per unit time is small because the deposition area is small, and from this point also the amount of energy consumed per unit amount of silicon produced is large. Furthermore, this method is a batch method in which when a silicon rod becomes thick to a certain extent, it is collected and replaced again with a new one, and therefore equipment has to be increased for mass production, resulting in a large equipment cost. It has the disadvantage.
【0003】これらの欠点を克服するために、流動化さ
せたシリコン粒子上にシラン化合物含有ガスを接触さ
せ、その粒子上にシリコンを析出させる方法が提案され
ている。この流動層法によると、析出面積が大きく、エ
ネルギーコストを低く押えることができ、また連続的に
シリコン粒子を製造、回収できることから設備コストも
低くできるという利点がある。In order to overcome these drawbacks, a method has been proposed in which a silane compound-containing gas is brought into contact with fluidized silicon particles to deposit silicon on the particles. According to this fluidized bed method, the deposition area is large, the energy cost can be kept low, and since the silicon particles can be continuously produced and recovered, the facility cost can be lowered.
【0004】以上のように、流動層法による多結晶シリ
コンの製造は、製造コスト上有利な点を有しているが、
ジーメンス法はシリコンが直接反応容器に触れることが
ないのに対し、流動層法は、シリコン粒子が反応器と直
接接触し、こすれ合った状態となるため、不純物の混入
の起こる機会が多いといった不利な点がある。不純物の
混入は、多結晶シリコンから単結晶シリコンを製造する
際、収率が下がるばかりでなく、半導体の特性にも重大
な影響を与え、ひいては半導体用途に使用し得る多結晶
シリコンを提供できなくなる可能性がある。As described above, the production of polycrystalline silicon by the fluidized bed method has an advantage in terms of production cost.
The Siemens method does not directly contact the reaction vessel with silicon, whereas the fluidized bed method has a disadvantage that silicon particles come into direct contact with the reactor and rub against each other, which often causes contamination of impurities. There is a point. The inclusion of impurities not only decreases the yield when producing single crystal silicon from polycrystalline silicon, but also seriously affects the characteristics of semiconductors, and thus cannot provide polycrystalline silicon that can be used for semiconductor applications. there is a possibility.
【0005】そこで、流動層法による多結晶シリコンの
製造において、シリコン粒子への不純物の混入を防止す
るために、流動層反応器の材質について種々提案されて
いる。例えば、セラミクスの表面をシリコンでコーティ
ングしたライナーを反応容器として使用する(特開昭6
3−225512号公報)、緻密質で気孔率が実質的に
零である高純度炭化ケイ素焼結体を反応容器として使用
する(特開昭62−182162号公報)、セラミクス
製の基体表面を高純度で気孔率が実質的に零である緻密
質炭化ケイ素で被覆した反応管を使用する(特開昭62
−7620号公報)、シリコン製の反応器を使用する
(特開昭64−65010号公報)、高純度シリコンに
てコーティングされた高純度グラファイトの反応器を使
用する(特開平2−167811号公報)、基材内面に
膜厚10μm以上のガス不透過性Si3N4膜を設けた反
応器を使用する(特開昭63−117906号公報)な
どという方法がある。Therefore, in the production of polycrystalline silicon by the fluidized bed method, various materials have been proposed for the fluidized bed reactor in order to prevent impurities from being mixed into silicon particles. For example, a liner in which the surface of ceramics is coated with silicon is used as a reaction vessel (Japanese Patent Laid-Open No. SHO 6-96).
No. 3-225512), a dense, high-purity silicon carbide sintered body having substantially no porosity is used as a reaction vessel (Japanese Patent Laid-Open No. 62-182162), and the surface of a ceramic base is made high. A reaction tube coated with dense silicon carbide having a purity and a porosity of substantially zero is used (JP-A-62-62).
No. 7620), a reactor made of silicon is used (Japanese Patent Laid-Open No. 64-65010), and a reactor of high-purity graphite coated with high-purity silicon is used (Japanese Patent Laid-Open No. 167811/1990). ), Using a reactor having a gas-impermeable Si 3 N 4 film having a film thickness of 10 μm or more on the inner surface of the substrate (Japanese Patent Laid-Open No. 63-117906).
