JPS62254465A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62254465A
JPS62254465A JP9860886A JP9860886A JPS62254465A JP S62254465 A JPS62254465 A JP S62254465A JP 9860886 A JP9860886 A JP 9860886A JP 9860886 A JP9860886 A JP 9860886A JP S62254465 A JPS62254465 A JP S62254465A
Authority
JP
Japan
Prior art keywords
region
insulating film
channel
control electrode
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9860886A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
隆博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9860886A priority Critical patent/JPS62254465A/en
Publication of JPS62254465A publication Critical patent/JPS62254465A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To enable a perfectly buried channel to be formed by a method wherein control electrodes are provided on the peripheral part of semiconductor region of channel forming region of an SOI-MOSFET through the intermediary of insulating films. CONSTITUTION:An MOSFET T1 is composed of an n<+> source region 102, an n<+> drain region 103, an n channel region 104, a gate electrode 106 in an insulating film 105 formed in a thin film type single crystal region formed on an insulating film 101, a lower control electrode 107 provided in the insulating film 101 and an upper control electrode 108 provided on the peripheral part of insulating film 105. The upper and lower control electrodes 107, 108 can be formed of P type polysilicon or metal slightly impressed with standard negative voltage as a bias voltage. Through these procedures, a perfectly buried channel can be formed even if single crystal region is thin film type so that the movement and noise of elements may be markedly improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、薄膜状の単結晶領域に形成された埋込みチャ
ネルを有するSOI−MO8FIE丁の半導体装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an SOI-MO8FIE type semiconductor device having a buried channel formed in a thin-film single crystal region.

従来の技術 二次元vhsxにおける高密度化や速度性能の限界を打
開する一方法としてのみならず、各種機能を備えた新し
いタイプの複合素子が実現可能という位置付けで三次元
集積回路の研究開発が進められておD、その核となる技
術がS OI (SiliconOn In5ulat
or )技術である。しかし、sor技術で形成される
Si単結晶の膜厚は、単結晶成長。
Research and development of 3D integrated circuits is progressing not only as a way to overcome the limitations of high density and speed performance in conventional 2D VHSX technology, but also as a way to realize new types of composite devices with various functions. The core technology is SOI (Silicon On In5ulat).
or) technology. However, the thickness of the Si single crystal formed by SOR technology is that of single crystal growth.

加工を容易にするために薄膜化が要求される。この結果
、薄膜状の単結晶領域に能動素子を構成する場合には、
従来では考慮されなかった問題が顕著に現われる可能性
がある。
Thinner films are required to facilitate processing. As a result, when configuring an active element in a thin film-like single crystal region,
Problems that have not been considered in the past may emerge.

第4図は、表面チャネル形の基本的なSOI−MOSF
ETの断面図を示すもので、絶縁膜401上に形成され
た薄膜状の単結晶領域にソースのn+領域402.ドレ
イ/のn領域403.チャネルが形成されるP領域4o
4.絶縁膜405を介して設けたゲート電極406で、
MO8FICT”Ql”が構成される。
Figure 4 shows a basic SOI-MOSF with surface channel type.
This is a cross-sectional view of an ET, in which a source n+ region 402. n-region 403. P region 4o where a channel is formed
4. A gate electrode 406 provided through an insulating film 405,
MO8FICT"Ql" is configured.

