JPS5835979A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5835979A
JPS5835979A JP13571881A JP13571881A JPS5835979A JP S5835979 A JPS5835979 A JP S5835979A JP 13571881 A JP13571881 A JP 13571881A JP 13571881 A JP13571881 A JP 13571881A JP S5835979 A JPS5835979 A JP S5835979A
Authority
JP
Japan
Prior art keywords
layer
region
semiconductor device
semiconductor
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13571881A
Other languages
Japanese (ja)
Inventor
Yasuaki Terui
照井 康明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP13571881A priority Critical patent/JPS5835979A/en
Publication of JPS5835979A publication Critical patent/JPS5835979A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To reduce the plane occupied area of an FET by arranging source and channel drain regions to each Si layer laminated through an insulating layer. CONSTITUTION:The SiO2 22 with an opening 33, an N type Si layer 23, SiO2 24 opposite to the opening 33 and a P type Si layer 25 are laminated onto a P type Si layer 21. An N<+> layer 26 is formed near the window 33 of the P layer 21 and used as a source electrode 30, and an N<+> layer 29 is shaped near the window 34 of the P layer 25 and employed as a drain electrode. P layers 27, 28 are formed to the N layer 23, and used as the gate electrode 34. A semiconductor layer is shaped through a CVD method, and the insulating layer is obtained through oxidation treatment or the evaporation of an insulator. According to this constitution, the FET can be arranged at high density.

Description

【発明の詳細な説明】 本発明は半導体装置に関するものであり、特に高集積化
に適したトランジスタを有する半導体装置を提供するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly provides a semiconductor device having a transistor suitable for high integration.

従来、半導体集積回路に最も多く用いられているMOB
型トランジスタは、第1図にその断面構造が示されてい
るように、半導体基板1の一生面に平面的にソース拡散
領域2とドレイン拡散領域3とを配置し、このソース拡
散領域2とドレイン拡散領域3との間にこれらの領域と
ほぼ同一平面上に絶縁膜4を介したゲート6を配置し、
ソース拡散領域2とドレイン拡散領域3のそれぞれに対
応して形成されたソース電極eとドレイン電極8との間
の電流通路を流れる電流を、基板電極9に対して印加さ
れたゲート電極7への電圧により導通状態あるいは非導
通状態になるように制御するものである。
MOB is the most commonly used MOB for semiconductor integrated circuits.
As shown in FIG. 1, a type transistor has a source diffusion region 2 and a drain diffusion region 3 disposed two-dimensionally on the entire surface of a semiconductor substrate 1. A gate 6 is arranged between the diffusion region 3 and the insulating film 4 on substantially the same plane as these regions,
The current flowing through the current path between the source electrode e and the drain electrode 8 formed corresponding to the source diffusion region 2 and the drain diffusion region 3 is applied to the gate electrode 7 applied to the substrate electrode 9. It is controlled to be in a conductive state or a non-conductive state by voltage.

さらに、他の従来例として第2図に示すようなFET型
トランジ1スタがある。このトランジスタは一導電型の
半導体基板10の一生面にこれと反対導電型の不純物を
拡散したチャネル領域13を形成し、このチャネル領域
13にこれと同型の高濃度の不純物を拡散したソース拡
散領域11とドレイン拡散領域12を分離して形成し、
これらの領域間にチャネル領域13と同一導電型の高濃
度の不純物を拡散してゲート領域14を形成し、ソース
拡散領域11とドレイン拡散領域12のそれぞれに対応
して形成されたツース電極16とドレイン電極17どの
間の電流通路を流れる電流を、基板電極18に対して印
加されたゲート電極16への電圧により導通状態あるい
は非導通状態になるように制御するものである。
Furthermore, as another conventional example, there is a single FET type transistor as shown in FIG. This transistor has a channel region 13 in which impurities of the opposite conductivity type are diffused on the entire surface of a semiconductor substrate 10 of one conductivity type, and a source diffusion region in which impurities of the same type as the channel region 13 are diffused at a high concentration. 11 and the drain diffusion region 12 are formed separately,
A gate region 14 is formed by diffusing high concentration impurities of the same conductivity type as the channel region 13 between these regions, and tooth electrodes 16 are formed corresponding to the source diffusion region 11 and the drain diffusion region 12, respectively. The current flowing through the current path between the drain electrodes 17 is controlled to be in a conductive state or a non-conductive state by a voltage applied to the gate electrode 16 with respect to the substrate electrode 18.