【0006】ところが、上記のような反応器は大口径な
ものとして得るのが難かしいといった問題点が残されて
いる。即ち、セラミクス材料では大口径の反応器を作製
しにくく、しかも大口径になればなるほど歪が大きくな
り、小さな衝撃でも割れやすい。一方、シリコンで大口
径の反応器を作製しようとする場合には、素材の大きさ
から、口径150mm以下に限られるといった不都合が
ある。反応器が大口径であることは多結晶シリコンを効
率的に製造するのに有利である。However, there remains a problem that it is difficult to obtain such a reactor having a large diameter. That is, it is difficult to manufacture a large-diameter reactor with a ceramic material, and the larger the diameter, the larger the strain, and the smaller the impact, the more easily it breaks. On the other hand, when trying to manufacture a large-diameter reactor with silicon, there is a disadvantage that the diameter is limited to 150 mm or less due to the size of the material. The large diameter of the reactor is advantageous for efficiently producing polycrystalline silicon.
【0007】[0007]
【発明が解決しようとする課題】本発明は、大口径筒体
として容易に製造することのできる耐熱性筒体及びその
製造方法を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to provide a heat-resistant cylindrical body which can be easily manufactured as a large-diameter cylindrical body and a manufacturing method thereof.
【0008】[0008]
【課題を解決するための手段】本発明の耐熱性筒体は、
耐熱性材料からなる複数の筒体要素片から構成される筒
体であって、相互に隣接する筒体要素片の側面間に形成
される空隙部がシリコンによって接合され、かつ筒体内
面にシリコンコーティング層を有してなること特徴とす
る。なお、相互に隣接する筒体要素片は、適当な耐熱性
接着剤を用いて固定することも可能である。こうした耐
熱性筒体は、既述のとおり、流動層法での多結晶シリコ
ン製造用反応管として有用なものである。The heat resistant cylindrical body of the present invention comprises:
A tubular body composed of a plurality of tubular element pieces made of a heat-resistant material, wherein voids formed between the side surfaces of the tubular element pieces adjacent to each other are bonded by silicon, and the inner surface of the tubular body is made of silicon. It is characterized by having a coating layer. The tubular element pieces adjacent to each other can be fixed with an appropriate heat-resistant adhesive. As described above, such a heat-resistant cylindrical body is useful as a reaction tube for producing polycrystalline silicon by the fluidized bed method.
【0009】一方、本発明の耐熱性筒体の製造方法は、
耐熱性材料からなる複数の筒体要素片から構成される筒
体内に、加熱下、シラン化合物含有ガスを流通させなが
らそのシラン化合物を熱分解させ、その熱分解により生
成したシリコンを、相互に隣接する筒体要素片の側面間
に形成される空隙部に析出させるとともに、更に、該筒
体の内面に膜状に析出させることを特徴とする。On the other hand, the manufacturing method of the heat-resistant cylindrical body of the present invention is as follows.
The silane compound is thermally decomposed while flowing a gas containing the silane compound under heating in a cylinder composed of a plurality of cylindrical element pieces made of a heat resistant material, and the silicon produced by the thermal decomposition is adjacent to each other. It is characterized in that it is deposited in the voids formed between the side surfaces of the tubular element piece, and is further deposited in the form of a film on the inner surface of the tubular body.
【0010】本発明者らは大口径の耐熱性筒体及びその
製造方法についていろいろな角度から検討を進めてきた
結果、耐熱性材料からなる複数の筒体要素片を筒状に並
べた状態で筒体要素片の側面管に形成される空隙部にシ
リコンを析出させてこれらを固着せしめるとともに、筒
体内面にシリコンを膜状に析出させることにより、大口
径の耐熱性筒体を容易に製造し得ることを見出した。本
発明はこの知見に基づいてなされたものである。The inventors of the present invention have studied the large-diameter heat-resistant cylindrical body and its manufacturing method from various angles. As a result, a plurality of cylindrical element pieces made of the heat-resistant material are arranged in a cylindrical shape. By depositing silicon in the voids formed in the side tube of the tubular element piece to fix them, and by depositing silicon in a film on the inner surface of the tubular body, a large-diameter heat-resistant tubular body can be easily manufactured. I found that I could do it. The present invention has been made based on this finding.