このMOSFET ”ゝQ1”のD−D’断面に対応し
た熱平衡状態のエネルギーバンド図を第6図(IL)に
示す。ゲート電極406に正電圧が印加された時のエネ
ルギーバンド図は第6図(b)の実線部分である。この
結果、P領域404と絶縁膜40gの界面に逆転層40
7が形成され、表面チャネルとなる。この状態で、ソー
スに対しドレインのn+領域403に正電圧が印加され
るとP領域404のエネルギーレベルは、点線部408
となD、P領域全体が逆転層となる事もあり得る。この
状態は、薄膜状の単結晶領域の膜厚が薄くなる程、顕著
になる。一般に80I単結晶では、その結晶成長の方法
にも依存するが、単結晶膜中の結晶欠陥は、P領域40
4と絶縁膜401との下部界面付近が最も大きく、P領
域404と絶縁膜405との上部界面に向って指数関数
的に減少している。勿論、P領域404と絶縁膜406
との上部界面で結晶欠陥は再び増大する。又、単結晶領
域が、分割された場合は、上述の様な上下の界面以外に
、左右の側部界面の結晶欠陥も無視できない。上記した
様な界面の結晶欠陥はMO8FICT ”Ql”  の
性能劣化を招く事が知られている。(参考文献:[ソリ
ッド−ステート エレクトロニクスJ (N、 5ak
alaetaL 、 5olid−8t&te Ele
ctronics voL、22゜pp、417〜42
1.1979 ))第6図は、埋込チャネル形の基本的
な30I−MOSFETの断面図を示すもので、絶縁膜
601上に形成された薄膜状の単結晶領域にソースのn
+領域6o2.ドレインのn+領域6o3.チャネルが
形成されるn領域6o4.絶縁膜605を介して設けた
ゲート電極606で、MO5FICT″t Q 2 I
tが構成される。このMOSFET”Q2”のに−IC
’断面に対応した熱平衡状態のエネルギーバンド図を第
7図(a)に示す。この状態で、ソースに対し、ドレイ
ンのn領域603に正電圧を印加すると、n領域604
のエネルギーレベルは点線部701の様になD、n領域
604と絶縁膜601との下部界面に逆転層が形成され
易くなD、下部表面チャネルとなる。
An energy band diagram of the thermal equilibrium state corresponding to the DD' cross section of this MOSFET "Q1" is shown in FIG. 6 (IL). The energy band diagram when a positive voltage is applied to the gate electrode 406 is shown by the solid line in FIG. 6(b). As a result, an inversion layer 40 is formed at the interface between the P region 404 and the insulating film 40g.
7 is formed and becomes a surface channel. In this state, when a positive voltage is applied to the n+ region 403 of the drain relative to the source, the energy level of the P region 404 changes to the dotted line 408.
It is also possible that the entire D and P regions become an inversion layer. This state becomes more pronounced as the film thickness of the thin film-like single crystal region becomes thinner. In general, in an 80I single crystal, crystal defects in the single crystal film may occur in the P region 40, although it depends on the method of crystal growth.
It is largest near the lower interface between P region 404 and insulating film 401, and decreases exponentially toward the upper interface between P region 404 and insulating film 405. Of course, the P region 404 and the insulating film 406
Crystal defects increase again at the upper interface with. Furthermore, when a single crystal region is divided, in addition to the above-mentioned upper and lower interfaces, crystal defects at the left and right side interfaces cannot be ignored. It is known that crystal defects at the interface as described above cause performance deterioration of MO8FICT "Ql". (Reference: [Solid-State Electronics J (N, 5ak
alaetaL, 5olid-8t&te Ele
ctronics vol, 22゜pp, 417-42
1.1979 )) FIG. 6 shows a cross-sectional view of a basic buried channel type 30I-MOSFET, in which a source n
+ area 6o2. Drain n+ region 6o3. n region 6o4 where a channel is formed; With the gate electrode 606 provided through the insulating film 605, MO5FICT''t Q 2 I
t is constructed. This MOSFET “Q2” -IC
The energy band diagram of the thermal equilibrium state corresponding to the cross section is shown in FIG. 7(a). In this state, when a positive voltage is applied to the n-region 603 of the drain with respect to the source, the n-region 604
When the energy level is D as shown by the dotted line 701, an inversion layer is likely to be formed at the lower interface between the n region 604 and the insulating film 601 and a lower surface channel is formed.

MOSFET”Q2″ のゲート電極606に正電圧が
印加された場合のエネルギーバンド図が第7図(b)で
あD、この状態でソースに対し、ドレインのn領域60
3に正電圧を印加すると、n領域604のエネルギーレ
ベルは点線部702の様になD、埋込みチャネル部70
3と、n領域604と絶縁膜605との上部界面の逆転
層による上部表面チャネルが形成される。
The energy band diagram when a positive voltage is applied to the gate electrode 606 of MOSFET "Q2" is shown in FIG. 7(b).
When a positive voltage is applied to 3, the energy level of n region 604 becomes D as shown by dotted line 702, and buried channel region 70
3 and an inversion layer at the upper interface between the n region 604 and the insulating film 605 to form an upper surface channel.