前記従来のトランジスタは、いずれも半導体基板の一主
面側にソース拡散領域、ゲート領域およびドレイン拡散
領域を平面的に配置しているために、トランジスタ1個
あたシの占有面積が大きくなる。トランジスタの占有面
積を小さくするため、従来より各部の寸法を縮少するた
Aまざまなくふうがなされてきたが、この点からのくふ
うだけではより高集積化するのに限界がある。
In each of the conventional transistors, a source diffusion region, a gate region, and a drain diffusion region are arranged in a plane on one main surface side of a semiconductor substrate, so that each transistor occupies a large area. In order to reduce the area occupied by transistors, various efforts have been made to reduce the dimensions of various parts, but there is a limit to increasing the degree of integration from this point alone.

例えば、現在の技術水準における2μの寸法精度のホト
リソプラフィの技術を用いると、ソース、  領域、ド
レイ/領域はそれぞれ6×6μ2.ゲート領域は巾5μ
、長さ2μ程度となり、トランジスタ1個の占有面積は
約60μ2必要となる。
For example, using photolithography technology with a dimensional accuracy of 2μ at the current state of the art, the source, region, and drain/region are each 6×6μ2. Gate area is 5μ wide
, the length is about 2μ, and the area occupied by one transistor is about 60μ2.

本発明は、従来のトランジスタをさらに高集積化するた
めになされたものであシ、絶縁層を介して積層された各
半導体膜のそれぞれにトランジスタのソース領域、チャ
ネル領域、ドレイン領域を配置することによシ、トラン
ジスタの平面的な占有面積を減少させ半導体装置の高集
積化を図るものである。
The present invention has been made in order to further increase the integration of conventional transistors.The present invention has been made in order to further increase the degree of integration of conventional transistors. In addition, the planar area occupied by the transistor is reduced and the integration of the semiconductor device is increased.

以下本発明の実施例を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例における半導体装置の要部断
面図を示している。同半導体装置は、複数の半導体層よ
りなる積層構造を有しており、第1の半導体層21(例
えばp型)の上には、この半導体層21の主面の一部が
露出するような開口部33を有する第1の絶縁層(ある
いは比抵抗が100副以上の高抵抗層)22を形成し、
この絶縁層22の上に第2の半導体層23(例えばn型
)を形成し、さらにこの半導体層23の上に第2の絶縁
層(あるいは高抵抗層)′24を形成し、さらにこの絶
縁層24上に第3の半導体層26(例えばp型)を形成
している。
FIG. 3 shows a sectional view of essential parts of a semiconductor device according to an embodiment of the present invention. The semiconductor device has a stacked structure consisting of a plurality of semiconductor layers, and a part of the main surface of the semiconductor layer 21 is exposed above the first semiconductor layer 21 (for example, p-type). Forming a first insulating layer (or a high resistance layer with a specific resistance of 100 sub or more) 22 having an opening 33,
A second semiconductor layer 23 (for example, n-type) is formed on this insulating layer 22, a second insulating layer (or high resistance layer) '24 is further formed on this semiconductor layer 23, and A third semiconductor layer 26 (for example, p-type) is formed on layer 24.

