JPH05315437A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05315437A
JPH05315437A JP4146397A JP14639792A JPH05315437A JP H05315437 A JPH05315437 A JP H05315437A JP 4146397 A JP4146397 A JP 4146397A JP 14639792 A JP14639792 A JP 14639792A JP H05315437 A JPH05315437 A JP H05315437A
Authority
JP
Japan
Prior art keywords
oxide film
semiconductor substrate
silicon semiconductor
doped polysilicon
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4146397A
Other languages
Japanese (ja)
Inventor
Hitoshi Yamaguchi
仁 山口
Keimei Himi
啓明 氷見
Seiji Fujino
誠二 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4146397A priority Critical patent/JPH05315437A/en
Publication of JPH05315437A publication Critical patent/JPH05315437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce thermal and electrical interference between elements, in the manufacturing method of a semiconductor device wherein an SOI region is formed by mutual bonding of silicon semiconductor substrates. CONSTITUTION:A first oxide film 12, doped polysilicon 20 and a second oxide film 14 are formed between a first silicon semiconductor substrate 1 and a second silicon semiconductor substrate 2 which are mutually bonded, and an SOI (silicon on insulator) region 10 is constituted. In the SOI region 10 formed in the above manner, a buried oxide film is double-layered and can be thickly formed, so that thermal interference between elements can be reduced. Further, by applying the doped polysilicon 20 to an electric shield, electric interference between elements can be reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁分離用の誘電体膜
上の半導体層(SOI:Silicon On Insulator) に形成
される誘電体分離可能な半導体装置の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a dielectric separable semiconductor device formed in a semiconductor layer (SOI: Silicon On Insulator) on a dielectric film for insulation separation.

【0002】[0002]

【従来技術】従来、SOIに形成されるCMOS(Compl
ementary Metal Oxide Semiconductor) としては、特開
平2−96350号公報「半導体装置の製造方法」にて
開示されたものが知られている。又、特開平3−126
255号公報「半導体装置及びその製造方法」にて開示
されたものが知られている。前者は、酸化膜によって絶
縁分離された素子分離領域を半導体基板に形成する方法
である。又、後者は、ポリシリコンとCVD(Chemical
Vapor Deposition) 酸化膜を介して接合しSOIを形成
する方法である。
2. Description of the Related Art Conventionally, CMOS (Compl
As an ementary metal oxide semiconductor), one disclosed in Japanese Patent Laid-Open No. 2-96350, "Method for manufacturing semiconductor device" is known. In addition, JP-A-3-126
The one disclosed in Japanese Unexamined Patent Publication No. 255-255, “Semiconductor Device and Manufacturing Method Therefor” is known. The former is a method of forming an element isolation region, which is isolated by an oxide film, on a semiconductor substrate. In the latter case, polysilicon and CVD (Chemical
Vapor Deposition) A method of forming an SOI by bonding via an oxide film.

【0003】[0003]

【発明が解決しようとする課題】ところで、前者の方法
では、酸化膜のみで電気的シールド層がないため基板電
位変動や外部ノイズといった交流的な分離特性としては
望ましくなく、素子の複合化や耐ノイズ性にとって不利
であった。又、酸化膜の埋め込みできる膜厚には限界が
あり、SOI領域は外部からの発熱に対しても分離し難
いという問題があった。後者の方法では、CVD酸化膜
を埋め込んでシリコンウェーハ同士を接合するには、C
VD酸化膜埋め込み後に平坦化(研磨)工程が必要であ
り面倒であった。又、CVD酸化膜はや酸化膜質の劣化
から接合強度が弱いという問題や生産性の低下などの見
地から 0.5μm 以上とすることは困難でありこのように
薄い酸化膜厚では電気的シールド効果が少ないという問
題があった。
By the way, the former method is not desirable as an AC isolation characteristic such as substrate potential fluctuation and external noise because it is an oxide film only and does not have an electrical shield layer. It was disadvantageous for noise. In addition, there is a limit to the film thickness in which the oxide film can be embedded, and there is a problem that the SOI region is difficult to separate even when heat is generated from the outside. According to the latter method, in order to bond the silicon wafers with each other by embedding the CVD oxide film, C
A flattening (polishing) step is required after the VD oxide film is embedded, which is troublesome. In addition, it is difficult to set the thickness of the CVD oxide film to 0.5 μm or more from the viewpoint that the bonding strength is weak due to the deterioration of the oxide film quality and the productivity is reduced. There was a problem of being few.

