JPH0829930B2 - Method for producing chloropolysilane - Google Patents

Method for producing chloropolysilane

Info

Publication number
JPH0829930B2
JPH0829930B2 JP4223688A JP4223688A JPH0829930B2 JP H0829930 B2 JPH0829930 B2 JP H0829930B2 JP 4223688 A JP4223688 A JP 4223688A JP 4223688 A JP4223688 A JP 4223688A JP H0829930 B2 JPH0829930 B2 JP H0829930B2
Authority
JP
Japan
Prior art keywords
silicon
chloropolysilane
copper
gas
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4223688A
Other languages
Japanese (ja)
Other versions
JPH01219012A (en
Inventor
勝実 小木
哲成 倉重
悦治 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4223688A priority Critical patent/JPH0829930B2/en
Publication of JPH01219012A publication Critical patent/JPH01219012A/en
Publication of JPH0829930B2 publication Critical patent/JPH0829930B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はシリコンを塩素化してヘキサクロルジシラン
(SiCl6以下6CSと略記),オクタクロルトリシラン(Si
Cl8以下8CSと略記)などのクロロポリシラン(SinCl
2n+2,n≧2)を効率よく製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention chlorinates silicon to produce hexachlorodisilane (SiCl 6 or less and abbreviated as 6CS) and octachlorotrisilane (Si).
Cl 8 or less and abbreviated as 8CS) and other chloropolysilanes (SinCl
2n + 2 , n ≧ 2) The present invention relates to a method for efficiently producing 2n + 2 , n ≧ 2).

[従来技術と問題点] 従来、クロロポリシランは、カルシウムシリコン、マ
グネシウムシリコン、あるいはフェロシリコン等の珪化
物粒子を加熱して塩素ガスを送り込み、これらを塩素化
することによって製造されている。
[Prior Art and Problems] Conventionally, chloropolysilane has been produced by heating silicide gas such as calcium silicon, magnesium silicon, or ferrosilicon to feed chlorine gas to chlorinate them.

ところが、上記珪化物粒子を塩素化する方法によって
クロロポリシランを製造する場合、塩化カルシウム、塩
化マグネシウム等の固体副生物が生成し、これが装置を
閉塞する問題等があり、商用製造方法として固体副生物
の発生しない方法が望まれている。
However, when chloropolysilane is produced by the method of chlorinating the above-mentioned silicide particles, there is a problem that solid by-products such as calcium chloride and magnesium chloride are generated, which block the equipment. A method that does not occur is desired.

また、金属シリコン粒子に塩素ガスを通じ、シリコン
の塩素化によりクロロポリシランを製造する方法も知ら
れている。この反応では固体の副生物の発生は認められ
ないが、上記珪化物合金を用いた方法に比べクロロポリ
シラン生成率がシリコン原子基準で1%未満と著しく低
い問題がある。
Also known is a method of producing chloropolysilane by chlorinating silicon by passing chlorine gas through metal silicon particles. In this reaction, generation of solid by-products is not recognized, but there is a problem that the production rate of chloropolysilane is significantly lower than 1% on the basis of silicon atom as compared with the method using the silicide alloy.

何れにしても、従来の方法において主に生成するのは
SiCl4でありクロロポリシラン(SiCl6SiCl8)はSiCl4
伴って副生するものを利用しているに過ぎない。
In any case, what is mainly generated in the conventional method is
It is SiCl 4 , and chloropolysilane (SiCl 6 SiCl 8 ) uses only the by-product of SiCl 4 .

[問題解決の手段] 本出願人は、シリコン粒子を塩素化してクロロポリシ
ランを製造する方法について、その改善を試み、シリコ
ン粒子に触媒として銅ないし銅化合物を添加することに
より、SiCl4の生成を抑制し、クロロポリシランの収率
を高めた製造方法を達成し、これを先に出願した(特開
昭63−233007号) 本発明は、上記製造方法を一層改良したものであり、
本発明においては、シリコン粒子層を流動状態に保って
塩素ガスを接触させることにより、クロロポリシランの
収率を更に高めた。
[Means for Solving Problems] The present applicant has attempted to improve a method for producing chloropolysilane by chlorinating silicon particles, and by adding copper or a copper compound as a catalyst to the silicon particles, formation of SiCl 4 can be achieved. The present invention is a further improvement of the above-mentioned production method, in which a production method in which the yield of chloropolysilane is suppressed is achieved, and which was previously filed (JP-A-63-233007).
In the present invention, the yield of chloropolysilane was further increased by keeping the silicon particle layer in a fluidized state and contacting it with chlorine gas.