また第1の半導体層21には、第1の絶縁層22の開口
部33の付近に不純物拡散領域26(例えばn+ 不純
物)を形成し、これをソース電極30としている。同様
に第3の半導体層25には、第2の絶縁層24の開口部
34の付近に不純物拡散領域29(例えばn+不純物)
を形成しこれをドレイン電極31としている。さらに、
第2の半導体層23には、上記不純物拡散領域26と2
9間の領域32の導電率を制御するための電圧を印加す
る不純物拡散ゲート領域27.28(例えばp型)−を
形成し、これをゲート電極34とする。
Further, an impurity diffusion region 26 (for example, n+ impurity) is formed in the first semiconductor layer 21 near the opening 33 of the first insulating layer 22, and this is used as the source electrode 30. Similarly, in the third semiconductor layer 25, there is an impurity diffusion region 29 (for example, n+ impurity) near the opening 34 of the second insulating layer 24.
is formed, and this is used as the drain electrode 31. moreover,
The second semiconductor layer 23 includes the impurity diffusion regions 26 and 2.
Impurity diffused gate regions 27 and 28 (for example, p-type) to which a voltage is applied to control the conductivity of the region 32 between the regions 9 and 9 are formed, and these are used as gate electrodes 34.

このような構造の半導体装置において ソース々 電極3oより電流通路(領域32)を通ってドレイン電
極31に流れる電流はゲート電極34に印加される電圧
により導通状態あるいは非導通状態に制御される。
In a semiconductor device having such a structure, a current flowing from the source electrode 3o to the drain electrode 31 through the current path (region 32) is controlled to be in a conductive state or a non-conductive state by a voltage applied to the gate electrode 34.

なお、この実施例では電流通路(領域32)を流れる電
流を制御するために、電流通路の両側に不純物拡散ゲー
ト領域を配置し、この不純物拡散ゲート領域に電圧を印
加して電流を制御したが、電流通路(領域32)と不純
物拡散ゲート領t#7との間に絶縁膜を設け、この絶縁
膜を介して電流通路に電圧を印加する構成も可能である
。さらにショットキー型ゲートによって電流を制御して
もよりO また、第1および第2の絶縁層22.24は、酸化処理
または、絶縁物の蒸着等に!つで形成できる。さらに各
半導体層21,23.25がシリコンの場合には、この
シリコンに酸素を高濃度に注入したり、あるいはプロト
ンを照射することによシ第1および第2の絶縁層22.
24を形成できる。
In this example, in order to control the current flowing through the current path (region 32), impurity diffusion gate regions are placed on both sides of the current path, and a voltage is applied to the impurity diffusion gate regions to control the current. Alternatively, an insulating film may be provided between the current path (region 32) and the impurity diffusion gate region t#7, and a voltage may be applied to the current path through this insulating film. In addition, the first and second insulating layers 22 and 24 may be subjected to oxidation treatment, vapor deposition of an insulator, etc.! It can be formed with. Furthermore, when each semiconductor layer 21, 23.25 is made of silicon, the first and second insulating layers 22.
24 can be formed.

また、各半導体層21,23.25は気相成長(CVD
 )法、蒸着法等の方法により順次形成すればよい。蒸
着法により形成した半導体層は担体の移動度が低いが、
電子線、レーザ光等により結晶化して、はぼ単結晶程度
の移動度が得られる。
Further, each semiconductor layer 21, 23, 25 is formed by vapor phase growth (CVD).
) method, vapor deposition method, or the like. Semiconductor layers formed by vapor deposition have low carrier mobility;
It is crystallized by electron beams, laser beams, etc., and has a mobility comparable to that of a single crystal.

前記構成の半導体装置は各半導体層を重ねた積層構造を
有している。すなわち、各半導体層にソース領域、ゲー
ト領域、ドレイン領域が形成されている三次元的な配置
構造を有しているため、従来の平面的な半導体装置に比
べて素子1個あたりの占有面積を小さくできる。例えば
、2μの寸法精度のホトリソグラフィの技術を用い、ソ
ース領域、ドレイン゛領域がそれぞれ6μ×6μ程度の
寸法とすると、トラフ2フ21個当たシの占める面積も
5μ×5μすなわち26μ2程度となり、従来の場合(
60μ2)に比べて半導体基板の平面上での集積度が2
倍程度になる。
The semiconductor device having the above structure has a stacked structure in which semiconductor layers are stacked. In other words, since each semiconductor layer has a three-dimensional arrangement structure in which a source region, gate region, and drain region are formed, the area occupied by each element is reduced compared to conventional planar semiconductor devices. Can be made smaller. For example, if we use photolithography technology with a dimensional accuracy of 2μ and make the source region and drain region each about 6μ x 6μ, the area occupied by 21 troughs will be 5μ x 5μ or about 26μ2. , in the conventional case (
60μ2), the degree of integration on the plane of the semiconductor substrate is 2
It will be about double.