【0004】本発明は、上記の課題を解決するために成
されたものであり、その目的とするところは、シリコン
半導体基板同士の接合によりSOI領域を形成する半導
体装置の製造方法において、接合強度を持たせ埋め込み
酸化膜を厚くし、電気的シールド層を設けることにより
素子間の熱的・電気的な相互干渉を低減することであ
る。
The present invention has been made in order to solve the above problems, and an object of the present invention is to provide a method of manufacturing a semiconductor device in which an SOI region is formed by bonding silicon semiconductor substrates to each other, in a bonding strength. By increasing the thickness of the buried oxide film and providing an electrical shield layer, it is possible to reduce thermal and electrical mutual interference between elements.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
の発明の構成は、第1のシリコン半導体基板の鏡面側に
素子間分離用の溝部及び第2のシリコン半導体基板との
分離用の凹部を形成する第1の工程と、前記溝部及び前
記凹部に熱酸化による第1の酸化膜及びドープドポリシ
リコンを順次形成する第2の工程と、前記第1のシリコ
ン半導体基板の鏡面側と前記第2のシリコン半導体基板
の鏡面側とを接合し、前記溝部及び前記凹部を再び熱酸
化することにより第2の酸化膜を形成すると共に少なく
とも前記凹部をその第2の酸化膜で埋め込む第3の工程
とを備えたことを特徴とする。
The structure of the invention for solving the above-mentioned problems is a groove for element isolation on the mirror surface side of the first silicon semiconductor substrate and a recess for isolation from the second silicon semiconductor substrate. A second step of sequentially forming a first oxide film and doped polysilicon by thermal oxidation in the groove and the recess, and a mirror surface side of the first silicon semiconductor substrate and the first step. A third oxide film is formed by bonding the second silicon semiconductor substrate to the mirror surface side and thermally oxidizing the groove and the recess again, and at least the recess is filled with the second oxide film. And a process.

【0006】[0006]

【作用及び効果】上記の手段によれば、第1のシリコン
半導体基板には溝部及び凹部が形成され、それら溝部及
び凹部には熱酸化により第1の酸化膜及びドープドポリ
シリコンが順次形成される。更に、上記溝部及び凹部が
熱酸化されて少なくともその凹部が第2の酸化膜にて埋
め込まれSOI領域が形成される。一般に、シリコン半
導体に比べその酸化膜は熱伝導率が小さいため、半導体
基板及び隣接素子からの熱の流入を低減することができ
る。更に、熱酸化により埋め込み酸化膜が形成できるた
めCVD酸化膜形成時のような研磨工程の必要がなく接
合信頼性を向上できる。このように、本発明の半導体装
置の製造方法ではドープドポリシリコンの熱酸化も利用
して二重の酸化膜(分離熱酸化膜)を形成するため、容
易にSOI領域周囲における酸化膜厚を厚くでき、素子
間の熱的な相互干渉が低減できる。又、SOI領域と半
導体基板間及び隣接素子間の酸化膜容量を低減すること
ができ、半導体基板及び隣接素子による電位変動の影響
がSOI領域に伝わり難くなる。更に、酸化膜で挟まれ
たドープドポリシリコン層をGND或いは電源電圧等の
固定電位につなぐことにより、このドープドポリシリコ
ン層を基板及び隣接素子に対する電気的シールド層とし
て利用することができ、素子間の電気的な相互干渉が低
減できる。
According to the above means, the groove and the recess are formed in the first silicon semiconductor substrate, and the first oxide film and the doped polysilicon are sequentially formed in the groove and the recess by thermal oxidation. It Further, the groove and the recess are thermally oxidized and at least the recess is filled with the second oxide film to form the SOI region. In general, the oxide film has a smaller thermal conductivity than that of a silicon semiconductor, so that the inflow of heat from the semiconductor substrate and adjacent elements can be reduced. Furthermore, since a buried oxide film can be formed by thermal oxidation, the bonding reliability can be improved without the need for a polishing step like when forming a CVD oxide film. As described above, in the method for manufacturing a semiconductor device of the present invention, a double oxide film (separation thermal oxide film) is formed by utilizing the thermal oxidation of doped polysilicon, so that the oxide film thickness around the SOI region can be easily adjusted. The thickness can be increased, and thermal mutual interference between elements can be reduced. Further, it is possible to reduce the oxide film capacitance between the SOI region and the semiconductor substrate and between the adjacent elements, and it becomes difficult for the influence of the potential variation due to the semiconductor substrate and the adjacent elements to be transmitted to the SOI region. Further, by connecting the doped polysilicon layer sandwiched by oxide films to a fixed potential such as GND or power supply voltage, this doped polysilicon layer can be used as an electrical shield layer for the substrate and adjacent elements, Electrical mutual interference between elements can be reduced.

