JPS62254458A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62254458A
JPS62254458A JP61098606A JP9860686A JPS62254458A JP S62254458 A JPS62254458 A JP S62254458A JP 61098606 A JP61098606 A JP 61098606A JP 9860686 A JP9860686 A JP 9860686A JP S62254458 A JPS62254458 A JP S62254458A
Authority
JP
Japan
Prior art keywords
region
mosfet
gate electrode
buried channel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61098606A
Other languages
Japanese (ja)
Inventor
Takahiro Yamada
隆博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61098606A priority Critical patent/JPS62254458A/en
Publication of JPS62254458A publication Critical patent/JPS62254458A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the generation of a parasitic channel caused by an electric interference by a method wherein a buried channel type is used on the MOSFET of the active layer of two or more layers of the semiconductor device on which a plurality of layers of semiconductor region having an active layer are formed. CONSTITUTION:A buried channel type is used on the active layer of the second layer and above of the MOSFET, and the conductivity types of the MOSFET located at the positions corresponding to the upper and the lower active layers are made opposite to each other. When the lower gate electrode 106 gives an effect upon the lower part of the P-region 114 of the upper MOSFET W1 in the state wherein the MOSFET W1 is laminated, an inversion layer 118 is induced. As electrons are present on the inversion layer 118, it is not turned into the parasitic channel of the FET W1. A buried channel type MOSFET W2 is constituted corresponding to an MOSFET V2 on an insulating film 105. If said FET W2 is a single unit, a neutral region 124 is formed when positive voltage is applied to a gate electrode 123, and it is turned into a buried channel for electrons. When the lower gate electrode 101 gives an effect on the lower part of the N-region 121 of the upper FET W2 in the state wherein the FET W2 is laminated, an inversion layer is induced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、能動層を有する半導体領域が多層形成された
半導体装置であって、上下の能動層間のる半導体装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device in which a multilayer semiconductor region having an active layer is formed, and in which there are upper and lower active layers.

従来の技術 多層集積回路では、回路素子の構成される半導体領域が
、従来と異なり薄膜化されるので、上部能動層中の回路
素子と下部能動層中の回路素子あるいは配線とが従来の
実装法に比べて桁違いに近接して配置される。このため
、上部能動層中の回路素子が下部能動層中の回路素子の
電極や配線から電気的干渉を受け、誤動作を起こす可能
性がある。
Conventional technology In multilayer integrated circuits, the semiconductor regions in which circuit elements are constructed are made thinner than in the past, so the circuit elements in the upper active layer and the circuit elements or wiring in the lower active layer are mounted using conventional mounting methods. are placed an order of magnitude closer to each other than the Therefore, the circuit elements in the upper active layer may receive electrical interference from the electrodes and wiring of the circuit elements in the lower active layer, resulting in malfunction.

第3図に1層目、2層目共、表面チャネルを利用する基
本的な集積回路を示す。第3図(四で、P基板301表
面にソースのn 領域302、ドレインのn十領域30
3が形成され、絶縁膜3o4  。
FIG. 3 shows a basic integrated circuit that utilizes surface channels in both the first and second layers. FIG. 3 (4) Source n region 302 and drain n region 30
3 is formed, and an insulating film 3o4 is formed.

中にゲート電極306が形成されて1個のMOSFET
°°Q1”となる。更に、絶縁膜304上には薄膜状の
単結晶が形成され、それをソースのn 領域306、ド
レインのn 領域3o7、チャネルを含むP領域308
とし、絶縁膜309を介してゲlt T I Itとな
る。
A gate electrode 306 is formed inside to form one MOSFET.
Further, a thin film-like single crystal is formed on the insulating film 304, and is divided into a source n region 306, a drain n region 3o7, and a p region 308 including a channel.
Then, gel lt T I It is formed through the insulating film 309 .

MO3FΣTtQ Q 1”のゲート電極306に正電
圧が印加されると逆転層311が形成され表面チャネル
となる。
When a positive voltage is applied to the gate electrode 306 of MO3FΣTtQ Q 1'', an inversion layer 311 is formed and becomes a surface channel.