第3図は本発明の他の実施例における半導体装置の要部
断面図を示している。この実施例は、第3図に示す先の
実施例の半導体装置をさらに多層化したものである。す
なわち、第3図の半導体装置の各層に加えて、半導体層
41および絶縁層42が付加されている。半導体層41
には電流通路となる領域46を囲む不純物拡散ゲート領
域43゜44が形成され、これをゲート電極46として
いる。その他の箇所は第3図の半導体装置と同じである
FIG. 3 shows a sectional view of essential parts of a semiconductor device according to another embodiment of the present invention. In this embodiment, the semiconductor device of the previous embodiment shown in FIG. 3 is further multilayered. That is, in addition to each layer of the semiconductor device shown in FIG. 3, a semiconductor layer 41 and an insulating layer 42 are added. semiconductor layer 41
Impurity diffusion gate regions 43 and 44 are formed to surround a region 46 serving as a current path, and these are used as gate electrodes 46. The other parts are the same as the semiconductor device shown in FIG.

このような構成の半導体装置は、ソース電極30から領
域32と45よりなる電流通路を通ってドレイン電極3
1に流れる電流は、それぞれ異なるゲート電極a4.4
5に印加される電圧により導通状態、非導通状態が制御
される。
In a semiconductor device having such a configuration, a current path is formed from the source electrode 30 through the regions 32 and 45 to the drain electrode 3.
1, the current flowing through each different gate electrode a4.4
The conductive state and non-conductive state are controlled by the voltage applied to 5.

この実施例の半導体装置のように多層化された場合にも
、その占有面積は増加せず、第3図の場合と同じである
。なお、各半導体層、絶縁層の厚みは主面方向の寸法に
比べて極めて小さいため多層化しても同装置の厚みはわ
ずかに増加するだけである。
Even when the semiconductor device of this embodiment is multilayered, the occupied area does not increase and is the same as the case of FIG. 3. Note that the thickness of each semiconductor layer and insulating layer is extremely small compared to the dimension in the direction of the main surface, so even if the device is multilayered, the thickness of the device only increases slightly.

以上説明したように本発明の半導体装置は複数の各半導
体層に互いに重なるようにソース、ゲートおよびドレイ
ンを形成しているためトランジスタの平面的な占有面積
を従来と比べて大幅に減少できる。さらに、トランジス
タの各部分の寸法は従来と同じであるため、特性の劣化
は生じない。
As described above, in the semiconductor device of the present invention, the source, gate, and drain are formed in each of the plurality of semiconductor layers so as to overlap with each other, so that the planar area occupied by the transistor can be significantly reduced compared to the conventional one. Furthermore, since the dimensions of each part of the transistor are the same as those of the conventional transistor, no deterioration of characteristics occurs.

以上のように本発明の半導体装置はトランジスタを高密
度に配置できるため、高集積化が可能であシ、工業上の
利用価値が高い。
As described above, since the semiconductor device of the present invention allows transistors to be arranged at high density, it can be highly integrated and has high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ従来のトランジスタを有
する半導体装置の要部断面図、第3図は本発明の一実施
例における半導体装置の要部断面図、第4図は本発明の
他の実施例における半導体装置の要部断面図である。 21 23 25 41 ・・−・・・半導体層、22
゜24.42・・・・・・絶縁層、26・・・・・・不
純物拡散領域(ソース領域)、27,28,43,44
・・・・不純物拡散ゲート領域、29・・・・・・不純
物拡散領域(ソース領域)0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
1 and 2 are sectional views of main parts of a semiconductor device having a conventional transistor, FIG. 3 is a sectional view of main parts of a semiconductor device according to an embodiment of the present invention, and FIG. 4 is a sectional view of main parts of a semiconductor device according to another embodiment of the present invention. 1 is a sectional view of a main part of a semiconductor device in an example. 21 23 25 41 --- Semiconductor layer, 22
゜24.42... Insulating layer, 26... Impurity diffusion region (source region), 27, 28, 43, 44
... Impurity diffusion gate region, 29 ... Impurity diffusion region (source region) 0 Name of agent Patent attorney Toshio Nakao and 1 other person 1st
@

