JPS59193066A - Mos semiconductor device - Google Patents

Mos semiconductor device

Info

Publication number
JPS59193066A
JPS59193066A JP6732683A JP6732683A JPS59193066A JP S59193066 A JPS59193066 A JP S59193066A JP 6732683 A JP6732683 A JP 6732683A JP 6732683 A JP6732683 A JP 6732683A JP S59193066 A JPS59193066 A JP S59193066A
Authority
JP
Japan
Prior art keywords
layer
channel
gate
substrate
depleted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6732683A
Other languages
Japanese (ja)
Inventor
Takeya Ezaki
豪弥 江崎
Masabumi Kubota
正文 久保田
Osamu Ishikawa
修 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6732683A priority Critical patent/JPS59193066A/en
Publication of JPS59193066A publication Critical patent/JPS59193066A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To contrive to improve the mobility by thickening the channel at the time of ON-operation by a method wherein an n-layer in n-channel and a p-layer in p-channel are buried in the substrate distant from the interface between an oxide film and a semiconductor. CONSTITUTION:The n-channel part is composed by dividing into an inside p2 layer 8 and a surface p1 layer 10 and burying a p-layer 9 therebetween. In an enhancement type FET, the n-layer 9 is set generally at a lower concentration than that of the p2 layer 8 and completely depleted owing to a depletion layer extending from the p1 layer 10 and the p2 layer 8, therefore electrons contributed to conduction do not exist. Next, when an inversion layer is induced in the p1 layer 10 by applying a positive potential to the gate 5, and the whole p1 layer 10 becomes an n type inversion layer by a high gate potential, then electrons generate also in the depleted n-layer 9, resulting in the ON-state of most part of the p1 layer 10 and the n-layer 9 by conversion into the n-channel. Since the buried n-layer 9 is also contributed as the channel in this invention, the channel width increases effectively, and dispersion in the channel decreases, causing the improvement of the mobility.

Description

【発明の詳細な説明】 産業上の利用分野 本発明(は、半導体素子、集積回路に関するもので、高
速スイッチング素子、超高周波信弓増(1]素子、超高
密度、高速LSI等に第1」用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to semiconductor devices and integrated circuits, and is the first to be applied to high-speed switching devices, ultra-high frequency signal amplifier (1) devices, ultra-high density, high-speed LSIs, etc. ” is used.

従来例の構成とその問題点 MO3型電界効果トランジスタ(以下MO3F1i:T
と略)およびそれを基本構成素子とするMO3型集積回
路(以下Mo5t、SIと略)は年々微醒11化されて
さており、その1頃向は今後も続き、ナブミ卑 クロンマ」−法が数屏後に用いられるであろうことが予
想されている。それとともに、いわゆる短チヤネル効果
が顕著になりつつあり、それを防止するためには、中、
に古典的スケーリング則にのっとり。
Structure of conventional example and its problems MO3 type field effect transistor (hereinafter MO3F1i: T
) and MO3 type integrated circuits (hereinafter referred to as Mo5t, SI), which use them as basic constituent elements, are becoming more sophisticated year by year, and this trend will continue in the future. It is expected that it will be used in the next few years. At the same time, the so-called short channel effect is becoming more prominent, and in order to prevent it, it is necessary to
according to the classical scaling law.

ケート酸化膜を薄く、チャネルの不純物を濃くしていく
たけてなく種々の方策が必要である。しかし、いずれに
しても、電界強Iwは、キャリア走行方向にも、その垂
直方向にも、強くなることは避けられない。垂直電界は
1表面反転層内での散乱を増大しギヤリアの移動度を低
下せしめるが、この様なチャネル内散乱は、チャネルの
不純物濃度が高くなり、反転層の厚みが薄くなることで
さらに助長される。
A variety of measures are required to thin the oxide film and increase the concentration of impurities in the channel. However, in any case, it is inevitable that the electric field strength Iw becomes strong both in the carrier traveling direction and in the perpendicular direction. The vertical electric field increases scattering within the one-surface inversion layer and reduces the gear carrier mobility, but such intra-channel scattering is further exacerbated by increasing the impurity concentration in the channel and decreasing the thickness of the inversion layer. be done.

第1図は従来のMOS )ランジスタで99.aは断面
構造図、bばA −A’力方向みた不純物分布である。
Figure 1 shows a conventional MOS) transistor with 99. a is a cross-sectional structural diagram, and b is an impurity distribution viewed in the A-A' force direction.