【0011】以下に、本発明をさらに詳細に説明する。
図1(a)及び(b)は耐熱性材料からなる筒体要素片
1a、1bを複数用いて作製された耐熱性筒体の二例を
表わしている。筒体要素片1a、1bの形状、大きさ等
はその複数個を用いて筒体を呈しそれが維持できるもの
であれば、どのようなものであってもかまわない。筒体
の径は50mm〜2000mmくらいが適当である。The present invention will be described in more detail below.
FIGS. 1 (a) and 1 (b) show two examples of a heat-resistant cylinder manufactured by using a plurality of cylinder element pieces 1a and 1b made of a heat-resistant material. The cylindrical element pieces 1a, 1b may have any shape, size, etc. as long as a plurality of cylindrical element pieces 1a, 1b can be used to form and maintain the cylindrical body. It is suitable that the diameter of the cylinder is about 50 mm to 2000 mm.
【0012】耐熱性材料の代表的なものとしてはシリコ
ンやセラミクス材料があげられ、そのセラミクス材料の
具体例にはSiC、SiC/Si、グラファイト、アル
ミナ、ムライト等が例示できる。セラミクス材料中の金
属(Ia族、IIa族、遷移金属など)あるいはB、P、
As等の半導体の特性に影響を及ぼす不純物はできる限
り少ない方が好ましいが、これらの不純物が含まれるも
のであっても表面をシリコン膜でコーティングすること
によって、多結晶シリコンへの不純物汚染は防止でき
る。Typical examples of the heat resistant material include silicon and ceramic materials, and specific examples of the ceramic material include SiC, SiC / Si, graphite, alumina, mullite and the like. Metals (Ia group, IIa group, transition metals, etc.) in the ceramics material, B, P,
It is preferable that the impurities such as As that affect the characteristics of the semiconductor are as small as possible. However, even if these impurities are contained, the surface of the polycrystalline silicon is prevented from being contaminated by coating the surface with a silicon film. it can.
【0013】本発明に係る耐熱性筒体をつくるには、筒
体要素片1a又は1bの複数を図1(a)又は(b)に
示したように筒体となるように並べ、これを図2に示し
たような例えばステンレス製構造材2の内側に固定し、
筒体の内面温度が導入されるシラン化合物の分解する程
度に外部から加熱した状態で筒体内にシラン化合物含有
ガスを供給すればよい。こうした操作によって、相互に
隣接している筒体要素片1a又は1bの側面間に形成さ
れる空隙部にシリコンが析出し、これら筒体要素片どう
しを固着させるとともに、その筒体の内面にはシリコン
が膜状に析出してシリコンコーティング層を形成する。In order to produce the heat-resistant cylindrical body according to the present invention, a plurality of cylindrical body element pieces 1a or 1b are arranged so as to form a cylindrical body as shown in FIG. For example, as shown in FIG. 2, fixed inside a stainless steel structural member 2,
The silane compound-containing gas may be supplied into the cylinder while being heated from the outside to the extent that the silane compound introduced into the cylinder is decomposed. By such an operation, silicon is deposited in the void formed between the side surfaces of the tubular element pieces 1a or 1b adjacent to each other, and these tubular element pieces are fixed to each other, and the inner surface of the tubular body is Silicon is deposited in a film form to form a silicon coating layer.
【0014】シリコンコーティング層の厚さは10μm
以上好ましくは20μm以上である。なお、このシリコ
ンコーティング層はIa族、IIa族及び遷移金属の合計
含有量を10ppb以下、B、P及びAsの合計含有量
を1ppb以下に抑えておくことが望ましい。これらの
不純物は半導体の特性に格別の影響を及ぼすからであ
る。The thickness of the silicon coating layer is 10 μm
It is preferably 20 μm or more. In addition, it is desirable that the total content of the group Ia, the group IIa, and the transition metal be 10 ppb or less and the total content of B, P, and As be 1 ppb or less in the silicon coating layer. This is because these impurities have a particular influence on the characteristics of the semiconductor.