一方、第3図(t))に示す様に、MO8FK丁”TI
”も単体ならば、ゲート電極310に正電圧が印加され
ると逆転層312が形成されるのだが、第3図calの
様に積層となると、下方のゲート電極305が、上方の
MOSFET”τ1”(7)P領域308に影響を及ぼ
して新たに逆転層313を誘起してしまう事が生じる。
On the other hand, as shown in Figure 3(t)),
If the MOSFET 305 is a single substance, an inversion layer 312 is formed when a positive voltage is applied to the gate electrode 310, but if it is stacked as shown in FIG. (7) The P region 308 may be affected and a new inversion layer 313 may be induced.

この結果、MO8FK丁°゛T1”は本来のゲート電極
310の他に、別のMO5FXτ′ゞQ1”のゲート電
極305によっても制御され、誤動作の原因となる。
As a result, MO8FK T1'' is controlled not only by the original gate electrode 310 but also by the gate electrode 305 of another MO5FXτ'Q1'', causing malfunction.

第4図は、1層目が表面チャネル、2層目が埋込みチャ
ネルを利用する基本的な集積回路を示す。
FIG. 4 shows a basic integrated circuit utilizing surface channels in the first layer and buried channels in the second layer.

第4図(IL)で、第3図(勾と共通な部分ムは同一番
号を付している。第4図TaJで、絶縁膜304上には
薄膜状の単結晶領域が形成され、それを、ソースのn 
領域401、ドレインのn 領域402、チャネルを含
むn領域403、絶縁膜404を介してゲート電極40
5が形成され、MO8FXT゛9Q2”となる。第4図
(blに示す様に、MOSFET” Q 2 ”が単体
ならば、ゲート電極406に正電圧が印加されると中性
領域406が形成されて埋込みチャネルとなるが、第4
図(11Jの様に、積層となると、下方のゲート電極3
05が上方のMO8FXT°°T2”のれ領域403に
影響を及ぼして新たに蓄積層4o了と中性領域408を
誘起してしまう事が生じる。この結果、MOSFET”
T2′′は本来のゲート電極406の他に、MOSFE
T”Ql”のゲート電極306によっても制御され、誤
動作の原因となる。
In FIG. 4 (IL), parts common to those in FIG. 3 (TaJ) are given the same numbers. In FIG. , the source n
A region 401, a drain n region 402, an n region 403 including a channel, and a gate electrode 40 via an insulating film 404.
5 is formed, resulting in MO8FXT゛9Q2''. As shown in FIG. It becomes a buried channel, but the fourth
Figure (11J) When stacked, the lower gate electrode 3
05 influences the upper MO8FXT°°T2" drift region 403 and induces a new accumulation layer 4o end and neutral region 408. As a result, MOSFET"
In addition to the original gate electrode 406, T2''
It is also controlled by the gate electrode 306 of T"Ql" and causes malfunction.

発明が解決しようとする問題点 以上の説明で明らかな様に、積層集積回路の実現に必要
な解決すべき問題点として、上下能動層間の電気的干渉
に伴ない本来のチャネルとは別の寄生チャネルが形成さ
れ能動素子の誤動作を招く事が挙げられる。
Problems to be Solved by the Invention As is clear from the above explanation, one of the problems that must be solved to realize a stacked integrated circuit is the problem of parasitics other than the original channel caused by electrical interference between the upper and lower active layers. One example of this is that a channel is formed, leading to malfunction of the active element.

本発明は上記問題点に鑑み、電気的干渉に起因する寄生
チャネルの発生を防止しうる半導体装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide a semiconductor device that can prevent the generation of parasitic channels due to electrical interference.

問題点を解決するための手段 本発明は、上記問題点を解決するため、各能動層に配置
される能動素子に対して (122層目以上の能動層のMO5FIETは埋込みチ
ャネル形を用い、 (2)上下の能動層で対応する位置にあるMO5FIE
Tの導電形は逆とし、 G3)1層目の能動層のMOSFETは埋込みチャネル
形ならば上記(−の条件が拡張され1層目から適用する
とともに表面チャネル形ならば、対応する2層目のMO
SFETとチャネルを含む領域が同一導電形で、伝導に
寄与するキャリアは逆導電形であるように構成されてい
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention uses a buried channel type MO5FIET for the active elements arranged in each active layer (for the 122nd and higher active layers). 2) MO5FIEs in corresponding positions in the upper and lower active layers
The conductivity type of T is reversed, and G3) If the MOSFET in the first active layer is a buried channel type, the above (-) condition is extended and applied from the first layer, and if it is a surface channel type, the corresponding second layer MOSFET is applied. MO of
The region including the SFET and the channel is of the same conductivity type, and the carriers contributing to conduction are of opposite conductivity type.