なお、電極配線は省略している。nチャネルの場合、基
板1ばp−とし、ノース・ドレインn−+2および3の
対基板谷フを低下せしめ、パンチ・スルー防止のため基
板より高濃度の9層6が形成されている。ケート5に正
電位ヲ71−えることeてより、pJ密6とケート酸化
膜4の界面V(n型反Qji、層であるチャネル7が形
成されるが、そのグ−ヤ不ル7ば、微細化に伴ない、上
述の岬由により9層6が高濃度化するので数百オンクス
トロームへと薄くなる。
Note that electrode wiring is omitted. In the case of an n-channel, the substrate 1 is set to p-, and nine layers 6 are formed with a higher concentration than the substrate to lower the valleys of the north drains n-+2 and 3 to the substrate and to prevent punch-through. By applying a positive potential 71-e to the gate 5, a channel 7, which is an n-type anti-Qji layer, is formed at the interface V between the pJ density 6 and the gate oxide film 4; With miniaturization, the concentration of the 9th layer 6 increases due to the above-mentioned misaki effect, resulting in a thinning of several hundred angstroms.

発明の目的 本発明は、従来例のこの様な問題点に鑑み、キャリアの
舟行するチャネルの形状を改善し、イ)って移動度を向
上せしめl/、 OS F E Tの利得を高めんとす
るものである。
Purpose of the Invention In view of these problems in the conventional example, the present invention improves the shape of the channel through which carriers travel, and a) improves the mobility and increases the gain of OS FET. That is.

発明の構成 本発明は、nチャネルならp型層をpチャネルならp型
層を、酸化膜−半導体界面から削れた基板内に埋設する
ことにより、チャネルオン時のチャイ・ル厚みを厚くす
ることを骨子−とする。
Structure of the Invention The present invention is to increase the thickness of the channel when the channel is turned on by burying a p-type layer for an n-channel and a p-type layer for a p-channel in a substrate cut away from the oxide film-semiconductor interface. The main point is

実施例の説明 第2図に本発明の一実施例を示す。番号1〜5は第1図
と同じである。第1図の9層6が、内部のp21m 8
と表面の95層10とにわかれ、その間に8層9が埋設
されている。第2図すは不純物分布である。p、の方が
p2よジも薄くて、低濃度に描いであるが−p、とp2
 の形状は目的に応じて任意に設旧ずれはよい。寸だ8
層9はp、 、 p2のいずれよりも低濃度になってい
るが、これは必須ではない・たたし、8層9ば、一般的
には27層。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows an embodiment of the present invention. Numbers 1 to 5 are the same as in FIG. The 9th layer 6 in Figure 1 is the internal p21m 8
and 95 layers 10 on the surface, and 8 layers 9 are buried between them. Figure 2 shows the impurity distribution. p, is thinner than p2, and is drawn at a lower concentration, but -p, and p2
The shape of can be changed arbitrarily depending on the purpose. size 8
Layer 9 has a lower concentration than any of p, p, and p2, but this is not essential. However, if there are 8 layers 9, there are generally 27 layers.

よりは低濃度に設定される。これは、ゲート・ソース間
′1′ii/EvGsが零ボルトの時、ノース2.ドレ
イン3間かオフVCなっているノーマリ・オフすなわち
エン2、ンスメント型のMO3FETi実現するために
は、8層9が空乏化している必要があるからである。
It is set to a lower concentration than This means that when '1'ii/EvGs between gate and source is zero volts, North 2. This is because in order to realize a normally-off, ie, enhancement type MO3FETi in which VC is off between the drains 3 and 3, the 8th layer 9 must be depleted.

に正電位が印加されてオンになった状態番それぞれのボ
テンンヤル分布を示す。エンハンスメント型では、aに
おいて埋設n層9は表面の91層1Qおまひ内部の92
層8から伸びる空乏層により完全に空乏化されており、
伝導に寄カする電子は存在しない。次に、ゲート6に正
電位が印加さn、p。
It shows the bottom-year distribution for each state number that is turned on by applying a positive potential to. In the enhancement type, in a, the buried n layer 9 is the 91st layer on the surface 1Q and the 92nd layer inside the paralysis.
It is completely depleted by a depletion layer extending from layer 8,
There are no electrons contributing to conduction. Next, a positive potential is applied to the gate 6 n, p.

層1o内に反転層が誘起され、さらに高いゲート電位に
よりp1層10全体かn型反転層になってし甘うと、空
乏化していたn/帝9内にも電子が生じ。
If an inversion layer is induced in the layer 1o and the entire p1 layer 10 becomes an n-type inversion layer due to the higher gate potential, electrons will also be generated in the depleted n/layer 9.

結果P11’7 ’ Oと8層9の太)413分かn型
チャネルへと転換しオン状態となる。従来例では表面反
転層のみがチャイ・ルであったのに対し1本発明では、
内部に埋設されて贋だ8層9もチャネルとして寄与する
ので、実効的にチャネル厚みがj早くなる。
As a result, P11'7'O and the thickness of the 8 layer 9 converts into an n-type channel and becomes an on state. In the conventional example, only the surface inversion layer was a chile, but in the present invention,
Since the eight false layers 9 buried inside also contribute as a channel, the channel thickness effectively increases by j.

これにより、チャネル内ての散乱が減少するので移動度
が向上する。これは、高濃度のチャネルドープをおこな
うサブミクロンテバイスでは局に重要である。
This reduces scattering within the channel and thus improves mobility. This is particularly important in submicron devices with high channel doping.

