JPS58145156A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS58145156A
JPS58145156A JP57028314A JP2831482A JPS58145156A JP S58145156 A JPS58145156 A JP S58145156A JP 57028314 A JP57028314 A JP 57028314A JP 2831482 A JP2831482 A JP 2831482A JP S58145156 A JPS58145156 A JP S58145156A
Authority
JP
Japan
Prior art keywords
type
insulating film
semiconductor device
depletion type
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57028314A
Other languages
Japanese (ja)
Inventor
Tadamichi Masamoto
政本 忠道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57028314A priority Critical patent/JPS58145156A/en
Publication of JPS58145156A publication Critical patent/JPS58145156A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To improve the controllability of channel length electrical characteristics, and to attain the change of the performance of an element into high frequency by forming an insulating film onto the surface of a groove section and forming a metallic film onto the insulating film. CONSTITUTION:An N type region 2 is formed to one main surface of a P type silicon substrate, one main surface thereof is a (100) face, and the insulating film 3 made of SiO2, etc. is formed onto the region 2. A photo-resist film 4 is formed onto the insulating film, exposed and developed, and an opening section is shaped. The substrate 1 is etched in an anisotropic manner by using an anisotropic etching liquid, through which the etching rate of a (111) face is made lower than that of other faces, and the inverted trapezoid groove section 6 is formed. The ions of a donor impurity, such as As, P, etc. are implanted through ion implantation inclined to one inclined plane of the groove section 6 only by an incident angle theta, and an N type source region 7 is formed through heat treatment, etc. Gate insulating films 8', 8'' and an inter-layer insulating film 8 are shaped through thermal oxidation, etc., and a gate electrode 9 is formed. Lastly, the opening sections of contact windows are bored to source-drain regions 2', 2'', and metallic electrodes, etc. made of Al, etc. are formed to each opening section.

Description

【発明の詳細な説明】 本発明は半導体装置に関し、特にMO8@O8電界効果
トランジスタる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices, and particularly to MO8@O8 field effect transistors.

近年、MO8電界効果トランジスタにおいて、素子の高
性能化のための勢力は、一方では高電圧高電猾を特徴と
する高電力化であり、もう一方では高速高電流利得を特
徴とする高周波化である。
In recent years, in MO8 field-effect transistors, the forces for improving the performance of elements are on the one hand, high power, characterized by high voltage and high power, and on the other, high frequency, characterized by high speed and high current gain. be.

MO8型電界効果トランジスタの高周波化のための性能
係数(Figure  of merit)Fは、素子
特性及び素子構潰パラメータで表わすと である。ここでgm、Cinは素子の相互コンダクタン
ス、入力容量でありμ、 V’G 、 Vd 、 Lは
それぞれキャリア移動度、正味のゲート電圧、キャリア
のドリフト速度、実効チヤネル長である。これらの指数
から高周波化のための条件は第1にチャネル長の低減で
あり次に、キャリア移動度の向上とバイアス電圧の上昇
、従ってキャリアのドリフト速度に依存する。これらの
要請から現状では、チャネル長は 1μm以下のサブミ
クロンの寸法が要求されており、この寸法の微小化に伴
って種々の製造上の制御性の問題が生じている。すなわ
ち、チャネルhはもちろんのことしきい値電圧がばらつ
いたり、ドレイン耐圧が減少するといった欠点がある。
The figure of merit F for increasing the frequency of an MO8 type field effect transistor is expressed in terms of device characteristics and device collapse parameters. Here, gm and Cin are the mutual conductance and input capacitance of the element, and μ, V'G, Vd, and L are carrier mobility, net gate voltage, carrier drift speed, and effective channel length, respectively. Based on these indexes, the conditions for increasing the frequency are firstly a reduction in channel length, and secondly, an improvement in carrier mobility and an increase in bias voltage, which depends on carrier drift speed. Due to these requirements, the channel length is currently required to have a submicron dimension of 1 μm or less, and as this dimension becomes smaller, various manufacturing controllability problems arise. That is, there are drawbacks such as variations in not only the channel h but also the threshold voltage and a decrease in drain breakdown voltage.