更ニ、MO5FICT ”Q2”  Oゲート電極60
6に印加する正電圧を増加した場合のエネルギーバンド
図を第7図(C)に示す。この状態では、n領域604
と絶縁膜605との上部界面の逆転層704による上部
表面チャネルが形成され、ソースに対してドレインに正
電圧が印加されれば、逆転層は、n領域604と絶縁膜
601との下部界面に向かって広がっていく。
Further, MO5FICT “Q2” O gate electrode 60
FIG. 7(C) shows an energy band diagram when the positive voltage applied to 6 is increased. In this state, the n area 604
An upper surface channel is formed by the inversion layer 704 at the upper interface between the n-region 604 and the insulating film 605, and when a positive voltage is applied to the drain with respect to the source, the inversion layer is formed at the lower interface between the n-region 604 and the insulating film 601. It spreads towards.

一例として、第7図(b)に対応するチャネルの様子を
第6図に示している。n領域604をソースからドレイ
ンの方向にみた場合のチャネルが第6図(&)の607
で、それに直角な断面でみたチャネルが第6図(b)の
608である。
As an example, FIG. 6 shows the state of the channel corresponding to FIG. 7(b). When looking at the n-region 604 from the source to the drain, the channel is 607 in FIG. 6 (&).
The channel 608 in FIG. 6(b) is seen in a cross section perpendicular to this.

従って、−次元的に観察すると、埋込チャネルとなって
いても、三次元的に観察すると、表面チャネルになって
いる場合には、MO5FICT ”Q1′’で上述した
と同様に、MO8FICT ”Q2”  の性能は劣化
する。
Therefore, even if it is a buried channel when observed in -dimensional terms, if it is a surface channel when observed in three dimensions, MO8FICT ``Q2'' is similar to that described above for MO5FICT ``Q1''. ” performance deteriorates.

発明が解決しようとする問題点 以上のように、基本的なSOI−MOSFETのままで
は、薄膜状の単結晶領域の膜厚が薄いため、従来の構造
では形成されたチャネルが結晶欠陥の多い半導体−絶縁
膜界面を含んでしまうため、移動度、雑音などの性能劣
化が避けられない。
Problems to be Solved by the Invention As mentioned above, in the basic SOI-MOSFET, the film thickness of the thin film-like single crystal region is small, so in the conventional structure, the formed channel is a semiconductor with many crystal defects. - Since it includes an insulating film interface, performance deterioration such as mobility and noise is unavoidable.

本発明は、かかる点に鑑み、完全な埋込みチャネルの形
成される半導体装置の提供を目的とする。
In view of this, an object of the present invention is to provide a semiconductor device in which a completely buried channel is formed.

問題点を解決するための手段 本発明は第1の絶縁膜上に形成された単結晶半導体領域
にソース領域、ドレイン領域、チャネル形成領域を形成
するとともに、第2の絶縁膜を介してゲート電極を設け
、前記チャネル形成領域周辺に第1の絶縁膜もしくは第
2の絶縁膜を介して制御電極を設けた構成となっている
Means for Solving the Problems The present invention forms a source region, a drain region, and a channel forming region in a single crystal semiconductor region formed on a first insulating film, and also forms a gate electrode through a second insulating film. is provided, and a control electrode is provided around the channel forming region via a first insulating film or a second insulating film.

作用 本発明は上記した構成によD、制御電極の導電形、又は
印加バイアスの極性に従って半導体−絶縁膜界面の逆転
層の形成を阻止し、完全な埋込みチャネルを実現する。
Operation The present invention prevents the formation of an inversion layer at the semiconductor-insulating film interface according to the conductivity type of the control electrode or the polarity of the applied bias, thereby realizing a completely buried channel.

実施例 第1図は、本発明の第1の実施例における半導体装置を
示すもので、同図(IL)は上面図、同図(b)は同図
(a) t7:) X −X’断面図、同図(c)[t
[1(a)or −Y’断面図を示す。
Embodiment FIG. 1 shows a semiconductor device according to a first embodiment of the present invention. FIG. 1 (IL) is a top view, and FIG. 1 (b) is a top view. Cross-sectional view, same figure (c) [t
[1(a) or -Y' sectional view is shown.