重効チャネル長が0.5μmのときの構成例を榮げると
、92層8は厚さ0.2 μmで、 2 X 10”c
m’。
Taking a configuration example when the effective channel length is 0.5 μm, the 92 layers 8 have a thickness of 0.2 μm, and are 2×10”c.
m'.

nM9の厚さ500人で、 I X 1016cm−3
で、91層10は厚さ300人で3 X 1016cr
u:’のaI皮である。この様な薄い層はイオン注入法
でも出来るが。
With a thickness of nM9 of 500 people, I x 1016 cm-3
So, 91 layer 10 has a thickness of 300 people and is 3 x 1016 cr.
It is the aI skin of u:'. Such a thin layer can also be created by ion implantation.

より高精度な構造とするには、分子線エビタキン−(M
o1ecular BearrlEpitaxy )が
好適である。
For a more precise structure, molecular beam evitaquine (M
olecular BearrlEpitaxy) is preferred.

以上はエンハンスメント型の賜金であるか、ノーマリ・
オンすなわちテブレーション型と1°るには、n層9を
0.111mへと厚くし、濃度は1層167cm−’と
儂クシ、ゲート雰ボルトのときでも空乏化してし斗わず
電子が存在する構成にしておけばよい。
The above are enhancement-type gifts, or normal/normal gifts.
In order to achieve a 1° on-state, tebration type, the thickness of the n-layer 9 is increased to 0.111 m, and the concentration is 167 cm-' per layer, so that even when the gate voltage is low, it is depleted and electrons are not released. It is sufficient if the configuration is such that .

次に本発明の拡散自己整合チャ坏ル(Diffusio
nSelf Aligned  ) MOSFET  
(以下単KDMO3と略)への応用例を第4図に示す。
Next, the diffusion self-aligned chamfer of the present invention (Diffusio
nSelf Aligned) MOSFET
(hereinafter abbreviated as single KDMO3) is shown in FIG. 4.

内部2層8および表面9層10は、ゲート6のソース2
側端部より同一拡散工程により同時に形成されたもので
ある。9層10のソース2.ドレイン3方向ノ厚みが実
効チャネル長とされる。n層9ば、9層8および10に
ばさ1れた部分9aと、基板1のp一層内走行領域の部
分9bとから成る。DMO3は。
The inner 2 layer 8 and the surface 9 layer 10 are the source 2 of the gate 6.
They are formed simultaneously by the same diffusion process from the side ends. 9 layers 10 sources 2. The thickness in three directions of the drain is defined as the effective channel length. The n-layer 9 consists of a portion 9a extending between the nine layers 8 and 10, and a portion 9b of the p-layer inner running region of the substrate 1. DMO3 is.

ゲート5の[4Jよりも短かいチャネル長がフォトエッ
チによらず拡散により形成されるので高精度にザブミク
ロンチャネルが形成されるという利点を有している。
Since the channel length of the gate 5, which is shorter than [4J, is formed by diffusion rather than photoetching, it has the advantage that a submicron channel can be formed with high precision.

nl藷90部9aばそれよりも高a度の9層8および1
0にばさ1れているので、ゲート雰バイアス時には、そ
れぞれのp層からのひてくる空乏層により完全に空乏化
される様にその厚みと不純物濃度を調走することかてさ
る。こりして:+’v゛<ことにより、このDMO3は
エンハンスメント111すにすることかできる。このと
き部分9bの周囲は低濃度のp−領域であるがら空乏化
してし寸うことなく。
nl 90 parts 9a, 9 layers 8 and 1 with higher a degree than that
Therefore, when applying a gate atmosphere bias, the thickness and impurity concentration must be adjusted so that the depletion layer is completely depleted by the depletion layer coming from each p layer. By doing this, this DMO3 can be used for enhancement 111. At this time, although the area around the portion 9b is a p- region with a low concentration, it is not depleted.

中性領域としてとど芽る。この部分は、pl曽1゜の端
部からドレイン3へ到る走行領域11の低抵抗化に寄与
する。これにより、ドレイン電ff1r、  ’t(8
゜正特性のオン抵抗および飽第1電月、EVsatが低
下する。
It buds as a neutral region. This portion contributes to lowering the resistance of the running region 11 from the end of pl so 1° to the drain 3. As a result, the drain voltage ff1r, 't(8
゜The on-resistance and saturation first electric power of positive characteristics, EVsat, decrease.

また、第3図について述べた如< N’rls分9aば
、チャイ・ル厚み金厚くする効果を有(7、エンハンス
ノントチャ不ルでの移動度が向上するのでオン抵抗が低
く、相互コンダクタンスおよびドレイン電が1−が高く
なる。
In addition, as described with reference to Fig. 3, if <N'rls 9a, it has the effect of increasing the chale thickness (7. Enhanced non-challenge mobility is improved, so the on-resistance is low and the mutual conductance is And the drain voltage becomes high when it is 1-.