本発明は上記欠点を除き、制御性が良く、且つ高周波特
性の優れたMO8電界効果型の半導体装置を提供するも
のである。
The present invention provides an MO8 field effect type semiconductor device which eliminates the above drawbacks and has good controllability and excellent high frequency characteristics.

本発明の半導体装置は、−主面が(100)面である一
導電型半導体基板の該−主面に設けられた逆向き台形の
溝部と、前記溝部の傾斜面の一方に設けられ前記半導体
基板と逆導電型のソース領域と、前記溝部の他方の傾斜
面に設けられたデプレッション型のM2S部と、前記溝
部の底面に設けられたエンハンスメント型のM2S部と
、前記デプレッション型MO8部に接続して前記半導体
基板の一主面に設けられた逆導電型のドレイン領域とを
含んで構成される。
The semiconductor device of the present invention includes: an inverted trapezoidal groove provided on the main surface of a one-conductivity type semiconductor substrate whose main surface is a (100) plane; A source region of a conductivity type opposite to that of the substrate, a depression type M2S part provided on the other inclined surface of the groove, an enhancement type M2S part provided on the bottom surface of the groove, and connected to the depression type MO8 part. and a drain region of opposite conductivity type provided on one main surface of the semiconductor substrate.

前記デプレッション型及びエンハンスメント型MO8部
は前記溝部の表面に絶縁膜を設け、該絶縁膜上に金属膜
を設けることにより形成される。
The depression type and enhancement type MO8 parts are formed by providing an insulating film on the surface of the groove part and providing a metal film on the insulating film.

前記絶縁膜は前記半導体基板の一主面上の絶縁膜に接続
して形成され、かつ前記デプレッション型及びエンハン
スメント型MO8部の絶縁膜の厚さよりも前記ソース領
域及びドレイン領域の絶縁膜の厚さの方が大きいように
形成される。
The insulating film is formed to be connected to an insulating film on one main surface of the semiconductor substrate, and the thickness of the insulating film in the source region and drain region is greater than the thickness of the insulating film in the depletion type and enhancement type MO8 parts. is formed so that it is larger.

本発明の半導体装置は、前記ドレイン領域から流れ出る
ドレイン電流の使用範囲の最大値をID。
In the semiconductor device of the present invention, ID is the maximum value of the usable range of drain current flowing out from the drain region.

maxとするとき VTI :エンハンスメント型MO8のターンオン電圧 5− VT2:デプレッション型MO8のターンオン螺圧 μ7:デプレツシヨン型MO8のキャリア移動度 12:デプレッション型MO8のチャネル長COX、2
:デプレッシ冒ン型MO8のゲート絶縁膜容量 W:M2S部のチャネル幅 なる式(1)が成立するように形成される。
When set to max, VTI: Turn-on voltage of enhancement type MO8 5- VT2: Turn-on helical pressure of depression type MO8 μ7: Carrier mobility of depletion type MO8 12: Channel length of depression type MO8 COX, 2
: gate insulating film capacitance of depressurized type MO8 W: channel width of M2S section.

次に本発明の実施例について図面を用いて説明する。Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(C)は本発明の一実施例の製造方法を
説明するための工程断面図である。
FIGS. 1A to 1C are process cross-sectional views for explaining a manufacturing method according to an embodiment of the present invention.

まず、第1図(a)に示すように、−主面が(100)
面であるP型シリコン基板の一主面に通常の方法により
N型領域2を形成し、その上に5in2等の絶縁膜3f
設ける。更にその上にホトレジスト膜4を設け、露光、
現像し開口部を設ける。ホトレジスト膜4をマスクにし
て絶縁膜3をエツチングして幅りの窓5をあける。
First, as shown in Fig. 1(a), the -principal surface is (100)
An N-type region 2 is formed on one main surface of a P-type silicon substrate by a normal method, and an insulating film 3f of 5in2 or the like is formed thereon.
establish. Further, a photoresist film 4 is provided thereon, exposed to light,
Develop and create openings. Using the photoresist film 4 as a mask, the insulating film 3 is etched to open a wide window 5.