【0007】[0007]

【実施例】以下、本発明を具体的な実施例に基づいて説
明する。図1は本発明に係る半導体装置の製造方法を用
いて形成された半導体装置の断面構造を示した模式図で
ある。又、図2及び図3は、図1の半導体装置の製造工
程における断面構造を示した模式図である。半導体装置
100は、第1のシリコン半導体基板1の鏡面側と第2
のシリコン半導体基板2の鏡面側とが接合されている。
そして、それらの間に形成された第1の酸化膜12、ド
ープドポリシリコン20及び第2の酸化膜14によりS
OI領域10が形成されている。
EXAMPLES The present invention will be described below based on specific examples. FIG. 1 is a schematic view showing a cross-sectional structure of a semiconductor device formed by using the method for manufacturing a semiconductor device according to the present invention. 2 and 3 are schematic views showing a sectional structure in the manufacturing process of the semiconductor device of FIG. The semiconductor device 100 has a mirror surface side of the first silicon semiconductor substrate 1 and a second silicon semiconductor substrate 1.
Is bonded to the mirror surface side of the silicon semiconductor substrate 2.
Then, the first oxide film 12, the doped polysilicon 20 and the second oxide film 14 formed between them form an S
The OI region 10 is formed.

【0008】本実施例装置では、SOI領域10にCM
OSを形成し、その他の領域にはDMOS(Double Diff
usion MOS:自己整合による2重拡散MOS) を形成
した。SOI領域10のCMOSは、S(ソース)6
1、G(ゲート)62、D(ドレイン)63及びGND
(接地)64の各電極から成るnchMOS及びS(ソー
ス)71、G(ゲート)72、D(ドレイン)73及び
DD(電源電圧)74の各電極から成るpchMOSにて
形成されている。又、DMOSは第1のシリコン半導体
基板1側のS(ソース)51、G(ゲート)52及び第
2のシリコン半導体基板2側のD(ドレイン)53の各
電極から形成されている。尚、ドープドポリシリコン2
0には電極80が形成され、この電極80をGND又は
電源電圧等の固定電位につなぐことによりドープドポリ
シリコン20は電気的シールド層となる。この他、上記
SOI領域10及びその他の領域にそれぞれバイポーラ
トランジスタやIGBT(Insulated Gate Bipolar Tran
sistor) を形成することもできる。
In the apparatus of the present embodiment, CM is placed in the SOI area 10.
The OS is formed, and DMOS (Double Diff
usion MOS: Self-aligned double diffusion MOS) was formed. The CMOS in the SOI region 10 has an S (source) 6
1, G (gate) 62, D (drain) 63 and GND
It is formed of an nchMOS formed of each electrode of (ground) 64 and a pchMOS formed of each electrode of S (source) 71, G (gate) 72, D (drain) 73 and V DD (power supply voltage) 74. Further, the DMOS is formed from electrodes of S (source) 51 and G (gate) 52 on the first silicon semiconductor substrate 1 side and D (drain) 53 on the second silicon semiconductor substrate 2 side. In addition, doped polysilicon 2
An electrode 80 is formed at 0, and the doped polysilicon 20 becomes an electrical shield layer by connecting the electrode 80 to a fixed potential such as GND or a power supply voltage. In addition, a bipolar transistor and an IGBT (Insulated Gate Bipolar Transistor) are provided in the SOI region 10 and other regions, respectively.
sistor) can also be formed.