Claims (1)

【特許請求の範囲】[Claims] 開口部を有する絶縁層を介して少なくとも第1゜第2お
よび第3の半導体層を積層し、前記第1の半導体層にソ
ース領域を形成し、前記M2の半導体層にゲート領域を
形成し、前記第3の絶縁層に一ドレイン領域を形成し、
前記ソース領域、ゲート領域およびドレイン領域を前記
絶縁層の開口部を通して電気的に接続してなるトランジ
スタを有する半導体装置。
stacking at least a first second and third semiconductor layer through an insulating layer having an opening, forming a source region in the first semiconductor layer, and forming a gate region in the M2 semiconductor layer; forming a drain region in the third insulating layer;
A semiconductor device including a transistor in which the source region, gate region, and drain region are electrically connected through an opening in the insulating layer.
JP13571881A 1981-08-28 1981-08-28 Semiconductor device Pending JPS5835979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13571881A JPS5835979A (en) 1981-08-28 1981-08-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13571881A JPS5835979A (en) 1981-08-28 1981-08-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS5835979A true JPS5835979A (en) 1983-03-02

Family

ID=15158253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13571881A Pending JPS5835979A (en) 1981-08-28 1981-08-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5835979A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554570A (en) * 1982-06-24 1985-11-19 Rca Corporation Vertically integrated IGFET device
JPS6338263A (en) * 1986-08-04 1988-02-18 Nec Kyushu Ltd Semiconductor device
WO1999042770A1 (en) 1998-02-20 1999-08-26 Matsushita Refrigeration Company Refrigerator having a cooler mounted in each of a refrigerator compartment and a freezer compartment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4554570A (en) * 1982-06-24 1985-11-19 Rca Corporation Vertically integrated IGFET device
JPS6338263A (en) * 1986-08-04 1988-02-18 Nec Kyushu Ltd Semiconductor device
WO1999042770A1 (en) 1998-02-20 1999-08-26 Matsushita Refrigeration Company Refrigerator having a cooler mounted in each of a refrigerator compartment and a freezer compartment

Similar Documents

Publication Publication Date Title
US4924279A (en) Thin film transistor
JPH02275672A (en) Thin film transistor
KR920010975A (en) Semiconductor device and manufacturing method thereof
JPH06104438A (en) Film transistor
JP2540037B2 (en) Method for manufacturing semiconductor device
JPS63102264A (en) Thin film semiconductor device
JPS5835979A (en) Semiconductor device
JPH0595117A (en) Thin film transistor and its manufacture
JPS597231B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP2653092B2 (en) Complementary thin film transistor and method of manufacturing the same
JP3295188B2 (en) Manufacturing method of SOI structure MOS transistor
JP3061907B2 (en) Semiconductor device and manufacturing method thereof
JPH0384963A (en) Thin film transistor
JPH04162477A (en) Thin film transistor
JPH0472769A (en) Thin film transistor
JPS6136705B2 (en)
JPH04127574A (en) Vertical type insulated-gate field-effect transistor
JPH0341479Y2 (en)
JPH0417370A (en) Thin-film transistor
JPH07273296A (en) Semiconductor device
JPH0432264A (en) Semiconductor device and manufacture thereof
JPS5835981A (en) Semiconductor device
JPH02207534A (en) Semiconductor device
JPS61294873A (en) Field effect type transistor
JP2532471B2 (en) Semiconductor device