作用 本発明は上記した構成により、上下能動層間の電気的干
渉によって影響を受けても逆転層だけが形成され、能動
素子の主動作状態で利用される多域となるため、寄生チ
ャネルを形成することにはならず、誤動作は生じない。
According to the above-described structure, only the inversion layer is formed even if it is affected by electrical interference between the upper and lower active layers, and a parasitic channel is formed because it becomes a multi-layer that is used in the main operating state of the active element. This will not cause any malfunction.

実施例 以下本発明の実施例について図面を参照しながら説明す
る。
EXAMPLES Hereinafter, examples of the present invention will be described with reference to the drawings.

第1図は、本発明の第1の実施例の半導体装置の断面図
を示すものである。第1図において、1o1はP型シリ
コン半導体基板(以下P基板という)で、P基板1o1
中にnウェル領域102を形成する。
FIG. 1 shows a cross-sectional view of a semiconductor device according to a first embodiment of the present invention. In FIG. 1, 1o1 is a P-type silicon semiconductor substrate (hereinafter referred to as P substrate), and P substrate 1o1
An n-well region 102 is formed therein.

P基板101表面の、ソースのn 領域103、ドレイ
ンのn 領域104、および絶縁膜105を介して設け
たゲート電極106により表面チャネル形MO5FXT
”v1″が構成される。ゲート電極106に正電圧が印
加された時、逆転層107が形成され電子に対する表面
チャネルとなる。
A surface channel type MO5FXT is formed by a gate electrode 106 provided on the surface of the P substrate 101 via a source n region 103, a drain n region 104, and an insulating film 105.
“v1” is configured. When a positive voltage is applied to the gate electrode 106, an inversion layer 107 is formed and serves as a surface channel for electrons.

一方、nウェル領域102表面の、ソースのP+領域1
0B、ドレインのP十領域109、および位4−L a
t a^Cも人1イ凱磐↓入W  を濁に−A^1rよ
り表面チャネル形MOSFET”V2”が構成される。
On the other hand, the P+ region 1 of the source on the surface of the n-well region 102
0B, drain P region 109, and position 4-L a
The surface channel type MOSFET "V2" is constructed from t a^C as well as the person 1 I Kaiwa ↓ input W. -A^1r.

ゲート電極11oに負電圧が印加された時、逆転層11
1が形成され正孔に対する表面チャネルとなる。
When a negative voltage is applied to the gate electrode 11o, the inversion layer 11
1 is formed and serves as a surface channel for holes.

絶縁膜10g上で、MO8FI!T”Vl”に対応して
薄膜状の単結晶領域を形成し、ソースのP+領域112
、ドレインのP+領域113、チャネルを有するP領域
114、および絶縁膜116を介して設けたゲート電極
116により埋込みチャネル形MO8FRT”Wl”が
構成される。MOSFET”Wl”が単体ならば、ゲー
ト電極116に負電圧が印加された時、中性領域117
が形成され、正孔に対する埋込みチャネルとなる。(こ
の時、中性領域117が形成されず、完全空包化してい
ても、中性領域117に対応する位置は最も低電位とな
り、やはり、チャネルとして利用でき、その場合、MO
SFET”Wl”はMOS−8ITとなる。) ところが、MOSFET”Wl”が積層状態なので、下
方のゲート電極106が、上方のMOSFET゛W1”
のP領域114の下部に影響を及ぼすと、逆転層118
を誘起し得る。しかし、逆転層118には電子が存在す
るのでMOSFET”Wl”の寄生チャネルとはならな
い。
MO8FI on 10g of insulation film! A thin film-like single crystal region is formed corresponding to T"Vl", and a P+ region 112 of the source is formed.
, a drain P+ region 113, a P region 114 having a channel, and a gate electrode 116 provided through an insulating film 116 constitute a buried channel type MO8FRT "Wl". If MOSFET "Wl" is a single unit, when a negative voltage is applied to the gate electrode 116, the neutral region 117
is formed and serves as a buried channel for holes. (At this time, even if the neutral region 117 is not formed and is completely empty, the position corresponding to the neutral region 117 has the lowest potential and can still be used as a channel. In that case, MO
SFET "Wl" becomes MOS-8IT. ) However, since the MOSFET "Wl" is in a stacked state, the lower gate electrode 106 is connected to the upper MOSFET "W1".
affecting the bottom of the P region 114 of the inversion layer 118
can induce However, since electrons exist in the inversion layer 118, it does not become a parasitic channel of MOSFET "Wl".