部分9ai′ipJ蕾8および1oの濃度の高低により
、p型、i聖徒たはn型になる。部分9aがp型であっ
ても、隣接する9層8−または10より低濃度であれば
、n型の場合と同様、ゲート正電位のとき、チャネル領
域として作用しつる。またそうでなくても、走行領域1
1の部分9bの作用はなお有効であるから、DMO3と
しては、やはり低オン抵抗、低飽和′市川という特長を
有している。
Depending on the concentration of parts 9ai'ipJ buds 8 and 1o, it becomes p-type, i-saint, or n-type. Even if the portion 9a is of the p-type, if the concentration is lower than that of the adjacent nine layers 8- or 10, it will act as a channel region when the gate potential is positive, as in the case of the n-type. Even if this is not the case, driving area 1
Since the action of the portion 9b of 1 is still effective, the DMO 3 still has the features of low on-resistance and low saturation.

以上汀、横’、jすD M OSの場合であるが、縦型
DMO8にも同様に本発明は適用される。第5図にその
」場合の実施例全示す。図に於て基板1ば、高濃度n基
板1aと、その上のn型エピタキンヤル層1bとから成
っていて、n基板1aがドレインである。ゲート5V′
c止電位が印加されp領域8のゲート酸化膜4との界面
にn型反転層が誘起されると、走行領域11中の8層9
bとゲート酸化膜4との1sfJ Kもn型チャネルが
生じるので、ソース2からドレイン1aへ向って電子が
移動出来るが。
Although the above is a case of a horizontal DMOS, the present invention is similarly applied to a vertical DMO8. FIG. 5 shows all embodiments for this case. In the figure, a substrate 1 consists of a highly doped n-type substrate 1a and an n-type epitaxial layer 1b thereon, with the n-type substrate 1a serving as a drain. Gate 5V'
When a c-stop potential is applied and an n-type inversion layer is induced at the interface between the p region 8 and the gate oxide film 4, the 8 layer 9 in the running region 11
Since an n-type channel is also generated in 1sfJK between the gate oxide film 4 and the gate oxide film 4, electrons can move from the source 2 to the drain 1a.

このとき、8層9bはnエピタキシャル層1bよりは面
濃度であるから、p領域8がら走行領域11へ出た電子
の大部分はより低抵抗の9bの方を通る。ゲ〜l−5に
交流信号が重畳されると、n層9b内で電子濃度がそれ
により増減し、その電荷の変化がゲート5の入力容量と
なって做測きれる。
At this time, since the 8 layer 9b has a higher surface concentration than the n epitaxial layer 1b, most of the electrons emitted from the p region 8 to the transit region 11 pass through the lower resistance layer 9b. When an alternating current signal is superimposed on gate 5, the electron concentration increases or decreases in n layer 9b, and the change in charge becomes the input capacitance of gate 5 and can be measured.

8層9bがないと、電子はゲート酸化膜4に、より近い
ところを走行するので、走行領域11中の電子濃度の変
化による入力容量は大きいものになる。これに対して、
本発明の如く、内部に周囲より低比抵抗の8層9bが存
在すると、電子に1、そちらの万全走行するので、結果
的にケート酸化膜4からの距幽か従来例の場合に比し遠
くなる。従って、走行領域11中の電子濃度の変化によ
るゲート入力容量は従来例より小でくなる。
Without the 8th layer 9b, the electrons travel closer to the gate oxide film 4, so that the input capacitance due to the change in electron concentration in the travel region 11 becomes large. On the contrary,
As in the present invention, when there are eight layers 9b having a lower specific resistance than the surroundings, electrons can travel there perfectly, and as a result, the distance from the oxide film 4 is smaller than in the conventional case. It gets far away. Therefore, the gate input capacitance due to changes in electron concentration in the travel region 11 becomes smaller than in the conventional example.

第5図の縦型DMO3ば、図中のA点からB点までをD
MO3,B点から0点をδゴーで0点−土で孕p領域8
をゲートとする接合ゲート電界効果l・ラン/メタ(以
下JFETと略)として、それらが直列に接読された半
導体装置と解釈出来る。これを第6図に示す。8層9b
は、B点からC点間の抵抗として表示しである。点Aは
ソースであり。
For the vertical DMO3 in Figure 5, the distance from point A to point B in the diagram is D.
MO3, 0 points from point B with δ go 0 points - soil p region 8
It can be interpreted as a semiconductor device in which these are read directly in series as a junction gate field effect l-run/metal (hereinafter abbreviated as JFET) with the gate as the gate. This is shown in FIG. 8 layers 9b
is expressed as the resistance between point B and point C. Point A is the source.