 6− 次に、第1図tb+に示すように、(1111而の方が
他の而と比較してエツチング速度が遅いような異方性エ
ツチング液、例λ、ばKOH@液等を用いて基板1を異
方性エツチングして逆向き台形の溝部6を設ける。溝部
6のIIIf+面が(1,11)面、底面が(100)
而となる。また、N型懺域2は二つに分けらする。これ
全ソース領域2′ 、ドレイン領域2“とする。次に溝
部6の一方の傾斜面に入射角管θだけ傾けたイオン注入
によりAs、P等のドナー不純物をイオン注入し、熱処
理#−を施し、N型ソース領域7を形成する。
6- Next, as shown in FIG. The substrate 1 is anisotropically etched to form an inverted trapezoidal groove 6. The IIIf+ plane of the groove 6 is a (1,11) plane, and the bottom plane is a (100) plane.
It becomes. Further, the N-type coverage area 2 is divided into two. These are all made into a source region 2' and a drain region 2''.Next, donor impurities such as As and P are ion-implanted into one inclined surface of the trench 6 at an angle of incidence θ, and a heat treatment #- is performed. Then, an N-type source region 7 is formed.

次に、ff11図tc)に示すように、熱酸化等により
ゲート絶縁1[8’、8“及び層間絶縁膜8を形成した
後、ゲート絶縁膜9を形成する。最後にソース及びドレ
イン・1域2′ 、2“にコンタクト窓の開孔部を設け
、それぞれにAI等の金属を極等を形成する。ここで、
)@ IIJ1絶縁膜8のnさはゲート絶縁膜8′、8
“より厚く形ルνすることが重装である。基板1とゲー
ト絶縁膜8′とゲート成極9とでエンハンスメント型M
o5ifll(以下E g M2S部と記す)10を形
成し、基板1とゲート絶縁膜8“とゲート電極9とでデ
プレッション型MO8部(以下り型M2S部と記す)1
1を形成する。このようにE型及びD型のM2S部を有
する半導体装置をEl)−MOfS型電界効果トランジ
スタと称することにする。E型、D型の差異はターンオ
ン電圧によって規定されるが、このターンオン電圧は基
板の不純物濃度、ゲート酸化膜厚、8l−8I02系の
Qssの関数であるばかりでなく、S + −8i O
2界面近傍にB、P、A、s等の不純物をドープするこ
とによって容易に制御できる。
Next, as shown in ff11 (tc), after forming gate insulating film 1 [8', 8'' and interlayer insulating film 8 by thermal oxidation etc., gate insulating film 9 is formed.Finally, source and drain 1 Openings for contact windows are provided in regions 2' and 2'', and poles, etc., of metal such as AI are formed in each. here,
) @ IIJ1 The n-thickness of the insulating film 8 is the same as that of the gate insulating films 8' and 8.
“It is heavy mounting to make the shape thicker.The enhancement type M
o5ifll (hereinafter referred to as E g M2S part) 10 is formed, and a depression type MO8 part (hereinafter referred to as depletion type M2S part) 1 is formed by the substrate 1, gate insulating film 8'' and gate electrode 9.
Form 1. A semiconductor device having such E-type and D-type M2S portions will be referred to as an El)-MOfS field effect transistor. The difference between E type and D type is determined by the turn-on voltage, which is a function not only of the impurity concentration of the substrate, the gate oxide film thickness, and the Qss of the 8l-8I02 system, but also of the S + -8i O
This can be easily controlled by doping impurities such as B, P, A, and s near the two interfaces.