【0015】次に、本発明の反応管を用いて多結晶シリ
コンを製造するプロセスを図2に沿って説明する。流動
層反応器2の内部には、ライナ−として挿入された本発
明の多結晶シリコン製造用反応管1が収められている。
まず、種シリコン粒子が導入管3から流動層反応器に充
填される。次に、原料ガス導入管4によって、流動層反
応器2の底部より、シラン化合物含有ガスをガス分散板
5を経て、流動層反応器2内に吹き込み、ガス分散板上
のシリコン粒子を流動化させ、次いで加熱用ヒーター6
で所定の温度に加熱する。シラン化合物は流動層内で熱
分解を起こし、生成したシリコンが流動化シリコン粒子
上に析出される。シリコン析出により粒子が成長し、流
動層高が増してゆくため、小粒径の種シリコン粒子を導
入管3より導入し、流動層内の平均粒子径を一定に保つ
と共に、抜き出し管7より製品シリコン粒子の一部を抜
き出し、流動層高を一定に保つ。種シリコン粒子の平均
粒子径は50〜300μmが好ましく、流動層内の粒子
の平均粒子径は300〜1500μmが好ましい。反応
温度は600〜800℃が好ましい。Next, a process for producing polycrystalline silicon using the reaction tube of the present invention will be described with reference to FIG. Inside the fluidized bed reactor 2, the reaction tube 1 for producing polycrystalline silicon of the present invention inserted as a liner is housed.
First, seed silicon particles are charged into the fluidized bed reactor from the introduction pipe 3. Next, the silane compound-containing gas is blown into the fluidized bed reactor 2 from the bottom of the fluidized bed reactor 2 through the gas dispersion plate 5 through the source gas introduction pipe 4 to fluidize the silicon particles on the gas dispersion plate. And then heater 6 for heating
To heat to a specified temperature. The silane compound undergoes thermal decomposition in the fluidized bed, and the produced silicon is deposited on the fluidized silicon particles. Since particles grow due to silicon precipitation and the height of the fluidized bed increases, small seed silicon particles are introduced through the introduction tube 3 to keep the average particle diameter in the fluidized bed constant, and the product is extracted through the extraction tube 7. A part of the silicon particles is extracted to keep the height of the fluidized bed constant. The average particle size of the seed silicon particles is preferably 50 to 300 μm, and the average particle size of the particles in the fluidized bed is preferably 300 to 1500 μm. The reaction temperature is preferably 600 to 800 ° C.
【0016】[0016]
【実施例】以下に本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されるものでは
ない。EXAMPLES The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
【0017】実施例1 図1(b)に示す直径200mm、長さ1000mm、
厚さ6mmの筒状体を12個のシリコン製筒体要素片で
つくり、図2に示す様なSUS304製構造材2の内側
に固定した。この筒状体の内面温度が630℃となるよ
うヒーター6で加熱した状態でガス導入管4よりモノシ
ラン16 l/分、水素300 l/分の速度で原料ガス
の供給を行なった。3時間たった時点でこの操作を停止
した。筒体1を取り出し、その内表面のシリコン膜の析
出の程度を調べたところ、約100μmの膜でコーティ
ングされていた。また、シリコン製筒体要素片どうしの
間の隙間はシリコンで完全に埋められていた。Example 1 A diameter of 200 mm and a length of 1000 mm shown in FIG.
A tubular body having a thickness of 6 mm was made of 12 silicon tubular element pieces and fixed to the inside of the SUS304 structural material 2 as shown in FIG. The raw material gas was supplied from the gas introduction pipe 4 at a rate of 16 l / min of monosilane and 300 l / min of hydrogen while being heated by the heater 6 so that the inner surface temperature of this cylindrical body was 630 ° C. This operation was stopped after 3 hours. When the cylindrical body 1 was taken out and the degree of deposition of the silicon film on the inner surface thereof was examined, it was found to be coated with a film of about 100 μm. The gap between the silicon tubular element pieces was completely filled with silicon.