通常接地されている。p領域8はソースと同電位にして
用いるから−C−D点間のJFETはゲート接地されて
いることになる。B−C点間とケート5との間には高周
波特性を低下させる不害な帰還容量Gfが存在するが、
上記JFETか高周波信号に対して有限の抵vL値を示
す三極管特スコjユでな(、−14j「眠大の抵抗値を
示す五極管特性すなわち定?t、U流諒と見なせるなら
は、トレインDからゲート5への帰還が(・1とんど無
視出来ることは回路網理論により公知である。
Usually grounded. Since the p region 8 is used at the same potential as the source, the gate of the JFET between the points -C and D is grounded. There is a harmful feedback capacitance Gf between points B and C and gate 5, which degrades the high frequency characteristics.
The above-mentioned JFET is a special triode tube that exhibits a finite resistance vL value for high-frequency signals. It is known from network theory that the feedback from train D to gate 5 is almost negligible.

Jj、極省猶・ヒ1は電流通路か細長いことが必須であ
るから、0層9bはB−C点間距離にくらへて十分l:
、9くlけi kl:斤らない。例えば−B−C点間の
距1〜11が1μm;aら−、5n層9bの厚みfdo
、1 ttm以下であることが好丑しい。きらに、所望
のドレイン電圧においてp領域8からエピタキシャル層
1b中へ伸ひる空乏層12が点c VC達し、n層9b
i犬略囲む様に0層9bの形状および呈ピタキンヤル層
1bの不純物濃度全選定しなければならない。あるいは
、そのとき、n層9b自体が大略空乏化してもよい。但
し、DMO3が五極管特性VCなる以前にJFETか五
極管特性になるとドレ・イン電流かDMO8で;4(J
FETで制限されることになり好1しくない。トレイン
電圧を増加し7ていく場合1両者が1・1は同時に五極
管特性になれは一5高ドレイン竜流と低帰還とを両立さ
セるこXン 10 とかできる。従って、11層9bが空乏層12に大略四
重れるとき、あるいはn層9b自体か大略仝乏化すると
き−DMO3の点B丸傍においでチャネルか仝乏化する
のかl’l J、Elてあ6−1、う1ても斤く、nJ
、d 9))の長さくB−C黒丸:ll)カ長’if 
n Iriより高いドレイン電圧で、短かければ」:り
低い′電圧で、n層9 b ((J、空乏層に四重れろ
。nII”′+ 9 b S:、’より完全に空乏層で
囲むために&;l−点C近傍にp−丑たはlまたばn−
の高抵抗頒)戒13倉形成しておけばよい。
Since it is essential that the current path in Jj and Hi 1 be long and thin, the 0 layer 9b is sufficiently l to meet the distance between points B and C:
, 9klkei kl: Not a pound. For example, the distance 1 to 11 between points -B and C is 1 μm;
, 1 ttm or less. Then, at a desired drain voltage, the depletion layer 12 extending from the p region 8 into the epitaxial layer 1b reaches the point c VC, and the n layer 9b
The shape of the layer 9b and the impurity concentration of the layer 1b must be selected so as to substantially enclose it. Alternatively, at that time, the n-layer 9b itself may be substantially depleted. However, if DMO3 becomes a JFET or pentode characteristic before it becomes a pentode characteristic VC, the drain-in current or DMO8;
This is not desirable because it is limited by the FET. If the train voltage is increased and the train voltage is increased, it is possible to achieve both 1.1 and 1.1 pentode characteristics at the same time, thereby achieving both high drain current and low feedback. Therefore, when the 11th layer 9b overlaps the depletion layer 12 by approximately four times, or when the n layer 9b itself becomes approximately depleted, does the channel become depleted near the point B of DMO3?l'l J, El Tea 6-1, U1 Momoki, nJ
, d 9)) length B-C black circle:ll) length 'if
At a drain voltage higher than n Iri and shorter, the n layer 9 b ((J, quadruple the depletion layer. To enclose &;l- near point C, p- or l or n-
High resistance distribution) It is sufficient to form 13 precepts.

発[j14の41果 本発明は、上述の実施例から明らかな様に、(1)埋!
層が、界面TK、誘起されるチャネルとともに電流通路
となり、実効的にチャネル厚みが増大するので、層面散
乱の影響か減少し2移動度が向上する。0れにより、オ
ン抵抗か11i: <、1・l/イン亀流および相互コ
ンダクタンスが高い。
As is clear from the above-described embodiments, the present invention has the following features: (1) Embedded!
The layer serves as a current path together with the interface TK and the induced channel, effectively increasing the channel thickness, thereby reducing the influence of layer plane scattering and improving the mobility. Due to the on-resistance, the current and mutual conductance are high.

(2)IJMO3の走行領域C(適用すると、ギヤリア
がゲート絶縁膜から離れた埋設層内を走行するため、ゲ
ート・キャリア間相t7H作用によるゲ−) ”8 :
ii−か減少−する。
(2) Traveling region C of IJMO3 (when applied, the gear carrier travels in the buried layer away from the gate insulating film, so the gate-carrier phase t7H effect occurs) ”8:
ii- or decrease-.