以上の如く形成したED、−MO8型心界効果トランジ
スタにおいてドレイン電流の使用範囲においてその最大
値を■D、maxとした時に次なる関係式が成立するよ
うに形成した事が本発明の第1の特徴でち6゜ ここで VTI : E型MO8のターンオン電圧VT
2 : D型MO8のターンオン電圧μ2:D型MO8
のキャリア移動度 e2.:D型MO8(Dチャネル長 COX、2 : D型MO8のゲート酸化膜容量W:E
D型MO8のチャネル幅 第2図は第1図(C)に示した一実施例の等価回路図で
ある。
The first aspect of the present invention is that the ED, -MO8 type mind field effect transistor formed as described above is formed so that the following relational expression holds when the maximum value of the drain current in the usage range is D, max. Characteristics of 6゜Here, VTI: Turn-on voltage VT of E-type MO8
2: Turn-on voltage μ2 of D-type MO8: D-type MO8
Carrier mobility e2. : D type MO8 (D channel length COX, 2 : Gate oxide film capacitance of D type MO8 W: E
Channel width of D-type MO8 FIG. 2 is an equivalent circuit diagram of the embodiment shown in FIG. 1(C).

第2図において、Eはエンハンスメント型、Dはデブレ
ッシ田ン型を示し、点MはE部とD部の実効的な接点を
示す。この点Mでの電位yVMで表示する。
In FIG. 2, E indicates the enhancement type, D indicates the depressing type, and point M indicates the effective contact point between the E section and the D section. The potential at this point M is expressed as yVM.

第3図は第2図に示す等価回路の動作特性の一例の特性
曲線図である。E型、D型MO8のそれぞれの動作条件
は次の通りである。領域I 、 IIにおいては、E部
がカットオフであるために電流は流れない。領域v、■
においてはE部とD部の電流駆動能力が同程度となり、
双方が電諸制限項となるが、領域1.mVにおいては、
D部の電流駆動能力がE部の駆動能力より大きいため、
全体として 9− は、E部のみによって電離が決定される。E部は飽和状
態であるので、この時の電Rを線形近似で示すと、 D部は領域■では非飽和、領域■では飽和状態となるが
Voの範囲は第3図から VT 1(Vc <VT t+V/a (VT t −
VT x ) ・(4)このVaの値から(3)式の電
iInの範囲は直ちにα=β2//1 従って、ED−MO8型トランジスタに於てなるように
素子パラメータを設定するとドレイン電流・ゲート電圧
特性はE型MO8部のみによって決まる。すなわち第1
図(C)において溝部6の底部のトランジスタによって
決められる。この底部は(100)面であり斜面部の(
111)面と比較すると、MOSを形成した場合一般的
には、Qssが小さく、表面移動度が大きい。これは前
述した高周波化には有利である。又、チャネル長の微小
化においては、第4図に示した90くE型MO8部のチ
ャネル長l−の決定は窓50幅り、溝部6の閑さt及び
D型MO8部のチャネル長12.ドレイン領域2“の接
合深さXjによってなされる。
FIG. 3 is a characteristic curve diagram of an example of the operating characteristics of the equivalent circuit shown in FIG. 2. The operating conditions for the E type and D type MO8 are as follows. In regions I and II, since section E is cutoff, no current flows. Area v,■
In this case, the current drive capabilities of the E section and the D section are about the same,
Both are electric limit terms, but in area 1. In mV,
Since the current drive capability of section D is greater than the drive capability of section E,
Overall, the ionization of 9- is determined only by the E part. Since the E part is in a saturated state, if the electric current R at this time is expressed by linear approximation, the D part will be unsaturated in the region ■ and saturated in the region ■. However, the range of Vo is VT 1 (Vc <VT t+V/a (VT t −
VT The gate voltage characteristics are determined only by the E-type MO8 section. That is, the first
In figure (C), it is determined by the transistor at the bottom of the trench 6. This bottom part is a (100) plane, and the slope part is (
111) surface, when a MOS is formed, Qss is generally small and the surface mobility is large. This is advantageous for increasing the frequency mentioned above. In addition, in the miniaturization of the channel length, the channel length l- of the 90-type E-type MO8 section shown in FIG. .. This is done by the junction depth Xj of the drain region 2''.