[発明の構成] 本発明によれば、銅または銅化合物を添加したシリコ
ン粒子層を流動状態に保ち、240〜350℃の温度下で該シ
リコン粒子層に塩素ガスを通じてクロロポリシランを製
造する方法が提供される。
[Constitution of the Invention] According to the present invention, a method for producing chloropolysilane by passing chlorine gas through the silicon particle layer at a temperature of 240 to 350 ° C. while keeping the silicon particle layer to which copper or a copper compound is added in a fluidized state is provided. Provided.

本発明方法において用いるシリコン粒子の平均粒径は
50μm以上2mm以下が望ましい。シリコン粒子の平均粒
径が2mmより大きいと好適な流動状態を保つことが困難
となり好ましくなく、50μmより小さいと反応中に粉塵
が発生し、やはり好ましくない。
The average particle size of the silicon particles used in the method of the present invention is
50 μm or more and 2 mm or less is desirable. If the average particle diameter of the silicon particles is larger than 2 mm, it is difficult to maintain a suitable fluidized state, and if it is smaller than 50 μm, dust is generated during the reaction, which is also not preferable.

半導体用シリコンの製造に用いられるクロロポリシラ
ンを製造するには純度97%以上のシリコン粒子を用いる
のが好ましい。
It is preferable to use silicon particles having a purity of 97% or more for producing chloropolysilane used for producing silicon for semiconductors.

シリコン粒子に添加される銅ないし銅化合物(銅系触
媒)として、塩化第一銅CuCl,塩化第二銅CuCl2が好適に
用いられる。また酸化第一銅CuO、酸化第二銅CuOを用い
てもよい。該銅系触媒の添加量は銅換算でシリコン粒子
に対し0.1〜20重量%が好ましい。該添加量が0.1重量%
より少ないとクロロポリシラン生成率を向上する効果が
認められず、他方該添加量が20重量%を超えるとシリコ
ン粒子の量が相対的に減少しクロロポリシランの生成率
が低下する。
As copper or a copper compound (copper-based catalyst) added to silicon particles, cuprous chloride CuCl and cupric chloride CuCl 2 are preferably used. Further, cuprous oxide CuO and cupric oxide CuO may be used. The addition amount of the copper-based catalyst is preferably 0.1 to 20% by weight based on silicon particles in terms of copper. The amount added is 0.1% by weight
If the amount is smaller, the effect of improving the production rate of chloropolysilane is not recognized, while if the addition amount exceeds 20% by weight, the amount of silicon particles is relatively decreased and the production rate of chloropolysilane is lowered.

以上述べた点は、特願昭62−65770号(特開昭63−233
007号)の製造方法と共通する。本発明は上記銅ないし
銅化合物を添加したシリコン粒子層を流動化状態に保っ
て、240〜350℃の温度下で塩素ガスを接触させることを
特徴とする。流動化手段としては、通常の流動層装置を
用いることができる。
The above-mentioned points are described in Japanese Patent Application No. 62-65770 (Japanese Patent Laid-Open No. 63-233).
No. 007) common manufacturing method. The present invention is characterized in that the silicon particle layer to which the above copper or copper compound is added is kept in a fluidized state and is brought into contact with chlorine gas at a temperature of 240 to 350 ° C. An ordinary fluidized bed apparatus can be used as the fluidizing means.