【0018】続いて、このシリコン製筒体を反応管とし
て使用し、図2の装置により粒状シリコンを製造した。
反応器内に平均粒子径約700μmのシリコンを19K
g仕込み、水素ガス480 l/分、モノシランガス1
16 l/分を原料ガス導入口4より導入した。加熱ヒ
ーター6で粒子温度を670℃に保持した。種シリコン
導入管3より平均粒径200μmのシリコンを140g
/時間の速度で導入するとともに、製品シリコン粒子を
抜出し管7より5分間隔で6.9Kg/時間の速度で抜
き出した。製品シリコン粒子は抜出し管内で冷却後、充
分に酸洗浄と純粋洗浄を行なったテフロンビンに受け
た。Then, using this silicon cylinder as a reaction tube, granular silicon was manufactured by the apparatus shown in FIG.
19K silicon with an average particle size of about 700μm in the reactor
g charge, hydrogen gas 480 l / min, monosilane gas 1
16 l / min was introduced from the raw material gas inlet 4. The particle temperature was maintained at 670 ° C. by the heater 6. 140 g of silicon with an average particle size of 200 μm from the seed silicon introduction tube 3
The product silicon particles were withdrawn at a rate of 6.9 Kg / hour at intervals of 5 minutes from the extraction tube 7 while being introduced at a rate of / hour. The product silicon particles were cooled in an extraction tube, and then received in Teflon bin which had been thoroughly washed with acid and washed with pure water.
【0019】実施例2 図1(a)に示すような直径300mm、長さ1500
mmの筒状体をSiCからなる36個の筒体要素片でつ
くり、実施例1と同様な方法でシリコンコーティングを
行なって反応管を作製した。これを用い実施例1と同様
にして多結晶シリコンの製造を行なった。10時間後の
製品シリコン粒子の不純物分析を行なったところ、実施
例1とほぼ同じ結果が得られた。Example 2 A diameter of 300 mm and a length of 1500 as shown in FIG.
A tubular body of mm was made of 36 tubular element pieces made of SiC, and silicon coating was performed in the same manner as in Example 1 to produce a reaction tube. Using this, polycrystalline silicon was manufactured in the same manner as in Example 1. When the impurity analysis of the product silicon particles after 10 hours was performed, almost the same results as in Example 1 were obtained.
【0020】得られた製品シリコンの不純物分析は、次
のようにして行なった。金属類については、HF/HN
O3でシリコンを除去した後の溶液を、ICP−MS、
原子吸光法を用いて分析した。B、P、CについてはF
Z法による単結晶化後、FT−IRを用いて測定した。
10時間及び100時間運転後の製品シリコン中の不純
物は、表1に示される値であった。The impurity analysis of the obtained product silicon was conducted as follows. For metals, HF / HN
The solution after removing the silicon with O 3 is ICP-MS,
It was analyzed using the atomic absorption method. F for B, P and C
After crystallization by the Z method, it was measured using FT-IR.
The impurities in the product silicon after operating for 10 hours and 100 hours were the values shown in Table 1.
【0021】[0021]
【表1】 [Table 1]
【0022】[0022]
【発明の効果】請求項1及び3の発明は、大口径の耐熱
性筒体であり、これを多結晶シリコン製造用流動層反応
器に用いれば生産性の向上が期待できる。請求項2の発
明は、大口径の耐熱性筒体(多結晶シリコン製造用流動
層反応器と有用である)を容易に作製するものである。According to the inventions of claims 1 and 3, a heat-resistant cylindrical body having a large diameter is used, and if this is used in a fluidized bed reactor for producing polycrystalline silicon, improvement in productivity can be expected. According to the invention of claim 2, a large-diameter heat-resistant cylindrical body (useful as a fluidized bed reactor for producing polycrystalline silicon) is easily manufactured.