(ψ−55°) 例として、A!−=1μ”+1z=1.5 ttm、X
j =0.311MとするとL=3.45μmとなり、
チャンネル長1μmの制御f345μmによってなされ
た訳であるからばらつき等を深さtの制御を適当にする
ことにより、約1/3に減少することができる。これは
実際の製作上大きなメリットである。
(ψ−55°) For example, A! -=1μ”+1z=1.5 ttm,X
If j = 0.311M, L = 3.45μm,
Since the channel length was controlled by f345 μm with a channel length of 1 μm, variations, etc. can be reduced to about ⅓ by appropriately controlling the depth t. This is a great advantage in actual production.

以上のように前記条件によれば、電離はE型M(18部
のみによって決めらねる。このことは逆にD型MO8部
ではドレイン・ソース間の電圧の一部を相っているので
E型MO8部だけの場合と比較すると、高耐圧化を計る
ことが可能である。この時電流には影Ii#全与えない
。次に、第1図(C1及び第4図に示すように、溝6の
一部の傾斜面にはイオン注入等によりソース領域を形成
したがゲート酸化膜形成時にこれらの高濃度拡散領域に
は増速酸化を引き起こす事が可能である。これらの増速
酸化によりソース領域2′ 、7及びドレイン領域2“
とゲート電極間に付随する寄生容t’を低減させること
ができる。この溝部6の傾斜面にイオン注入する時、第
4図に示したように、入射角θはE型チャネル長11と
溝部6の深さtによって次式で表わされる。
As described above, according to the above conditions, ionization cannot be determined only by the E-type M (18 part).This means that in the D-type MO8 part, part of the voltage between the drain and source is mutual, so the E Compared to the case of only the type MO8 section, it is possible to achieve a higher withstand voltage.At this time, there is no effect on the current Ii#.Next, as shown in Fig. 1 (C1 and Fig. 4), Although source regions were formed by ion implantation or the like on the slopes of some of the grooves 6, it is possible to cause accelerated oxidation in these high concentration diffusion regions when forming the gate oxide film. Source regions 2', 7 and drain regions 2''
It is possible to reduce the parasitic capacitance t' between the gate electrode and the gate electrode. When ions are implanted into the inclined surface of the groove 6, the incident angle θ is expressed by the following equation using the E-type channel length 11 and the depth t of the groove 6, as shown in FIG.

例として、1l=tμl t=1.5ttm(lz=1
.5tttn、xj=03μmの時)の時θ=54’で
ある。以上のようにゲート・ソース間の寄生容量を減ら
すことを目的として、溝部6のソース側の傾斜面の酸化
膜厚をE及びD型MO8のゲート酸化膜厚より大きくな
るように形成した事が本発明の第2の特徴である。又、
D型MO8の制御をイオン注入によって行う場合、前記
ソース領域の場合と同様であり、入射角を(7)式に従
って調整すれば良い。
As an example, 1l=tμl t=1.5ttm (lz=1
.. 5tttn, xj=03 μm), θ=54′. As described above, in order to reduce the parasitic capacitance between the gate and the source, the oxide film thickness on the sloped surface on the source side of the trench 6 is formed to be larger than the gate oxide film thickness of the E and D type MO8. This is the second feature of the present invention. or,
When the D-type MO8 is controlled by ion implantation, it is the same as the case of the source region, and the incident angle may be adjusted according to equation (7).