反応容器に予め充填したシリコン粒子層を流動化する
ため、稀釈ガスが用いられる。稀釈ガスは原料の塩素ガ
スと混合して用いてもよく、あるいは、稀釈ガスにより
シリコン粒子層を流動化した後に別途塩素ガスを供給し
てもよい。稀釈ガスとして、塩素と反応しない窒素、ア
ルゴン、ヘリウムの不活性ガスが用いられる。いずれの
不活性ガスを用いてもクロロポリシランの生成率は大差
ない。
A diluent gas is used to fluidize the silicon particle bed pre-filled in the reaction vessel. The diluting gas may be used as a mixture with the chlorine gas as a raw material, or the chlorine gas may be separately supplied after fluidizing the silicon particle layer with the diluting gas. An inert gas such as nitrogen, argon or helium that does not react with chlorine is used as the diluting gas. The production rate of chloropolysilane is not significantly different regardless of which inert gas is used.

塩素の稀釈ガスに対するモル比は1/40〜1が好まし
い。該モル比が1/40より少ないと、全塩化ケイ素量が減
少し、しかも全塩化ケイ素のうち4CS(SiCl4)の割合が
増加し、6CS,8CSの割合が低下するので大幅な収率の差
を招く。
The molar ratio of chlorine to the diluted gas is preferably 1/40 to 1. When the molar ratio is less than 1/40, the total amount of silicon chloride is decreased, the ratio of 4CS (SiCl 4 ) in the total silicon chloride is increased, and the ratio of 6CS and 8CS is decreased, resulting in a large yield. Make a difference.

また上記モル比が1より大きいと、SiCl、SiClなど8C
Sより分子量の大きい高分子塩化ケイ素の生成割合が高
くなり、従って6CS,8CSを選択的に製造しようとする場
合には好ましくない。
If the above molar ratio is larger than 1, 8C such as SiCl or SiCl
The production rate of high-molecular-weight silicon chloride having a larger molecular weight than that of S becomes high, and therefore it is not preferable when 6CS and 8CS are selectively produced.

反応温度は6CS,8CSの収率に敏感に影響する。反応温
度としては240〜350℃が好ましい。240℃より低いと、
該塩化反応は進行し難い。一方、反応温度が350℃より
高いと4CSだけが生成する。240〜350℃の範囲内では、
低温側では8CSの生成量が多く、高温側では6CSの生成量
が多い。従って、反応温度をコントロールすることによ
り6CS,8CSの収率を制限することが可能である。
The reaction temperature sensitively affects the yield of 6CS and 8CS. The reaction temperature is preferably 240 to 350 ° C. Below 240 ° C,
The chlorination reaction is difficult to proceed. On the other hand, when the reaction temperature is higher than 350 ° C, only 4CS is produced. Within the range of 240-350 ℃,
A large amount of 8CS is produced on the low temperature side, and a large amount of 6CS is produced on the high temperature side. Therefore, it is possible to limit the yield of 6CS and 8CS by controlling the reaction temperature.

尚、クロロポリシランの生成量は、反応容器の内部圧
力に依存しないが、該圧力が大気圧より低いと、容器内
に大気が進入する虞れがあるので、該内部圧力を大気圧
と同じかそれ以上に保つことが必要である。
The amount of chloropolysilane produced does not depend on the internal pressure of the reaction vessel. However, if the pressure is lower than atmospheric pressure, the atmosphere may enter the vessel. It is necessary to keep more than that.

[発明の効果] 本発明の方法は、流動層を利用するので気固相の混合
が激しく、供給した塩素は殆ど全量塩化反応に浪費され
る。従ってクロロポリシラン収率が極めて高い。また反
応温度を調整することにより6CS,8CSの効率を効果的に
制御することができる。
[Effects of the Invention] Since the method of the present invention uses a fluidized bed, the gas-solid mixture is vigorous, and almost all the supplied chlorine is wasted in the chlorination reaction. Therefore, the yield of chloropolysilane is extremely high. Moreover, the efficiency of 6CS and 8CS can be effectively controlled by adjusting the reaction temperature.