【0009】本実施例の半導体装置100は、以下のよ
うな工程を経て形成される。先ず、図2(a) に示したよ
うに、ウェーハの片面が鏡面研磨された第1のシリコン
半導体基板1を用い、その主面(鏡面側)に熱酸化によ
り酸化膜11を形成した。この第1のシリコン半導体基
板1はn- 型で比抵抗が 0.3〜10Ω・cmの範囲のものを
用いた。次に、リソグラフィ工程によってレジストをパ
ターニングし、化学エッチング又は反応性イオンエッチ
ングにより酸化膜11を選択的にエッチングした。そし
て、図2(b) に示したように、残った酸化膜11をマス
クにして第1のシリコン半導体基板1を化学エッチング
又は反応性イオンエッチングにより第2のシリコン半導
体基板2との分離用の凹部5を形成した。この凹部5の
深さは 0.5〜3μm とした。(第1の工程) 次に、図2(c) に示したように、図2(b) と同様な方法
にて、凹部5内に素子間分離用の溝部6を形成した。こ
の溝部6の深さは凹部5から 0.1〜10μm 、溝部6の幅
は 0.5〜20μm とした。(第1の工程) 次に、図2(d) に示したように、第1のシリコン半導体
基板1の主面側全面に分離熱酸化膜である第1の酸化膜
12を形成し、その上にドープドポリシリコン20を形
成した。(第2の工程)
The semiconductor device 100 of this embodiment is formed through the following steps. First, as shown in FIG. 2A, an oxide film 11 was formed by thermal oxidation on the main surface (mirror surface side) of the first silicon semiconductor substrate 1 whose one surface was mirror-polished. As the first silicon semiconductor substrate 1, an n type substrate having a specific resistance of 0.3 to 10 Ω · cm was used. Next, the resist was patterned by a lithography process, and the oxide film 11 was selectively etched by chemical etching or reactive ion etching. Then, as shown in FIG. 2 (b), the remaining silicon oxide film 11 is used as a mask to separate the first silicon semiconductor substrate 1 from the second silicon semiconductor substrate 2 by chemical etching or reactive ion etching. The recess 5 was formed. The depth of the recess 5 was 0.5 to 3 μm. (First Step) Next, as shown in FIG. 2C, a groove 6 for element isolation was formed in the recess 5 by the same method as in FIG. 2B. The depth of the groove 6 was 0.1 to 10 μm from the recess 5, and the width of the groove 6 was 0.5 to 20 μm. (First Step) Next, as shown in FIG. 2D, a first oxide film 12 which is an isolation thermal oxide film is formed on the entire main surface side of the first silicon semiconductor substrate 1, and the first oxide film 12 is formed. Doped polysilicon 20 was formed on top. (Second step)

【0010】そして、図3(e) に示したように、パター
ニングによりドープドポリシリコン20と第1の酸化膜
12とを凹部5と溝部6とにのみ残した。次に、図3
(f) に示したように、ウェーハの片面が鏡面研磨された
第2のシリコン半導体基板2を用い、第1のシリコン半
導体基板1の主面側(鏡面側)と第2のシリコン半導体
基板2の鏡面側を接合した。(第3の工程) すると、接合された第1のシリコン半導体基板1と第2
のシリコン半導体基板2との間に空洞部8が形成され
る。この空洞部8は後工程における酸素の通り道(導入
溝)として第1の酸化膜12及びドープドポリシリコン
20の膜厚に対して溝部6の幅を広くすることにより確
保される。次に、図3(g) に示したように、ドープドポ
リシリコン20と第2のシリコン半導体基板2の鏡面側
とを熱酸化することにより空洞部8を酸化膜で埋め込ん
で分離熱酸化膜である第2の酸化膜14を形成した。
(第3の工程) そして、第1のシリコン半導体基板1の主面と反対側か
ら研削・研磨してSOI領域10の厚さが所望の厚さと
なるようにした。尚、上記凹部5の深さは、第1のシリ
コン半導体基板1の熱酸化と第2のシリコン半導体基板
2及びドープドポリシリコン20の熱酸化とで凹部5が
埋まるように設計する。このとき、熱酸化によりドープ
どポリシリコンが無くならないようにドープドポリシリ
コン20の厚みを設計する。
Then, as shown in FIG. 3E, the doped polysilicon 20 and the first oxide film 12 are left only in the recess 5 and the groove 6 by patterning. Next, FIG.
As shown in (f), the second silicon semiconductor substrate 2 whose one surface is mirror-polished is used, and the main surface side (mirror surface side) of the first silicon semiconductor substrate 1 and the second silicon semiconductor substrate 2 are used. The mirror surface side of was joined. (Third Step) Then, the bonded first silicon semiconductor substrate 1 and second
A cavity 8 is formed between the cavity 8 and the silicon semiconductor substrate 2. The cavity 8 is secured as a passage (introduction groove) for oxygen in a later step by widening the width of the groove 6 with respect to the film thickness of the first oxide film 12 and the doped polysilicon 20. Next, as shown in FIG. 3 (g), the doped polysilicon 20 and the mirror surface side of the second silicon semiconductor substrate 2 are thermally oxidized to fill the cavity 8 with an oxide film and separate the thermal oxide film. The second oxide film 14 is formed.
(Third Step) Then, the SOI region 10 is made to have a desired thickness by grinding and polishing from the side opposite to the main surface of the first silicon semiconductor substrate 1. The depth of the recess 5 is designed so that the recess 5 is filled with the thermal oxidation of the first silicon semiconductor substrate 1 and the thermal oxidation of the second silicon semiconductor substrate 2 and the doped polysilicon 20. At this time, the thickness of the doped polysilicon 20 is designed so that the doped polysilicon is not lost by the thermal oxidation.