(3)  寸た縦型1.ltA OSの走行領域へ適用
して、低帰還特1イI−と低オン抵抗・高電流・高相互
コンダクタンスと栄両立させることができる・lどの効
果ケ有しており、スイッチング素子の低オン抵抗化・高
速化・高′屯流化やマイクロ波増巾素子の高利得化・高
出力化VCC馬力るものである。
(3) Vertical type 1. When applied to the running area of ltA OS, it can achieve both low feedback characteristics, low on-resistance, high current, and high mutual conductance. The VCC horsepower is increased by increasing the resistance, increasing the speed, increasing the current, and increasing the gain and output of the microwave amplification element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a、bi従来のMOSFETの断面図。 深さ方向の不純物分布図、第2図a、bは本発明の基本
構成を祝明するだめの一実施例のM(,1SFETの断
面図、深さ方向の不純物分布図、第3図a。 bは第2図のRa Q S F E Tのポテンシャル
分布のオフ状態、オン状態を示す図、第4図は本発明を
DMO3へ応用した実施例の断面図、第6図は本発明を
縦型1)MOSへ応用した実施例の断面図。 第6図は第5図の回路表示図である。 1 ・−・半導体基板、2 ・・・ソース、3・・・・
ドレイン、4・・・ ケート酸化膜、5・・・・ゲート
、6゜8 、10−piJt域、9 (9a 、 9b
 )−n層。 −30: 第1図 7( A」 第2図 βn 第3図 ((1) 邪4図     q
Figures 1a and 1b are cross-sectional views of a conventional MOSFET. The impurity distribution diagram in the depth direction, FIGS. . b is a diagram showing the off state and on state of the potential distribution of Ra Q S F E T in FIG. 2, FIG. 4 is a cross-sectional view of an embodiment in which the present invention is applied to DMO3, and FIG. Vertical type 1) Cross-sectional view of an embodiment applied to MOS. FIG. 6 is a circuit diagram of FIG. 5. 1...Semiconductor substrate, 2...Source, 3...
Drain, 4... Kate oxide film, 5... Gate, 6°8, 10-piJt region, 9 (9a, 9b
)-n layer. -30: Fig. 1 7 (A) Fig. 2 βn Fig. 3 ((1) Evil 4 q

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板上にゲート絶縁膜を介して形成された
ゲートの直下領域と、上記基板内に上記ゲート絶縁膜か
ら離れて形成された埋設層を有し、上記基板と上記ゲー
ト絶縁膜界面に上記ゲートにより誘起される伝導チャネ
ルが上記埋設層に到達し、」二記界面の上記チャネルと
上記埋設層とが共に電流通路となること全特徴とするM
O8型半導体装置。
(1) A region immediately below a gate formed on a semiconductor substrate via a gate insulating film, and a buried layer formed in the substrate apart from the gate insulating film, and an interface between the substrate and the gate insulating film. The conduction channel induced by the gate reaches the buried layer, and both the channel at the interface and the buried layer serve as a current path.
O8 type semiconductor device.
(2)界面のチャネルが誘起されないときは埋設層は空
乏化されていて電流通路とならない事全特徴とする特許
請求の範囲第1項記載のMO3型半導体装置。
(2) The MO3 type semiconductor device according to claim 1, characterized in that when a channel at the interface is not induced, the buried layer is depleted and does not serve as a current path.
(3)  ゲートの一端から、板肉に導入された一導電
型の深い第1の不純物領域と二導電型の浅い第2の不純
物領域の横方向拡散深さの差でチャネル長が規定され、
上記第1の不純物領域外の上記基板内に設けられた埋設
層を有−することヲ!1も徴とする特許請求の範囲第1
項記・成のM OS !l:li半導体装置。
(3) The channel length is defined by the difference in lateral diffusion depth between a deep first impurity region of one conductivity type and a shallow second impurity region of two conductivity types introduced into the plate from one end of the gate,
A buried layer provided in the substrate outside the first impurity region! Claim No. 1 also characterized by
M OS of the entry and the composition! l: li semiconductor device.
(4)第2の不純物領域をソースとし、基板か一部。 電型でその底部をドレインとする縦型構造であって、第
1の領域から基板内へ伸びる空乏層カー理設層金大略囲
むとき一部、たけ上記埋設層全体力1犬略空乏化される
とき、上記第1の不純物領域とゲート絶縁膜界面のチャ
ネルの一部が空乏化されること全特徴とする4!J許請
求の範囲第3項記載のMO3O3型半導体装
(4) Use the second impurity region as a source and form part of the substrate. It has a vertical structure with a drain at its bottom, and when the depletion layer extending from the first region into the substrate is approximately surrounded by a part of the depletion layer, the entire buried layer is approximately depleted. 4! When the first impurity region and the gate insulating film interface are partially depleted, a portion of the channel is depleted. MO3O3 type semiconductor device according to claim 3
JP6732683A 1983-04-15 1983-04-15 Mos semiconductor device Pending JPS59193066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6732683A JPS59193066A (en) 1983-04-15 1983-04-15 Mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6732683A JPS59193066A (en) 1983-04-15 1983-04-15 Mos semiconductor device