同様に、絶縁膜105上で、MOSFET”V2”に対
応して薄膜状の単結晶領域を形成し、ソースのn+領域
119、ドレインのn 領域120、チャネルを有する
n領域121、および絶縁膜122を介して設けたゲー
ト電極123により埋込みチャネル形MO3FXT″”
W2′′が構成される。
Similarly, on the insulating film 105, a thin film-like single crystal region is formed corresponding to MOSFET "V2", and includes a source n+ region 119, a drain n region 120, an n region 121 having a channel, and an insulating film 122. A buried channel type MO3FXT"" is formed by the gate electrode 123 provided through the
W2'' is configured.

MOSFET”W2”が単体ならば、ゲート電極123
に正電圧が印加された時、中性領域124が形成され、
電子に対する埋込みチャネルとなる。
If MOSFET “W2” is a single unit, the gate electrode 123
A neutral region 124 is formed when a positive voltage is applied to
Provides a buried channel for electrons.

(この時、中性領域124が形成されず、完全空包化し
ても、M OS F RT ”W 1 ” O場合ト同
様に、MOS−8ITとなるので、動作上の問題はない
。) ところが、MO8FRT″t W 21′が積層状態な
ので、下方のゲート電極11oが上方のMO5FXTパ
W2”のn領域121の下部に影響を及ぼすと、逆転層
126を誘起し得る。しかし、逆転層126には正孔が
存在するので、MOSFET”W2”の寄生チャネルと
はならない。
(At this time, even if the neutral region 124 is not formed and it becomes completely empty, it will become MOS-8IT as in the case of MOS F RT "W 1 " O, so there will be no operational problem.) , MO8FRT''t W 21' are in a stacked state, so when the lower gate electrode 11o affects the lower part of the n region 121 of the upper MO5FXT layer W2'', an inversion layer 126 can be induced. However, since holes exist in the inversion layer 126, it does not become a parasitic channel of MOSFET "W2".

以上の様に、本実施例によれば、1層目の能動層のMO
SFETが表面チャネル形で、2層目の能動層のMOS
FETが埋込みチャネル形であり、しかも上下の対応す
るMO5FK丁のチャネルを含む領域が同−導電形で、
多数キャリアが逆導電形とすることにより、上下の能動
層間の電気的干渉があっても寄生チャネルは形成されず
、誤動作は生じない。
As described above, according to this embodiment, the MO of the first active layer
The SFET is a surface channel type, and the second active layer is a MOS
The FET is of the buried channel type, and the regions containing the channels of the upper and lower corresponding MO5FK are of the same conductivity type,
Since the majority carriers are of opposite conductivity type, a parasitic channel is not formed even if there is electrical interference between the upper and lower active layers, and malfunctions do not occur.

第2図は、本発明の第2の実施例の半導体装置の断面図
である。
FIG. 2 is a sectional view of a semiconductor device according to a second embodiment of the invention.

第2図において、P基板201とその表面に形成したn
ウェル領域202があり、P基板201表面のソースの
n十領域203、ドレインのn+領域204、埋込みチ
ャネル用のn領域205、および絶縁膜206を介して
設けたゲート電極、2o7に士 t)MO8F 宜T”
Xl ” *(nil F? ’K h−スへゲート電
極207に正電圧を印加すると、中性領域208が形成
され、電子に対する埋込みチャネルとなる。
In FIG. 2, a P substrate 201 and an n formed on its surface are shown.
There is a well region 202, a source n+ region 203 on the surface of the P substrate 201, a drain n+ region 204, a buried channel n region 205, and a gate electrode provided via an insulating film 206, t) MO8F. “Yi T”
When a positive voltage is applied to the gate electrode 207, a neutral region 208 is formed and becomes a buried channel for electrons.