第1図において、絶縁膜101上に形成された薄膜状の
単結晶領域にソースのn領域102、ドレインのn+領
域1o3、チャネルが形成されるn領域104、絶縁膜
105内にゲート電極106、絶縁膜101内に下部制
御電極107、絶縁膜106周辺に上部制御電極108
を設けて、MO8FKT°°T1”が構成される。
In FIG. 1, a thin single crystal region formed on an insulating film 101 includes a source n region 102, a drain n+ region 1o3, an n region 104 where a channel is formed, a gate electrode 106 in an insulating film 105, A lower control electrode 107 is provided within the insulating film 101, and an upper control electrode 108 is provided around the insulating film 106.
MO8FKT°°T1'' is configured.

上下の制御電極107,108は第1図の様にP形po
ly−8iで形成してもよいし、あるいは、金属で形成
してバイアスとして負電圧をわずかに印加した状態を標
準とする。
The upper and lower control electrodes 107 and 108 are P-type po as shown in FIG.
It may be formed of ly-8i, or it may be formed of metal and a slight negative voltage is applied as a bias.

このMO8FIET”T1”のムーム1断面に対応した
熱平衡状態のエネルギーバンド図は第2図(1)の実線
部分、MO3FICT”T1”のB−B’断面に対応し
た熱平衡状態のエネルギーバンド図は第2図(b)の実
線部分、MOSFET”T1”のc−c’断面に対応し
た熱平衡状態のエネルギーバンド図は第2図(0)に示
す。
The energy band diagram of the thermal equilibrium state corresponding to the Moum 1 cross section of MO8FIET "T1" is shown in the solid line part of Figure 2 (1), and the energy band diagram of the thermal equilibrium state corresponding to the BB' cross section of MO3FICT "T1" is shown in The energy band diagram of the thermal equilibrium state corresponding to the solid line section in FIG. 2(b) and the c-c' cross section of MOSFET "T1" is shown in FIG. 2(0).

上述した様に、上下及び左右の制御電極の存在によりM
OSFET”T1”のn領域1−04と絶縁膜106及
び絶縁膜1o1との界面は第2図(IL)、(b)に示
す通D、逆転層が形成されにくい方向に曲げられるので
、表面チャネルが形成されにくくなD、埋込みチャネル
111が形成され易くなる。
As mentioned above, due to the presence of upper and lower and left and right control electrodes, M
The interface between the n-region 1-04 of the OSFET "T1" and the insulating film 106 and the insulating film 1o1 is bent in the direction D shown in FIG. 2 (IL) and (b), so that the surface D, in which a channel is difficult to form, a buried channel 111 is easily formed.

一方、ゲート電極106は、ソースのn領域102とチ
ャネル形成用のn領域104の接合部分近傍に限定して
設けられているので、n領域104内に形成された埋込
みチャネル111を表面チャネル化する様な影響は与え
ない。しかも、ゲート電極106と上部制御電極108
の効果の重畳で、n+領域1o2近傍のn領域104と
絶縁膜105との界面のエネルギーレベルは、第2図(
&)の実線部分より一層、逆転層が形成されにくくなる
ので、主動作状態でゲート電極に正電圧が印加されても
、表面チャネルは形成されにくい。
On the other hand, since the gate electrode 106 is provided only near the junction between the source n-region 102 and the channel-forming n-region 104, it converts the buried channel 111 formed in the n-region 104 into a surface channel. It does not have any impact. Moreover, the gate electrode 106 and the upper control electrode 108
Due to the superposition of the effects of
Since the inversion layer is more difficult to form than in the solid line portion of &), a surface channel is less likely to be formed even if a positive voltage is applied to the gate electrode in the main operating state.

更に、ソースに対してドレインに正電圧が印加された状
態では、MO8FICT”Tlol OA  AI 断
面のn領域104のエネルギーバンド図は第2図(&)
の点線部分、MO3FICT”T1”のB−B’断面の
n領域104のエネルギーバンド図は、第2図(b)の
点線部分、MOSFET ftT1”のC−C菅断面の
エネルギーバンド図は第2図((1)に示す。
Furthermore, when a positive voltage is applied to the drain with respect to the source, the energy band diagram of the n-region 104 in the MO8FICT"Tlol OA AI cross section is as shown in FIG.
The energy band diagram of the n region 104 in the BB' cross section of MO3FICT "T1" is shown in the dotted line part in FIG. Figure (shown in (1).