Publications (1)

Publication Number Publication Date
JPS59193066A true JPS59193066A (en) 1984-11-01

Family

ID=13341784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6732683A Pending JPS59193066A (en) 1983-04-15 1983-04-15 Mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS59193066A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179573A (en) * 1987-01-21 1988-07-23 Seiko Instr & Electronics Ltd Manufacture of insulated gate field-effect transistor
JPS63284858A (en) * 1987-05-15 1988-11-22 Seiko Instr & Electronics Ltd Insulated-gate field-effect transistor
WO2011103314A1 (en) * 2010-02-18 2011-08-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8963249B1 (en) 2011-08-05 2015-02-24 Suvolta, Inc. Electronic device with controlled threshold voltage
US8970289B1 (en) * 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
US9054219B1 (en) 2011-08-05 2015-06-09 Mie Fujitsu Semiconductor Limited Semiconductor devices having fin structures and fabrication methods thereof
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
EP2483915A4 (en) * 2009-09-30 2015-07-01 Suvolta Inc Electronic devices and systems, and methods for making and using the same
US9093469B2 (en) 2011-03-30 2015-07-28 Mie Fujitsu Semiconductor Limited Analog transistor
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9680470B2 (en) 2011-02-18 2017-06-13 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods
US9741428B2 (en) 2011-05-13 2017-08-22 Mie Fujitsu Semiconductor Limited Integrated circuit devices and methods
US9786703B2 (en) 2013-05-24 2017-10-10 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US9793172B2 (en) 2011-05-16 2017-10-17 Mie Fujitsu Semiconductor Limited Reducing or eliminating pre-amorphization in transistor manufacture
US9812550B2 (en) 2012-06-27 2017-11-07 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9853019B2 (en) 2013-03-15 2017-12-26 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9865596B2 (en) 2010-04-12 2018-01-09 Mie Fujitsu Semiconductor Limited Low power semiconductor transistor structure and method of fabrication thereof
US9893148B2 (en) 2013-03-14 2018-02-13 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9922977B2 (en) 2010-06-22 2018-03-20 Mie Fujitsu Semiconductor Limited Transistor with threshold voltage set notch and method of fabrication thereof
US10325986B2 (en) 2009-09-30 2019-06-18 Mie Fujitsu Semiconductor Limited Advanced transistors with punch through suppression