【0011】上述したような工程を経て形成された第1
のシリコン半導体基板1の主面と反対側を研削・研磨終
了後、その部分に所望のトランジスタを形成し、図1に
示したような回路構成の半導体装置100を得ることが
できた。半導体装置100はドープドポリシリコン20
の熱酸化も利用して二重の第1及び第2の酸化膜12,
14が形成されているため、SOI領域10周囲におけ
る酸化膜厚が厚く素子間の熱的な相互干渉が低減でき
た。又、第1及び第2の酸化膜12,14で挟まれたド
ープドポリシリコン20層を電極80を利用してGND
或いは電源電圧等の固定電位につなぐことにより、ドー
プドポリシリコン20層を第1及び第2のシリコン半導
体基板1,2及び隣接素子に対する電気的シールド層と
なり素子間の電気的な相互干渉が低減できた。
The first formed through the steps as described above
After finishing the grinding and polishing of the side opposite to the main surface of the silicon semiconductor substrate 1, a desired transistor was formed in that portion, and the semiconductor device 100 having the circuit configuration as shown in FIG. 1 could be obtained. The semiconductor device 100 includes the doped polysilicon 20.
By utilizing the thermal oxidation of the double first and second oxide films 12,
Since No. 14 was formed, the oxide film around the SOI region 10 was thick, and the thermal mutual interference between the elements could be reduced. Further, the doped polysilicon 20 layer sandwiched between the first and second oxide films 12 and 14 is grounded by using the electrode 80.
Alternatively, by connecting to a fixed potential such as a power supply voltage, the doped polysilicon 20 layer serves as an electrical shield layer for the first and second silicon semiconductor substrates 1 and 2 and adjacent elements, and electrical mutual interference between the elements is reduced. did it.

【0012】又、本発明の半導体装置の製造方法を使用
し、例えば、図2(c) の工程と図2(d) の工程との間に
おいて、シリコン半導体基板1の主面側に不純物層を形
成することができる。すると、図4に示したような埋め
込み拡散層30がSOI領域の周囲に形成でき、この拡
散層30は電気的シールド層として利用することもでき
る。
Further, using the method for manufacturing a semiconductor device of the present invention, for example, between the step of FIG. 2 (c) and the step of FIG. 2 (d), the impurity layer is formed on the main surface side of the silicon semiconductor substrate 1. Can be formed. Then, the buried diffusion layer 30 as shown in FIG. 4 can be formed around the SOI region, and the diffusion layer 30 can also be used as an electrical shield layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の具体的な一実施例に係る半導体装置の
製造方法を用いて形成されたSOI領域の構造を示した
模式図である。
FIG. 1 is a schematic view showing a structure of an SOI region formed by using a method for manufacturing a semiconductor device according to a specific example of the present invention.

【図2】同実施例に係る半導体装置の製造方法の工程順
序を示した模式図である。
FIG. 2 is a schematic view showing a process sequence of the method for manufacturing the semiconductor device according to the embodiment.

【図3】同実施例に係る半導体装置の製造方法の工程順
序を示した図2に続く模式図である。
FIG. 3 is a schematic diagram following FIG. 2 showing a process sequence of the method for manufacturing the semiconductor device according to the embodiment.

【図4】本発明に係る半導体装置の製造方法を用いて形
成された他のSOI領域の構造を示した模式図である。
FIG. 4 is a schematic view showing the structure of another SOI region formed by using the method for manufacturing a semiconductor device according to the present invention.