因に、上記反応において、銅とシリコンとは一時的に
結合して合金化し、この合金化部分が活性を有するので
塩素を結合し易く、塩素ガスと接触すると銅が分離して
塩素とシリコンが結合し、クロロポリシランを生成する
ものと考えられる。シリコン粒子が固定層の場合には、
銅とシリコンの接触が不充分であり、このためクロロポ
リシランの生成率が低いものと考えられる。
Incidentally, in the above reaction, copper and silicon are temporarily combined with each other to form an alloy, and this alloyed portion is active so that chlorine is easily combined, and when chlorine gas is contacted, copper is separated and chlorine and silicon are separated. It is believed that they combine to form chloropolysilane. If the silicon particles are a fixed layer,
It is considered that the contact between copper and silicon is insufficient, and thus the production rate of chloropolysilane is low.

本発明においてはシリコン粒子が流動状態に保たれる
ので、シリコンと銅との接触が活発でありクロロポリシ
ランの生成率が高い。
In the present invention, since the silicon particles are kept in a fluidized state, the contact between silicon and copper is active and the production rate of chloropolysilane is high.

[実施例および比較例] 本発明の実施および比較例の実施に用いた装置構成を
概略を図に示す。反応容器1の外周には加熱手段2が設
けられており、該加熱手段2には供給装置3から熱媒体
が供給される。反応容器1の頂部には貯槽4が接続して
おり、該貯槽4からシリコン粒子が銅、銅化合物と混合
して反応容器1へ供給される。反応容器1の底部には塩
素ガスおよび不活性ガスを供給する加熱供給装置5が接
続している。シリコン粒子層は不活性ガス及び塩素ガス
によって流動状態に保たれ、塩素ガスと接触してクロロ
ポリシランを生成する。生成したクロロポリシラン及び
未反応ガス等は排気管路6を通じて外部に導かれ、コー
ルドトラップ7,8によって捕集された後、分離される。
[Examples and Comparative Examples] The schematics of the apparatus configurations used for carrying out the present invention and comparative examples are shown in the drawings. A heating means 2 is provided on the outer circumference of the reaction vessel 1, and a heating medium is supplied to the heating means 2 from a supply device 3. A storage tank 4 is connected to the top of the reaction container 1, and silicon particles are mixed with copper and a copper compound from the storage tank 4 and supplied to the reaction container 1. A heating supply device 5 for supplying chlorine gas and an inert gas is connected to the bottom of the reaction vessel 1. The silicon particle layer is kept in a fluid state by an inert gas and chlorine gas, and contacts the chlorine gas to generate chloropolysilane. The produced chloropolysilane, unreacted gas, and the like are guided to the outside through the exhaust pipe line 6, collected by the cold traps 7 and 8, and then separated.

実施例 図示する装置を用い金属シリコンに対して0.5〜20%
の銅系触媒を含有する、60〜200メッシュの金属シリコ
ン約3000gを反応容器に充填し、塩素および、稀釈ガス
を反応容器下部より導入し、シリコン粒子層を流動化さ
せ、240〜350℃において塩化反応を約4時間行なった。
反応容器からの排出ガスは冷却捕集し、凝縮液をガスク
ロマトグラフで分析した。製造条件および結果を第1表
に示す。なお、金属シリコンに対する触媒の重量比は、
金属シリコン重量に対する各銅系触媒の銅換算重量の割
合である。
Example 0.5 to 20% with respect to metallic silicon using the illustrated apparatus
Approximately 3000 g of 60-200 mesh metal silicon containing the copper-based catalyst described above is charged into a reaction vessel, chlorine and a diluent gas are introduced from the lower portion of the reaction vessel to fluidize the silicon particle layer, and at 240 to 350 ° C. The salification reaction was carried out for about 4 hours.
The exhaust gas from the reaction vessel was cooled and collected, and the condensate was analyzed by gas chromatography. The manufacturing conditions and results are shown in Table 1. The weight ratio of the catalyst to metallic silicon is
It is the ratio of the copper equivalent weight of each copper-based catalyst to the weight of metallic silicon.