絶縁膜206上に2層目の薄膜状の単結晶領域が形成さ
れ、MO5FIET ”ゞx1”に対応してソースのP
+領域209、ドレインのP十領域210埋込みチャネ
ル用のP領域211、および絶縁膜212を介して設け
たゲート電極213によりMO8FXT″ゞY1”が構
成される。ゲート電極213に負電圧を印加すると中性
領域214が形成され、正孔に対する埋込みチャネルと
なる。
A second thin film-like single crystal region is formed on the insulating film 206, and the source P
The MO8FXT"Y1" is constituted by the + region 209, the P+ region 210 for the drain, the P region 211 for the buried channel, and the gate electrode 213 provided through the insulating film 212. When a negative voltage is applied to the gate electrode 213, a neutral region 214 is formed and becomes a buried channel for holes.

下方のゲート電極207からの電気的な干渉により、逆
転層216が形成されても、電子が存在する為に、MO
3FIET”!1″の寄生チャネル  。
Even if the inversion layer 216 is formed due to electrical interference from the lower gate electrode 207, the MO
3FIET"!1" parasitic channel.

とはならない。It is not.

同様に、絶縁膜212上に3層目の薄膜状の単結晶領域
が形成され、MOSFET”τ1”に対応してソースの
n 領域216、ドレインのn十領域217、埋込みチ
ャネル用のn領域218、および絶縁膜219を介して
設けたゲート電極220によりMOSFET ”zl”
が構成される。ゲート電極220に正電圧を印加すると
中性領域221が形成され、電子に対する埋込みチャネ
ルとなる。
Similarly, a third thin film-like single crystal region is formed on the insulating film 212, corresponding to MOSFET "τ1", an n region 216 for the source, an n region 217 for the drain, and an n region 218 for the buried channel. , and the gate electrode 220 provided through the insulating film 219, the MOSFET "zl"
is configured. When a positive voltage is applied to the gate electrode 220, a neutral region 221 is formed and serves as a buried channel for electrons.

下方のゲート電極213からの電気的な干渉により、逆
転層222が形成されても、正孔が存在する為にMO8
FKτ゛z1′′の寄生チャネルとはならない。
Even if the inversion layer 222 is formed due to electrical interference from the lower gate electrode 213, the MO8
It does not become a parasitic channel of FKτ゛z1''.

一方、nウェル領域202表面のソースのP+領域22
3、ドレインのP+領域224、埋込みチャネル用のP
領域226、および絶縁膜2015を介して設けたゲー
ト電極226により、MO5FIET°°x2”が構成
される。ゲート電極226に負電圧を印加すると中性領
域227が形成され、正孔に対する埋込みチャネルとな
る。
On the other hand, the source P+ region 22 on the surface of the n-well region 202
3. P+ region 224 of drain, P for buried channel
The region 226 and the gate electrode 226 provided through the insulating film 2015 constitute a MO5FIET°°x2''. When a negative voltage is applied to the gate electrode 226, a neutral region 227 is formed, and serves as a buried channel for holes. Become.

絶縁膜206上の2層目の薄膜状の単結晶領域には、M
O8F]ET”X2”に対応シテ、ソースのn十領域2
28、ドレインのn十頭域229、埋込みチャネル用の
n領域23o1および絶縁膜212を介して設けられた
ゲート電極231により、MOSFET ”!2” 7
5:構成される。ゲート電極231に正電圧を印加する
と中性領域232が形成され、電子に対する埋込みチャ
ネルとなる。
In the second thin film-like single crystal region on the insulating film 206, M
O8F] Corresponding to ET "X2", source n+ area 2
28, MOSFET ``!2'' 7 by the drain n region 229, the buried channel n region 23o1, and the gate electrode 231 provided through the insulating film 212.
5: Constructed. When a positive voltage is applied to the gate electrode 231, a neutral region 232 is formed and serves as a buried channel for electrons.