第1図の埋込みチャネル111は、中性領域でも完全空
乏領域でも実現できるが、完全空乏の場合にはMOSF
ET”T11t、はS I T (5taticInd
uction Transistor )に移行する。
The buried channel 111 in FIG.
ET”T11t, is S I T (5taticInd
(transistor).

更にSITに移行すると′°ドレイン電流−ドレイン電
圧特性”も三極管と同様な不飽和型に移行するが、n領
域104と制御電極107,108との間で次式が成立
すれば、四極管、三極管型と同様な飽和型に移行する。
Furthermore, when shifting to SIT, the ``drain current-drain voltage characteristic'' also shifts to an unsaturated type similar to that of a triode, but if the following equation holds between the n-region 104 and the control electrodes 107 and 108, the tetrode, Shifts to a saturated type similar to the triode type.

(D2+H2芦くL     ・・・・・・(1)尚、
(1)式の左右は、第1図のn領域104が直方体の場
合に対応するが、円柱なら直径、楕円柱なら長軸を左辺
において同様に成立する。又、ゲート電極106のn領
域104上にある長さをKとおくと、 (D2+H2)<L+K     ・・・・・・(2)
が成立する場合は、第1図((1)の様に、ゲート電極
106と同一平面にn領域104のチャネル長より短か
い上部制御電極110を設けてもよい。この時、対応す
る下部制御電極109も上部制御電極110と同様にチ
ャネル長より短かくしても構わない。
(D2+H2 Ashiku L...(1) In addition,
The left and right sides of equation (1) correspond to the case where the n area 104 in FIG. 1 is a rectangular parallelepiped, but the left side holds true in the same way when the left side is the diameter in the case of a cylinder, and the long axis in the case of an elliptical cylinder. Also, if the length of the gate electrode 106 above the n region 104 is K, then (D2+H2)<L+K (2)
If this holds true, an upper control electrode 110 shorter than the channel length of the n-region 104 may be provided on the same plane as the gate electrode 106, as shown in FIG. Similarly to the upper control electrode 110, the electrode 109 may also be made shorter than the channel length.

以上の様に本実施例によれば、S OI −MOSFE
Tのチャネル形成領域の半導体領域周辺に絶縁膜を介し
て制御電極を設ける事によD、薄膜状の単結晶領域が薄
くても完全な埋込みチャネルを形成することが出来、素
子の移動度、雑音が大幅に改善される。
As described above, according to this embodiment, SOI-MOSFE
By providing a control electrode around the semiconductor region of the channel formation region of T via an insulating film, a complete buried channel can be formed even if the thin film-like single crystal region is thin, and the mobility of the element can be improved. Noise is significantly improved.

第1図(d)の構造を応用して構成した三層構造の三次
元集積回路を第3図に示す。P基板301上にソースの
n領域3o2.ドレインのn領域3o3゜絶縁膜304
を介して設けたゲート電極305がMOSFET”T2
”を構成する。絶縁膜304上の薄膜状の単結晶領域に
ソースの♂領域306゜ドレインのn+領域3o7.チ
ャネル形成のn領域308、絶縁膜309を介して設け
たゲート電極310、上部制御電極311.絶縁膜30
4中の静電遮へい電極312が、MO8F]ETゞゞT
3” を構成する。
FIG. 3 shows a three-dimensional integrated circuit with a three-layer structure constructed by applying the structure shown in FIG. 1(d). A source n region 3o2. is formed on the P substrate 301. Drain n region 3o3° insulating film 304
The gate electrode 305 provided through the MOSFET"T2
A thin single crystal region on the insulating film 304 includes a source male region 306, a drain n+ region 3o7, an n region 308 for channel formation, a gate electrode 310 provided through the insulating film 309, and an upper control region. Electrode 311. Insulating film 30
The electrostatic shielding electrode 312 in 4 is MO8F]ETゞゞT
3”.

絶縁膜309上の薄膜状の単結晶領域に、ソースのn領
域314.チャネル形成のn領域316゜ドレインのn
領域316.絶縁膜317を介して設けたゲート電極3
18.上部制御電極319゜絶縁膜309中の静電遮へ
い電極313がMO8FICT0代理人”を構成する。
A source n region 314 . Channel forming n region 316° drain n region
Area 316. Gate electrode 3 provided via insulating film 317
18. The upper control electrode 319° and the electrostatic shielding electrode 313 in the insulating film 309 constitute the MO8FICT0 agent.