以上説明したように、本発明は逆向き台形の溝部を形成
したEl)−MO8型成界効果トランジスタにおいて、
チャネル長或u”を気的特性の制御性を向トさせ、素子
性能の高周波化を達成せしめることが可能であるという
効果ケ有す。
As explained above, the present invention provides an El)-MO8 type field effect transistor in which an inverted trapezoidal groove is formed.
This has the effect that it is possible to improve the controllability of the channel length (u'') and achieve higher frequency device performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜(C)は本発明の一実施例の製造方法を
説明するための工程断面図、第2図は第1図(C)に示
す一実施例の等価回路図、第3図は第1図(C)に示す
一実施例の動作特性の一例の特性曲線図、第4図は第1
図(C)に示す一実施例の幾何学的条件を説明するため
の図である。 1・・・・・・I〕型シリコン基板、2・・・・・・N
型領域、2′・・・・・・ソース領域、2″・・・・・
・ドレイン領域、3・・・・・・絶縁膜、4・・・・・
ホトレジスト膜、5・°°・・・窓、6・°。 ・・・溝部、7・・・・・・ソース領域、8・・・・・
・層間絶縁膜、B/ 、 B″−・・・・・ゲート絶縁
膜、9・・・・・・ゲート’+を極、10・・・・・・
エンハンスメントMO8部、 11・・・・・・テフレ
ノションMO8部。 =13−
1(al to C) are process sectional views for explaining the manufacturing method of an embodiment of the present invention, FIG. 2 is an equivalent circuit diagram of the embodiment shown in FIG. 1(C), and 3. The figure is a characteristic curve diagram of an example of the operating characteristics of the embodiment shown in Figure 1 (C), and Figure 4 is a characteristic curve diagram of an example of the operating characteristics of the embodiment shown in Figure 1 (C).
FIG. 6 is a diagram for explaining the geometrical conditions of the example shown in FIG. 1...I] type silicon substrate, 2...N
Type area, 2'...Source area, 2''...
・Drain region, 3... Insulating film, 4...
Photoresist film, 5·°°...window, 6·°. ...Groove portion, 7...Source region, 8...
・Interlayer insulating film, B/, B''-...Gate insulating film, 9...Gate'+ as pole, 10...
Enhancement MO 8 parts, 11...Tephrenotion MO 8 parts. =13-

Claims (4)

【特許請求の範囲】[Claims] (1)−主面が(100)面である一導成型半導体基板
の該−主面に設けられた逆向き台形の溝部と、前記溝部
の傾゛斜面の一方に設けられ前記半導体基板と逆導電型
のソース領域と、前記溝部の他方の傾斜面に設けられた
デプレッション型のM2S部と、前記溝部の底面に設け
られたエンハンスメント型のM2S部と、前記デプレッ
ション型MO8部に接続して前記半導体基板の一主面に
設けられた逆導電型のドレイン領域とを含むことを特徴
とする半導体装置。
(1) - An inverted trapezoidal groove provided on the principal surface of a one-conductor molded semiconductor substrate whose principal surface is a (100) plane, and a groove provided in one of the inclined surfaces of the groove and opposite to the semiconductor substrate. A conductive type source region, a depletion type M2S part provided on the other inclined surface of the trench, an enhancement type M2S part provided on the bottom surface of the trench, and a depletion type M2S part connected to the depletion type MO8 part. 1. A semiconductor device comprising: a drain region of opposite conductivity type provided on one main surface of a semiconductor substrate.
(2)前記デプレッション型及びエンノ・ンスメント型
MO8部が前記溝部の表面に絶縁膜を設け、該絶4禄模
上に金属膜を設けて形成されることを特徴とする特許請
求の範囲第(1)項記載の半導体装置。
(2) The depression type and enrichment type MO8 parts are formed by providing an insulating film on the surface of the groove part and providing a metal film on the insulation film. 1) The semiconductor device described in item 1).
(3)前記絶縁膜は前記半導体基板の一主面トの絶縁膜
に接続して形成され、かつ前記デプレッション型及びエ
ンハンスメント型MO8部の絶縁膜の厚さよりも前記ソ
ース領域及びドレイン領域の絶縁膜の厚さが大きいこと
を特徴とする特許請求の範囲第(1)項記載の半導体装
置。
(3) The insulating film is formed to be connected to the insulating film on one main surface of the semiconductor substrate, and the insulating film in the source region and drain region is thicker than the insulating film in the depletion type and enhancement type MO8 parts. The semiconductor device according to claim 1, wherein the semiconductor device has a large thickness.
(4)前記ドレイン領域から帽れ出るドレインtttA
fの使用範囲の最大値をin、maxとするときここで VTl:エンハンスメント型MO8のターンオン電圧 VT2:デプレッション型MO8のターンオン′邂圧 μ2:デプレソ7ヨン型MO8のキャリア移動度 12:デプレッション型MO8のチャネル長 Cox、2:デプレッション型MO8のゲート絶縁膜容
量 W:M2S部のチャネル幅 なる式が成立するように形成したことを特徴とする特許
請求の範囲第(1)項記載の半導体装置。
(4) Drain tttA protruding from the drain region
When the maximum value of the usable range of f is in and max, here VTl: turn-on voltage of enhancement type MO8 VT2: turn-on pressure of depletion type MO8 μ2: carrier mobility of depression type MO8 12: depletion type MO8 The semiconductor device according to claim 1, wherein the semiconductor device is formed so that the following formula holds true: channel length Cox, 2: gate insulating film capacitance of depletion type MO8, W: channel width of M2S portion.
JP57028314A 1982-02-24 1982-02-24 Semiconductor device Pending JPS58145156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57028314A JPS58145156A (en) 1982-02-24 1982-02-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57028314A JPS58145156A (en) 1982-02-24 1982-02-24 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS58145156A true JPS58145156A (en) 1983-08-29