下方のゲート電極226からの電気的干渉により、逆転
層233が形成されても、正孔が存在するため、MOS
FET”Y2”の寄生チャネルとはならない。
Even if the inversion layer 233 is formed due to electrical interference from the lower gate electrode 226, the MOS
It does not become a parasitic channel of FET "Y2".

同様に、絶縁膜212上の3層目の薄膜状の単結晶領域
には、MOSFET”Y2”に対応して、ソースのP 
領域234、ドレインのP 領域235、埋込みチャネ
ル用のP領域236、および絶縁膜237を介して設け
たゲート電極238によりMO5FIE!”Z2”が構
成される。ゲート電極238に負電圧を印加すると中性
領域239が形成され、正孔に対する埋込みチャネルと
なる。
Similarly, in the third thin film single crystal region on the insulating film 212, the source P
The MO5FIE! “Z2” is configured. When a negative voltage is applied to the gate electrode 238, a neutral region 239 is formed and serves as a buried channel for holes.

下方のゲート電極231からの電気的干渉により、逆転
層240が形成されても、電子が存在するため、輩08
FIT”Z2”の寄生チャネルとはならない。以上の説
明で中性領域208,214゜221.227.232
.239が生ぜず完全空包化しても、この部分が最も低
電位領域となるので、埋込みチャネルの状態は維持され
る。
Even if the inversion layer 240 is formed due to electrical interference from the lower gate electrode 231, the presence of electrons
It does not become a parasitic channel of FIT "Z2". In the above explanation, the neutral region 208, 214° 221.227.232
.. Even if 239 does not occur and becomes completely empty, this part becomes the lowest potential region, so the state of the buried channel is maintained.

以上の様に本実施例によれば、各能動層のMO8FIE
丁は全て、埋込みチャネル形で、しかも、上下の対応す
るMOSFETのチャネルを含む領域が逆導電形で、多
数キャリアも逆導電形とすることにより上下の能動層間
に電気的干渉があっても、寄生チャネルは形成されず、
誤動作は生じない。しかも、本実施例によって、埋込み
チャネル形のCMO3FIETが、上下の能動層で、導
電形を逆にすれば、電気的干渉を気にせずに実現できる
As described above, according to this embodiment, the MO8FIE of each active layer
All of the MOSFETs are of the buried channel type, and the regions containing the channels of the upper and lower corresponding MOSFETs are of opposite conductivity type, and the majority carriers are also of opposite conductivity type, so that even if there is electrical interference between the upper and lower active layers, No parasitic channels are formed;
No malfunction will occur. Furthermore, according to this embodiment, a buried channel type CMO3FIET can be realized without worrying about electrical interference by reversing the conductivity types of the upper and lower active layers.

さらに埋込みチャネルにより、薄膜状の単結晶領域の結
晶性の悪い界面は利用しないので、MOSFETの高性
能化に役立つ。
Furthermore, the buried channel does not utilize the interface with poor crystallinity of the thin film-like single crystal region, which helps improve the performance of the MOSFET.

なお、本実施例において、埋込みチャネル用の領域が不
純物をほとんど含まない近真性(勿論、真性も含む)領
域でもよい。
Note that in this embodiment, the region for the buried channel may be a near-intrinsic (including, of course, intrinsic) region containing almost no impurities.