比較例 実施例と同様の装置を用いシリコン充填方法銅系触媒
の量、塩素の稀釈ガスに対するモル比、反応温度、圧力
を本発明の範囲外に変化させた以外は実施例と同様に、
クロロポリシランの製造を試みた。この結果を第2表に
示す。
Comparative Example Silicon filling method using the same apparatus as in the example The same as the example except that the amount of the copper-based catalyst, the molar ratio of chlorine to the diluting gas, the reaction temperature, the pressure was changed outside the scope of the present invention.
An attempt was made to produce chloropolysilane. The results are shown in Table 2.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施等に用いた装置構成の概略図である。 図中、1……反応容器、2……加熱手段 3……供給装置、4……貯槽 5……加熱供給装置、6……排気管路 7,8……トラップ FIG. 1 is a schematic diagram of a device configuration used for implementing the present invention. In the figure, 1 ... Reactor container, 2 ... Heating means 3 ... Supply device, 4 ... Storage tank 5 ... Heating supply device, 6 ... Exhaust pipe line 7, 8 ... Trap

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】銅または銅化合物を添加したシリコン粒子
層を流動状態に保ち、240〜350℃の温度下で該シリコン
粒子層に塩素ガスを通じてクロロポリシラン(SinCl
2n+2ただしn≧2)を製造する方法。
1. A silicon particle layer to which copper or a copper compound is added is kept in a fluid state, and chlorine gas is passed through the silicon particle layer at a temperature of 240 to 350 ° C.
2n + 2 where n ≧ 2).
JP4223688A 1988-02-26 1988-02-26 Method for producing chloropolysilane Expired - Lifetime JPH0829930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4223688A JPH0829930B2 (en) 1988-02-26 1988-02-26 Method for producing chloropolysilane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4223688A JPH0829930B2 (en) 1988-02-26 1988-02-26 Method for producing chloropolysilane

Publications (2)

Publication Number Publication Date
JPH01219012A JPH01219012A (en) 1989-09-01
JPH0829930B2 true JPH0829930B2 (en) 1996-03-27

Family

ID=12630393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4223688A Expired - Lifetime JPH0829930B2 (en) 1988-02-26 1988-02-26 Method for producing chloropolysilane

Country Status (1)

Country Link
JP (1) JPH0829930B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530668A (en) * 2009-06-26 2012-12-06 ワッカー ケミー アクチエンゲゼルシャフト Method for producing oligohalogen silane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530668A (en) * 2009-06-26 2012-12-06 ワッカー ケミー アクチエンゲゼルシャフト Method for producing oligohalogen silane
KR101389882B1 (en) * 2009-06-26 2014-04-29 와커 헤미 아게 Method for producing oligohalogen silanes

Also Published As

Publication number Publication date
JPH01219012A (en) 1989-09-01

Similar Documents

Publication Publication Date Title
US7754175B2 (en) Silicon and catalyst material preparation in a process for producing trichlorosilane
JP6178434B2 (en) Method for producing trichlorosilane
JP2003531007A (en) Manufacturing method of contact body
JP2017525647A (en) Production method of silane trichloride
CN113493191B (en) Method for preparing high-purity alpha-silicon nitride powder and high-purity alpha-silicon nitride powder
JPH0829930B2 (en) Method for producing chloropolysilane
KR940006541B1 (en) Process for preparing chloropolysilanes
JPH07258272A (en) Preparation of methylchlorosilane
JP2001226382A (en) Method for producing organohalosilane
JP2851588B2 (en) Method for producing dimethyldichlorosilane
JP2508798B2 (en) Method for producing hexachlorodisilane and octachlorotrisilane
US5051248A (en) Silane products from reaction of silicon monoxide with hydrogen halides
JPS5969416A (en) Manufacture of dichlorosilane
JPS5817170B2 (en) Methanooxyensokahou
JP4663079B2 (en) Method for producing silane from trialkoxysilane and method for producing trialkoxysilane from tetraalkoxysilane
JP3444711B2 (en) Method for producing trifluorosilane
JP7087109B2 (en) Chlorosilane manufacturing method
JPS63107808A (en) Preparation of octachlorotrisilane
JP3206018B2 (en) Method for producing high purity phosphorus
JP2773568B2 (en) Method for producing trialkoxysilane
JPS63100016A (en) Preparation of trichlorosilane
JPS63100015A (en) Preparation of trichlorosilane
JP3821922B2 (en) Method for producing silicon tetrachloride
JPS63100014A (en) Preparation of trichlorosilane
JPS6395109A (en) Production of trichlorosilane