Family

ID=12245149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57028314A Pending JPS58145156A (en) 1982-02-24 1982-02-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS58145156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197375A (en) * 1987-02-12 1988-08-16 Matsushita Electric Ind Co Ltd Manufacture of mos type semiconductor device
WO1998012753A1 (en) * 1996-09-18 1998-03-26 Advanced Micro Devices, Inc. Short channel self aligned vmos field effect transistor
US6150693A (en) * 1996-09-18 2000-11-21 Advanced Micro Devices Short channel non-self aligned VMOS field effect transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197375A (en) * 1987-02-12 1988-08-16 Matsushita Electric Ind Co Ltd Manufacture of mos type semiconductor device
WO1998012753A1 (en) * 1996-09-18 1998-03-26 Advanced Micro Devices, Inc. Short channel self aligned vmos field effect transistor
US6150693A (en) * 1996-09-18 2000-11-21 Advanced Micro Devices Short channel non-self aligned VMOS field effect transistor

Similar Documents

Publication Publication Date Title
US5306655A (en) Structure and method of manufacture for MOS field effect transistor having lightly doped drain and source diffusion regions
US6252278B1 (en) Self-aligned lateral DMOS with spacer drift region
JP5540026B2 (en) High breakdown voltage transistor and manufacturing method thereof
JP2003514400A (en) Lateral thin film SOI device having lateral drift region and method of manufacturing the same
JPH0216020B2 (en)
JPH05109758A (en) Manufacture of mosfet
JPS59193066A (en) Mos semiconductor device
JPH06204469A (en) Field-effect transistor and manufacture thereof
KR100762545B1 (en) Self-aligned silicon carbide lmosfet
JPS62229976A (en) Semiconductor device and manufacture thereof
JP2008028263A (en) Semiconductor device
JP2000269487A (en) Semiconductor device and its manufacture
KR20000051294A (en) DMOS field effect transistor with improved electrical characteristics and fabricating method thereof
JP3075831B2 (en) Field effect transistor and method for manufacturing the same
US20190326415A1 (en) Semiconductor structure and method for manufacturing the same
JP2519608B2 (en) Semiconductor device and manufacturing method thereof
JPS58145156A (en) Semiconductor device
JPH04254335A (en) Semiconductor device and its manufacture
JPH04348038A (en) Mos field-effect transistor and manufacture thereof
JPS58166759A (en) Manufacture of semiconductor device
JPS58166758A (en) Manufacture of semiconductor device
KR960002101B1 (en) Semiconductor device and the making method thereof
KR950008337Y1 (en) Mos type field effect transistor
JPH11274499A (en) Semiconductor device and its manufacturing method
JPH0669502A (en) High-tension mis transistor