【図1】 (a)及び(b)は本発明に係る多結晶シリ
コン製造用反応管として有用な耐熱性筒体の二例の概略
斜視図である。1A and 1B are schematic perspective views of two examples of a heat-resistant cylindrical body useful as a reaction tube for producing polycrystalline silicon according to the present invention.
【図2】 本発明の多結晶シリコンを実施するための流
動層反応装置の一例を示す模式図である。FIG. 2 is a schematic view showing an example of a fluidized bed reactor for carrying out the polycrystalline silicon of the present invention.
1 ライナー(反応管) 2 流動層反応器 3 種シリコン粒子導入管 4 原料ガス導入管 5 ガス分散板 6 加熱用ヒーター 7 製品シリコン粒子抜出し管 8 廃ガス排出管 1 liner (reaction tube) 2 fluidized bed reactor 3 type silicon particle introduction tube 4 raw material gas introduction tube 5 gas dispersion plate 6 heating heater 7 product silicon particle extraction tube 8 waste gas discharge tube
───────────────────────────────────────────────────── フロントページの続き (72)発明者 高綱 和敏 神奈川県川崎市川崎区千鳥町3番1号 東 燃化学株式会社技術開発センター内 (72)発明者 猿渡 康裕 神奈川県川崎市川崎区千鳥町3番1号 東 燃化学株式会社技術開発センター内 (72)発明者 石川 延宏 愛知県名古屋市港区船見町一番地の1 東 亞合成化学工業株式会社名古屋総合研究所 内 (72)発明者 ▲廣▼田 大助 愛知県名古屋市港区昭和町17番地の23 東 亞合成化学工業株式会社名古屋工場内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazutoshi Takatsuna 3-1, Chidori-cho, Kawasaki-ku, Kanagawa Prefecture Tonen Kagaku Co., Ltd. Technology Development Center (72) Inventor Yasuhiro Saruwatari Chidori, Kawasaki-ku, Kawasaki-shi, Kanagawa Town No. 3-1, Tonen Kagaku Co., Ltd. Technical Development Center (72) Inventor Nobuhiro Ishikawa 1 in the first place of Funami-cho, Minato-ku, Aichi Prefecture Nagoya City Toagosei Chemical Industry Co., Ltd. Nagoya Research Institute (72) Invention Person Hirohiro Tasuke 23 Nagoya Toagosei Chemical Industry Co., Ltd., 23, Showa-cho, Minato-ku, Nagoya City, Aichi Prefecture
Claims (3)
ら構成される筒体であって、相互に隣接する筒体要素片
の側面間に形成される空隙部がシリコンによって接合さ
れ、かつ筒体内面にシリコンコーティング層を有するこ
とを特徴とする耐熱性筒体。1. A tubular body composed of a plurality of tubular body element pieces made of a heat resistant material, wherein voids formed between side surfaces of mutually adjacent tubular body element pieces are joined by silicon. A heat resistant cylindrical body having a silicon coating layer on the inner surface of the cylindrical body.
ら構成される筒体内に、加熱下、シラン化合物含有ガス
を流通させながらそのシラン化合物を熱分解させ、その
熱分解により生成したシリコンを相互に隣接する筒体要
素片の側面間に形成される空隙部に析出させるととも
に、更に、該筒体の内面に膜状に析出させることを特徴
とする耐熱性筒体の製造方法。2. A silicon body produced by the thermal decomposition of a silane compound while the silane compound-containing gas is being circulated under heating in a cylinder composed of a plurality of cylindrical element pieces made of a heat-resistant material. Is deposited in the voids formed between the side surfaces of the tubular element pieces adjacent to each other, and is further deposited in the form of a film on the inner surface of the tubular body.