【符号の説明】[Explanation of symbols]

1−第1のシリコン半導体基板 2−第2のシリコン半導体基板 5−凹部 6−溝部 8−空洞部 10−SOI領域 12−第1の酸化膜 14−第2の酸化膜 20−ドープドポリシリコン 1-First Silicon Semiconductor Substrate 2-Second Silicon Semiconductor Substrate 5-Recess 6-Groove 8-Cavity 10-SOI Region 12-First Oxide Film 14-Second Oxide Film 20-Doped Polysilicon

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1のシリコン半導体基板の鏡面側に素
子間分離用の溝部及び第2のシリコン半導体基板との分
離用の凹部を形成する第1の工程と、 前記溝部及び前記凹部に熱酸化による第1の酸化膜及び
ドープドポリシリコンを順次形成する第2の工程と、 前記第1のシリコン半導体基板の鏡面側と前記第2のシ
リコン半導体基板の鏡面側とを接合し、前記溝部及び前
記凹部を再び熱酸化することにより第2の酸化膜を形成
すると共に少なくとも前記凹部をその第2の酸化膜で埋
め込む第3の工程とを備えたことを特徴とする半導体装
置の製造方法。
1. A first step of forming a groove portion for element isolation and a recess portion for separating the second silicon semiconductor substrate on the mirror surface side of the first silicon semiconductor substrate, and a heat treatment for the groove portion and the recess portion. A second step of sequentially forming a first oxide film and doped polysilicon by oxidation, and a mirror surface side of the first silicon semiconductor substrate and a mirror surface side of the second silicon semiconductor substrate are joined together to form the groove portion. And a third step of forming a second oxide film by thermally oxidizing the concave portion again and at least filling the concave portion with the second oxide film.
JP4146397A 1992-05-12 1992-05-12 Manufacture of semiconductor device Pending JPH05315437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4146397A JPH05315437A (en) 1992-05-12 1992-05-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4146397A JPH05315437A (en) 1992-05-12 1992-05-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05315437A true JPH05315437A (en) 1993-11-26

Family

ID=15406782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4146397A Pending JPH05315437A (en) 1992-05-12 1992-05-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05315437A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128230A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Semiconductor device and manufacturing method thereof
JP2008311410A (en) * 2007-06-14 2008-12-25 Denso Corp Semiconductor device
KR100964323B1 (en) * 2007-11-16 2010-06-17 미쓰비시덴키 가부시키가이샤 Semiconductor device and method of manufacturing the same
JP2021180329A (en) * 2011-05-27 2021-11-18 株式会社半導体エネルギー研究所 Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128230A (en) * 2004-10-27 2006-05-18 Fuji Electric Holdings Co Ltd Semiconductor device and manufacturing method thereof
JP2008311410A (en) * 2007-06-14 2008-12-25 Denso Corp Semiconductor device
KR100964323B1 (en) * 2007-11-16 2010-06-17 미쓰비시덴키 가부시키가이샤 Semiconductor device and method of manufacturing the same
US7851873B2 (en) 2007-11-16 2010-12-14 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
US8110449B2 (en) 2007-11-16 2012-02-07 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing the same
JP2021180329A (en) * 2011-05-27 2021-11-18 株式会社半導体エネルギー研究所 Semiconductor device

Similar Documents

Publication Publication Date Title
JPH11135794A (en) Semiconductor device and its manufacture
JPH11220130A (en) Wiring of semiconductor device and semiconductor device and manufacturing method therefor
JP3616534B2 (en) Manufacturing method of semiconductor substrate
JP3061020B2 (en) Dielectric separated type semiconductor device
JPS62126675A (en) Semiconductor device and manufacture thereof
JP3529220B2 (en) Semiconductor device and manufacturing method thereof
JPH05315437A (en) Manufacture of semiconductor device
JP2002076113A (en) Semiconductor device and its manufacturing method
JP3488916B2 (en) Method for manufacturing semiconductor device
JP3196229B2 (en) Semiconductor device
JPH0714916A (en) Isolation structure of mos field-effect transistor and its manufacture
JP3932443B2 (en) Semiconductor element
JPH0778977A (en) Semiconductor device
JP3125929B2 (en) Method for manufacturing semiconductor device
JP2003249650A (en) Semiconductor device and manufacturing method therefor
JP2002222918A (en) Semiconductor device
JP3264402B2 (en) Semiconductor device
JPH04146628A (en) Thin film semiconductor device
JP2000068473A (en) Semiconductor device and its manufacture
JP2638685B2 (en) Semiconductor device and manufacturing method thereof
JPH02201932A (en) Mos field-effect transistor with high withstand voltage
JPH06120431A (en) Bipolar transistor and method of manufacturing semiconductor device
JP3194303B2 (en) Semiconductor device
JP3608520B2 (en) Semiconductor device
JP3194313B2 (en) Thin-film semiconductor device with improved withstand voltage

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100413

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20110413

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120413

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130413

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20130413

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20140413