この様に、多層構造の場合は、下部制御電極を静電遮へ
い電極としてもよい。むしろその方が、上下の能動層間
の電気的干渉を完全に防止し、素子発熱の放熱板として
も有効となる。
In this way, in the case of a multilayer structure, the lower control electrode may be used as an electrostatic shielding electrode. Rather, it completely prevents electrical interference between the upper and lower active layers, and is also effective as a heat sink for element heat generation.

発明の効果 以上のように本発明によれば、絶縁膜上に形成された薄
膜状の単結晶領域を用いて構成したMO!5FKTを完
全な埋込みチャネル形とする事ができる。
Effects of the Invention As described above, according to the present invention, an MO! 5FKT can be made into a completely buried channel type.

更に、完全空乏の中で埋込みチャネルを実現すれば、S
ITが実現でき、制御電極の設計に応じて、三極管特性
のSITでも、四又は五極管特性のSITでも容易に実
現できる。
Furthermore, if a buried channel is realized in complete depletion, S
IT can be realized, and depending on the design of the control electrode, SIT with triode characteristics or SIT with tetrade or pentode characteristics can easily be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(&)は本発明の第1の実施例における半導体装
置の構造を示す平面図、第1図(b)は第1図(IL)
0)X−X’断面図、第1図(0)は第1図(a)のY
 −Y’断面図、第1図(d)は第1図(b)の半導体
装置の他の例を示す断面図、第2図(&)は第1の実施
例の第1図に対応した五−ム1断面のエネルギーバンド
図、第2図(b)は同B −B’断面のエネルギーバン
ド図、第2図(C)は同C−C’断面のエネルギーバン
ド図、第2図(d)は同c−c’断面のエネルギーバン
ド図、第3図は第1の実施例を利用して、三層構造とし
た半導体装置の断面図、第4図は表面チャネル型SOI
−MO8FXT (D従来例の断面図、第6図(IL)
は第4図の従来例のムーム1断面の熱平衡時のエネルギ
ーバンド図、第5図(b)は同主動作時のエネルギーバ
ンド図、第6図(IL)は従来の他の埋込みチャネル型
SOI−MO8FXTの正面断面図、第6図(b)は同
側面断面図、第7図(IL) 、 (b) 、 (0)
は第6図の従来例のIC−x’断面対応を示すエネルギ
ーバンド図、第7図(d)は同F−F’断面対応を示す
エネルギーバンド図である。 101.105・・・・・・絶縁膜、102,103・
・・・・・n+領領域104・・・・・・n領域、10
6・・・・・・ゲート電極、107・・・・・・下部制
御電極、10B・・・・・・上部制御電極、T1・・・
・・・MO8FICT0代理人の氏名 弁理士 中 尾
 敏 男 ほか1名第1図   、Lン (C) 第2図 第2(!I 第3図 第4図 第7図
FIG. 1(&) is a plan view showing the structure of a semiconductor device according to the first embodiment of the present invention, FIG. 1(b) is FIG. 1(IL)
0) XX' sectional view, Figure 1 (0) is Y in Figure 1 (a)
-Y' sectional view, FIG. 1(d) is a sectional view showing another example of the semiconductor device of FIG. 1(b), and FIG. 2(&) corresponds to FIG. 1 of the first embodiment. 2(b) is an energy band diagram of the cross section B-B', and FIG. 2(C) is an energy band diagram of the cross-section C-C'. d) is an energy band diagram of the c-c' cross section, FIG. 3 is a cross-sectional view of a semiconductor device with a three-layer structure using the first embodiment, and FIG. 4 is a surface channel type SOI
-MO8FXT (D Cross-sectional view of conventional example, Figure 6 (IL)
is an energy band diagram at thermal equilibrium of the cross section of Moom 1 of the conventional example in Figure 4, Figure 5 (b) is an energy band diagram at the same main operation, and Figure 6 (IL) is another conventional buried channel type SOI. - Front sectional view of MO8FXT, Figure 6 (b) is the same side sectional view, Figure 7 (IL), (b), (0)
is an energy band diagram showing correspondence to the IC-x' cross section of the conventional example in FIG. 6, and FIG. 7(d) is an energy band diagram showing correspondence to the FF' cross section of the conventional example. 101.105...Insulating film, 102,103.
...n+ territory area 104...n area, 10
6... Gate electrode, 107... Lower control electrode, 10B... Upper control electrode, T1...
...MO8FICT0 Agent's name: Patent attorney Toshio Nakao and one other person Figure 1, Ln (C) Figure 2, Figure 2 (!I, Figure 3, Figure 4, Figure 7)