製造用反応管。3. A reaction tube for producing polycrystalline silicon, which comprises the cylindrical body according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30485492A JPH06127925A (en) | 1992-10-16 | 1992-10-16 | Heat resistant cylindrical body, reaction tube for production of polycrystalline silicon and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30485492A JPH06127925A (en) | 1992-10-16 | 1992-10-16 | Heat resistant cylindrical body, reaction tube for production of polycrystalline silicon and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06127925A true JPH06127925A (en) | 1994-05-10 |
Family
ID=17938084
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30485492A Pending JPH06127925A (en) | 1992-10-16 | 1992-10-16 | Heat resistant cylindrical body, reaction tube for production of polycrystalline silicon and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06127925A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6183553B1 (en) | 1998-06-15 | 2001-02-06 | Memc Electronic Materials, Inc. | Process and apparatus for preparation of silicon crystals with reduced metal content |
JP2006036549A (en) * | 2004-07-22 | 2006-02-09 | Tokuyama Corp | Method for manufacturing silicon |
JP2006083024A (en) * | 2004-09-16 | 2006-03-30 | Kyocera Corp | Casting method of polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate and solar cell element |
US9079145B2 (en) | 2011-06-16 | 2015-07-14 | Hemlock Semiconductor Corporation | Solids processing valve |
-
1992
- 1992-10-16 JP JP30485492A patent/JPH06127925A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6183553B1 (en) | 1998-06-15 | 2001-02-06 | Memc Electronic Materials, Inc. | Process and apparatus for preparation of silicon crystals with reduced metal content |
JP2006036549A (en) * | 2004-07-22 | 2006-02-09 | Tokuyama Corp | Method for manufacturing silicon |
JP4545505B2 (en) * | 2004-07-22 | 2010-09-15 | 株式会社トクヤマ | Method for producing silicon |
JP2006083024A (en) * | 2004-09-16 | 2006-03-30 | Kyocera Corp | Casting method of polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate and solar cell element |
JP4726454B2 (en) * | 2004-09-16 | 2011-07-20 | 京セラ株式会社 | Method for casting polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate, and solar cell element |
US9079145B2 (en) | 2011-06-16 | 2015-07-14 | Hemlock Semiconductor Corporation | Solids processing valve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100251665B1 (en) | Method for manufacturing fine metal articles and ceramic powders | |
JP3122643B2 (en) | Method for producing high-purity silicon particles | |
EP1772429A1 (en) | Method for producing polycrystalline silicon and polycrystalline silicon for solar cell produced by the method | |
JPH06206718A (en) | Extra-high purity silicon carbide and high temperature semiconductor processing device produced by said silicon carbide | |
WO2002100777A1 (en) | Method of manufacturing silicon | |
EP2322477A1 (en) | High-purity crystalline silicon, high-purity silicon tetrachloride, and processes for producing same | |
CA1178177A (en) | Process for increasing silicon thermal decomposition deposition rates from silicon halide-hydrogen reaction gases | |
US20100047148A1 (en) | Skull reactor | |
US20040091630A1 (en) | Deposition of a solid by thermal decomposition of a gaseous substance in a cup reactor | |
JPH06127925A (en) | Heat resistant cylindrical body, reaction tube for production of polycrystalline silicon and its production | |
JPH06127923A (en) | Fluidized bed reactor for producing polycrystalline silicon | |
JPH06127922A (en) | Fluidized bed reactor for producing polycrystalline silicon | |
GB1570131A (en) | Manufacture of silicon | |
JP2002302768A (en) | Silicon carbide with high thermal conductivity | |
JPH02164711A (en) | Manufacture of high-purity boron | |
JPH06127916A (en) | Production of spherical high-purity polycrystalline silicon | |
JP2528367B2 (en) | Heating equipment for polycrystalline silicon | |
JP2011121800A (en) | Cleaning method of reaction furnace for polycrystalline silicon manufacture | |
JPS63117906A (en) | Member for production apparatus of polycrystalline silicon | |
JPH06127915A (en) | Fluidized bed reactor for producing polycrystalline silicon | |
JPH06144821A (en) | Granular polycrystalline silicon compact and its production | |
JP5335074B2 (en) | Method for producing polycrystalline silicon and reactor for producing polycrystalline silicon | |
JPH06127920A (en) | Bar-shaped molded articles of polycrystalline silicon particle and its production | |
JPH06100312A (en) | Device for extracting granular polycrystalline silicon | |
JPS59121109A (en) | Production of high purity silicon |