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63179573A (en) * 1987-01-21 1988-07-23 Seiko Instr & Electronics Ltd Manufacture of insulated gate field-effect transistor
JPS63284858A (en) * 1987-05-15 1988-11-22 Seiko Instr & Electronics Ltd Insulated-gate field-effect transistor
US10217668B2 (en) 2009-09-30 2019-02-26 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using the same
US11887895B2 (en) 2009-09-30 2024-01-30 United Semiconductor Japan Co., Ltd. Electronic devices and systems, and methods for making and using the same
US11062950B2 (en) 2009-09-30 2021-07-13 United Semiconductor Japan Co., Ltd. Electronic devices and systems, and methods for making and using the same
US10325986B2 (en) 2009-09-30 2019-06-18 Mie Fujitsu Semiconductor Limited Advanced transistors with punch through suppression
US10224244B2 (en) 2009-09-30 2019-03-05 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using the same
EP2483915A4 (en) * 2009-09-30 2015-07-01 Suvolta Inc Electronic devices and systems, and methods for making and using the same
US10074568B2 (en) 2009-09-30 2018-09-11 Mie Fujitsu Semiconductor Limited Electronic devices and systems, and methods for making and using same
WO2011103314A1 (en) * 2010-02-18 2011-08-25 Suvolta, Inc. Electronic devices and systems, and methods for making and using the same
US9865596B2 (en) 2010-04-12 2018-01-09 Mie Fujitsu Semiconductor Limited Low power semiconductor transistor structure and method of fabrication thereof
US9922977B2 (en) 2010-06-22 2018-03-20 Mie Fujitsu Semiconductor Limited Transistor with threshold voltage set notch and method of fabrication thereof
US9985631B2 (en) 2011-02-18 2018-05-29 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9680470B2 (en) 2011-02-18 2017-06-13 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9838012B2 (en) 2011-02-18 2017-12-05 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US10250257B2 (en) 2011-02-18 2019-04-02 Mie Fujitsu Semiconductor Limited Digital circuits having improved transistors, and methods therefor
US9093469B2 (en) 2011-03-30 2015-07-28 Mie Fujitsu Semiconductor Limited Analog transistor
US9741428B2 (en) 2011-05-13 2017-08-22 Mie Fujitsu Semiconductor Limited Integrated circuit devices and methods
US9793172B2 (en) 2011-05-16 2017-10-17 Mie Fujitsu Semiconductor Limited Reducing or eliminating pre-amorphization in transistor manufacture
US8995204B2 (en) 2011-06-23 2015-03-31 Suvolta, Inc. Circuit devices and methods having adjustable transistor body bias
US9054219B1 (en) 2011-08-05 2015-06-09 Mie Fujitsu Semiconductor Limited Semiconductor devices having fin structures and fabrication methods thereof
US8963249B1 (en) 2011-08-05 2015-02-24 Suvolta, Inc. Electronic device with controlled threshold voltage
US11145647B2 (en) 2011-12-09 2021-10-12 United Semiconductor Japan Co., Ltd. Tipless transistors, short-tip transistors, and methods and circuits therefor
US10573644B2 (en) 2011-12-09 2020-02-25 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US9953974B2 (en) 2011-12-09 2018-04-24 Mie Fujitsu Semiconductor Limited Tipless transistors, short-tip transistors, and methods and circuits therefor
US8895327B1 (en) 2011-12-09 2014-11-25 Suvolta, Inc. Tipless transistors, short-tip transistors, and methods and circuits therefor
US8970289B1 (en) * 2012-01-23 2015-03-03 Suvolta, Inc. Circuits and devices for generating bi-directional body bias voltages, and methods therefor
US9093550B1 (en) 2012-01-31 2015-07-28 Mie Fujitsu Semiconductor Limited Integrated circuits having a plurality of high-K metal gate FETs with various combinations of channel foundation structure and gate stack structure and methods of making same
US9812550B2 (en) 2012-06-27 2017-11-07 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US10014387B2 (en) 2012-06-27 2018-07-03 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US10217838B2 (en) 2012-06-27 2019-02-26 Mie Fujitsu Semiconductor Limited Semiconductor structure with multiple transistors having various threshold voltages
US9041126B2 (en) 2012-09-21 2015-05-26 Mie Fujitsu Semiconductor Limited Deeply depleted MOS transistors having a screening layer and methods thereof
US9093997B1 (en) 2012-11-15 2015-07-28 Mie Fujitsu Semiconductor Limited Slew based process and bias monitors and related methods
US9070477B1 (en) 2012-12-12 2015-06-30 Mie Fujitsu Semiconductor Limited Bit interleaved low voltage static random access memory (SRAM) and related methods
US8994415B1 (en) 2013-03-01 2015-03-31 Suvolta, Inc. Multiple VDD clock buffer
US8988153B1 (en) 2013-03-09 2015-03-24 Suvolta, Inc. Ring oscillator with NMOS or PMOS variation insensitivity
US9893148B2 (en) 2013-03-14 2018-02-13 Mie Fujitsu Semiconductor Limited Method for fabricating a transistor device with a tuned dopant profile
US9853019B2 (en) 2013-03-15 2017-12-26 Mie Fujitsu Semiconductor Limited Integrated circuit device body bias circuits and methods
US9449967B1 (en) 2013-03-15 2016-09-20 Fujitsu Semiconductor Limited Transistor array structure
US9991300B2 (en) 2013-05-24 2018-06-05 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US9786703B2 (en) 2013-05-24 2017-10-10 Mie Fujitsu Semiconductor Limited Buried channel deeply depleted channel transistor
US8976575B1 (en) 2013-08-29 2015-03-10 Suvolta, Inc. SRAM performance monitor
US9710006B2 (en) 2014-07-25 2017-07-18 Mie Fujitsu Semiconductor Limited Power up body bias circuits and methods

Similar Documents

Publication Publication Date Title
JPS59193066A (en) Mos semiconductor device
KR100652449B1 (en) Lateral thin-film silicon-on-insulator soi jfet device
JP3393148B2 (en) High voltage power transistor
JPS63266882A (en) Vertical-type insulated-gate field-effect transistor
US6246093B1 (en) Hybrid surface/buried-channel MOSFET
US5696401A (en) Semiconductor device and method of fabricating the same
US5523601A (en) High-breakdown-voltage MOS transistor
JP3376294B2 (en) Semiconductor device
JPS626352B2 (en)
JPH09199721A (en) Field effect transistor
JPS62274778A (en) Semiconductor device
JP2917931B2 (en) Inverter structure
JPH03196572A (en) Semiconductor device
JP2540754B2 (en) High voltage transistor
JPS6384069A (en) Semiconductor device
JPS58145156A (en) Semiconductor device
JPH06209106A (en) Semiconductor device
JPH1041402A (en) Overcurrent protecting dmos fet
JPS6244698B2 (en)
JPS63131584A (en) Manufacture of cut type insulated-gate electrostatic induction transistor
JPS6245175A (en) Lateral mos type fet element
JP2915507B2 (en) Field effect transistor
JPS6134265B2 (en)
JPH0770722B2 (en) Method for manufacturing semiconductor device
JPH02134870A (en) Mis type field-effect transistor