発明の効果 以上の様に本発明によれば、上下能動層のMOSFET
に電気的干渉が生じても少数キャリアの逆転層だ的干渉
に起因する寄生チャネルの発生を防止する事が出き、そ
の実用的価値は大きい。
Effects of the Invention As described above, according to the present invention, the MOSFET of the upper and lower active layers
Even if electrical interference occurs, it is possible to prevent the generation of parasitic channels caused by minority carrier inversion layer interference, which has great practical value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例における半導体装置の断
面図、第2図は本発明の第2の実施例の半導体装置の断
面図、第3図、第4図は従来の半導体装置の断面図であ
る。 101・・・・・・P型シリコン半導体基板、Vl、V
2・・・・・・表面チャネル形MO5F1丁、Wl、W
2・・・・・・埋込みテ゛ヤネル形FIT0 代理人の氏名 弁理士 中 尾 敏 男 ほか1名10
1−P翌シリゴン牟厚刊〜を坂 vt、 vz−−一表面テイ芋ルMLr−10SFE丁
wt、 wz −−一理しティ年ルvLFET第1図 1−yL [=コ中a習Uへ 第2図 第3図 t 30Z   303 第4図
FIG. 1 is a cross-sectional view of a semiconductor device according to a first embodiment of the present invention, FIG. 2 is a cross-sectional view of a semiconductor device according to a second embodiment of the present invention, and FIGS. 3 and 4 are conventional semiconductor devices. FIG. 101...P-type silicon semiconductor substrate, Vl, V
2...1 surface channel type MO5F, Wl, W
2...Embedded channel type FIT0 Name of agent Patent attorney Toshi Nakao and 1 other person10
1-P next year's edition~Saka vt, vz--One surface taste potato MLr-10SFE Ding wt, wz--First year vLFET 1st figure 1-yL [= Kochua XiU To Figure 2 Figure 3 t 30Z 303 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも1つのMOSFETを有する能動層を
多層形成するとともに、2層目以上の能動層中のMOS
FETを全て埋込みチャネル形とし、かつ、ある能動層
と、前記能動層の上もしくは下の位置にある能動層にお
いて、相対する位置にあるMOSFETの導電形は逆と
なるように構成したことを特徴とする半導体装置。
(1) Forming a multilayer active layer having at least one MOSFET, and MOS in the second or higher active layer
All of the FETs are of the buried channel type, and the conductivity types of the MOSFETs located in opposing positions in a certain active layer and the active layer located above or below the active layer are configured to be opposite to each other. semiconductor device.
(2)能動層中に2つのMOSFETを有し、前記2つ
のMOSFETの導電形が逆となるように構成したこと
を特徴とする特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, characterized in that the active layer includes two MOSFETs, and the two MOSFETs are configured to have opposite conductivity types.
JP61098606A 1986-04-28 1986-04-28 Semiconductor device Pending JPS62254458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61098606A JPS62254458A (en) 1986-04-28 1986-04-28 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61098606A JPS62254458A (en) 1986-04-28 1986-04-28 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62254458A true JPS62254458A (en) 1987-11-06

Family

ID=14224258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61098606A Pending JPS62254458A (en) 1986-04-28 1986-04-28 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62254458A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267563A (en) * 1991-02-22 1992-09-24 Semiconductor Energy Lab Co Ltd Thin film semiconductor device and method of manufacturing same
US6352883B1 (en) 1991-02-22 2002-03-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04267563A (en) * 1991-02-22 1992-09-24 Semiconductor Energy Lab Co Ltd Thin film semiconductor device and method of manufacturing same
US6352883B1 (en) 1991-02-22 2002-03-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6717180B2 (en) 1991-02-22 2004-04-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same

Similar Documents

Publication Publication Date Title
JPH0144021B2 (en)
JP2003258117A (en) Semiconductor device
JP2003258118A (en) Semiconductor device
JPS63102264A (en) Thin film semiconductor device
JPS62254458A (en) Semiconductor device
EP0708486B1 (en) Semiconductor field effect transistor with large substrate contact region
JPH06318702A (en) Semiconductor device and light valve device
JPH01309367A (en) Semiconductor device
JPS63158866A (en) Complementary type semiconductor device
JPH01111378A (en) Vertical mosfet
JPH04320063A (en) Thin film transistor
JPH04250663A (en) Semiconductor memory device
JPH0656878B2 (en) Method for manufacturing CMOS semiconductor device
JPH0481341B2 (en)
JP2570447B2 (en) Semiconductor device
JPH0344425B2 (en)
JPH01253266A (en) Semiconductor integrated circuit
JPS6215852A (en) Semiconductor device
JPH03120752A (en) Semiconductor device and manufacture thereof
JPS63204628A (en) Semiconductor integrated circuit device
JPH07131010A (en) Semiconductor integrated circuit
JPS61268036A (en) Semiconductor device
JPH07105493B2 (en) MIS type transistor
JPS6331106B2 (en)
JPS62128555A (en) Complementary type semiconductor device