Claims (3)

【特許請求の範囲】[Claims] (1)第1の絶縁膜上に形成された単結晶半導体領域に
ソース領域、ドレイン領域、チャネル形成領域を形成す
るとともに、第2の絶縁膜を介してゲート電極を設け前
記チャネル形成領域周辺に第1の絶縁膜もしくは第2の
絶縁膜を介して制御電極を設けた事を特徴とする半導体
装置。
(1) A source region, a drain region, and a channel formation region are formed in a single crystal semiconductor region formed on a first insulating film, and a gate electrode is provided through a second insulating film around the channel formation region. A semiconductor device characterized in that a control electrode is provided through a first insulating film or a second insulating film.
(2)制御電極が上部制御電極と下部制御電極から成り
、上部制御電極がチャネルの上面、側面に対応して設け
られ、下部制御電極がチャネルの下面に対応して設けら
れた事を特徴とする特許請求の範囲第1項記載の半導体
装置。
(2) The control electrode is composed of an upper control electrode and a lower control electrode, and the upper control electrode is provided corresponding to the upper surface and side surface of the channel, and the lower control electrode is provided corresponding to the lower surface of the channel. A semiconductor device according to claim 1.
(3)制御電極の上下間隔D、左右間隔H、チャネル形
成領域のチャネル長Lに対して (D^2+H^2)^1^/^2<L が成立するように構成した事を特徴とする特許請求の範
囲第1項記載の半導体装置。
(3) It is characterized in that it is constructed so that (D^2+H^2)^1^/^2<L holds for the vertical interval D of the control electrodes, the horizontal interval H, and the channel length L of the channel forming region. A semiconductor device according to claim 1.
JP9860886A 1986-04-28 1986-04-28 Semiconductor device Pending JPS62254465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9860886A JPS62254465A (en) 1986-04-28 1986-04-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9860886A JPS62254465A (en) 1986-04-28 1986-04-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62254465A true JPS62254465A (en) 1987-11-06

Family

ID=14224307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9860886A Pending JPS62254465A (en) 1986-04-28 1986-04-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62254465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349228A (en) * 1991-12-27 1994-09-20 Purdue Research Foundation Dual-gated semiconductor-on-insulator field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349228A (en) * 1991-12-27 1994-09-20 Purdue Research Foundation Dual-gated semiconductor-on-insulator field effect transistor

Similar Documents

Publication Publication Date Title
KR950034767A (en) MIS semiconductor device
JPS59193066A (en) Mos semiconductor device
JP3128364B2 (en) Semiconductor device and manufacturing method thereof
JPS62254465A (en) Semiconductor device
US3344322A (en) Metal-oxide-semiconductor field effect transistor
JP2780175B2 (en) Semiconductor device
JP3503094B2 (en) Insulated gate type static induction transistor
JP2003086795A (en) Semiconductor device, manufacturing method therefor, integrated circuit and semiconductor system
JPH0222868A (en) Insulated-gate field-effect transistor
JP2917931B2 (en) Inverter structure
JPS59228762A (en) Multigate transistor
JPH051083Y2 (en)
JP3248791B2 (en) Semiconductor device
JPH0566031B2 (en)
JPS61271854A (en) Semiconductor-element isolating structure and manufacture thereof
JPH09167839A (en) Insulated gate field effect transistor and its manufacture
JPH0560266B2 (en)
JP2005012110A (en) Microfine mosfet
JPH05315437A (en) Manufacture of semiconductor device
JP2982049B2 (en) Insulated gate type static induction transistor
JPS6024593B2 (en) semiconductor equipment
JPS6244698B2 (en)
JP2893793B2 (en) Vertical MOS field-effect transistor
JPS5835979A (en) Semiconductor device
JPS61100975A (en) Junction type field-effect transistor