JPS62245657A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62245657A
JPS62245657A JP61089410A JP8941086A JPS62245657A JP S62245657 A JPS62245657 A JP S62245657A JP 61089410 A JP61089410 A JP 61089410A JP 8941086 A JP8941086 A JP 8941086A JP S62245657 A JPS62245657 A JP S62245657A
Authority
JP
Japan
Prior art keywords
film
semiconductor substrate
contact hole
forming
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61089410A
Other languages
Japanese (ja)
Inventor
Hisayo Sasaki
佐々木 寿代
Kazuhiko Hashimoto
一彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61089410A priority Critical patent/JPS62245657A/en
Publication of JPS62245657A publication Critical patent/JPS62245657A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To simplify the flattening of an interlayer insulating film by a method wherein an etching protection film is formed on a semiconductor substrate, and while one channel is being protected by the protection film, a contact hole is formed on the other channel. CONSTITUTION:An SiO2 film 33 is formed on the semiconductor substrate on which P-channel type and N-channel type MOSFETs are formed, and a BPSG film 34 is deposited on the film 33. Then, contact holes 35a and 35b are perforat ed on the films 33 and 34 located on N<+> type diffusion layers 32a and 32b, and Si layers 36a and 36b are formed in said holes 35a and 35b. Subsequently, an SiN film 37 is formed on the semiconductor substrate as an etching protec tion film, and the contact holes 38a and 38b, to be used for leading out of the source and drain of the P-channel type MOSFET, are perforated while the film 34 and the layers 36a and 36b are being protected by the film 37. Then, Si layers 39a and 39b are formed in the holes 38a and 38b. Subsequently, wirings 40a and 40b are formed on the layers 39a and 39b. As a result, the film 34 is not etched when the film 37 is removed, and the film 34 can be flattened.

Description

【発明の詳細な説明】 [発明の目的コ    □゛□ □ (産業上の利用分野) この発明は、CMOS構造を有する半導体装置の製造方
法に関するもので、特に高密度集積回路の配線に使用さ
れるものである。
[Detailed Description of the Invention] [Purpose of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device having a CMOS structure, and in particular to a method for manufacturing a semiconductor device having a CMOS structure. It is something that

(従来の技術) 従来、CMOS構造の半導体装置は、例えば第2図(a
)〜(C)に示すような工程で形成される。第2図は、
Nチャネル型のMOS  FETとPチャネル型のMO
S  FETのソース、ドレイン電極の導出に着目して
示しており、まず、N型の半導体(シリコン)基板11
にP型のウェル領域12を形成した後、素子分離用のフ
ィールド酸化膜131〜133を形成する。次に、上記
半導体基板11上に薄い酸化膜を介してポリシリコン層
を形成し、パターニングを行なってゲート電極14.1
5を形成する。そして、これらゲート電極14.15を
マスクにして不純物のイオン注入を行なうことにより、
上記半導体基板11の表面領域内にはP+型の不純物拡
散層〈Pチャネル型MO8FETのソース、ドレイン領
域) 16a 、 16bを、上記ウェル領域12の表
面領域に内にはN+型の不純物拡散層(Nチャネル型M
O8FETのソース、ドレイン領域) 17a 、 1
7bをそれぞれ形成する。このようにしてPチャネル型
およびNチャネル型のMOS  FETを形成した半導
体基体上に、CVD−8iO2膜18を堆積形成し、こ
のCVD・5i02膜18上にBPSG膜19膜剤9い
はPSG膜)を形成する。次に、上記Nチャネル型のM
OS  FETのソース、ドレイン領域としてのN+型
型数散層17a 17b上のCVD−8iO2膜18お
よびBPSG膜19膜剤9タクトホール20a。
(Prior Art) Conventionally, a semiconductor device having a CMOS structure is shown in FIG.
) to (C). Figure 2 shows
N-channel type MOS FET and P-channel type MO
The drawing focuses on the derivation of the source and drain electrodes of the S FET. First, the N-type semiconductor (silicon) substrate 11 is
After forming a P-type well region 12, field oxide films 131 to 133 for element isolation are formed. Next, a polysilicon layer is formed on the semiconductor substrate 11 via a thin oxide film, and patterned to form a gate electrode 14.1.
form 5. Then, by implanting impurity ions using these gate electrodes 14 and 15 as a mask,
In the surface region of the semiconductor substrate 11, there are P+ type impurity diffusion layers (source and drain regions of P channel type MO8FET) 16a and 16b, and in the surface region of the well region 12, there are N+ type impurity diffusion layers ( N-channel type M
Source and drain regions of O8FET) 17a, 1
7b respectively. A CVD-8iO2 film 18 is deposited on the semiconductor substrate on which P-channel and N-channel MOS FETs are formed in this way, and a BPSG film 19 or a PSG film is deposited on this CVD-5i02 film 18. ) to form. Next, the above N-channel type M
CVD-8iO2 film 18 and BPSG film 19 film agent 9 tact hole 20a on N+ type scattering layer 17a and 17b as source and drain regions of OS FET.

20bを開孔し、これらのコンタクトホール20a。20b and these contact holes 20a.

20b内に選択エピタキシャル成長法によりN+型のシ
リコン層21a、 21bを成長形成する。
N+ type silicon layers 21a and 21b are grown in 20b by selective epitaxial growth.

次に、熱酸化を行なって、(b)図に示すように上記シ
リコン層21a、21bの表面に酸化膜22a。
Next, thermal oxidation is performed to form an oxide film 22a on the surfaces of the silicon layers 21a and 21b, as shown in FIG.

22bを形成する。そして、この酸化膜22a、22b
によって上記シリコン層21a、21bを保護しつつコ
ンタクトホール23a、23bを開孔する。
22b is formed. Then, these oxide films 22a, 22b
Contact holes 23a and 23b are opened while protecting the silicon layers 21a and 21b.

次に、(C)図に示すように、上記コンタクトホール2
3a、 23b内に選択エピタキシャル成長法によりP
+型のシリコン層24a、24bを成長形成し、上記酸
化膜22a、22bを除去した後、スパッタ法により半
導体基体上にアルミニウム層を形成し、このアルミニウ
ム層をパターニングして配線25a〜25dを形成する
Next, as shown in Figure (C), the contact hole 2 is
3a and 23b by selective epitaxial growth.
After growing +-type silicon layers 24a and 24b and removing the oxide films 22a and 22b, an aluminum layer is formed on the semiconductor substrate by sputtering, and this aluminum layer is patterned to form interconnections 25a to 25d. do.

しかし、上述した製造方法では、Pチャネル型のMOS
  FETのコンタクトホール23a、23b内にシリ
コン層24a、24bを成長形成した後、Nチャネル型
のMOS  FET側の酸化膜22a。
However, in the above manufacturing method, P-channel type MOS
After silicon layers 24a and 24b are grown in contact holes 23a and 23b of the FET, an oxide film 22a is grown on the N-channel MOS FET side.

22bをエツチングにより除去したが、このエツチング
時にBPSG膜19膜剤9れ(酸化膜22a。
22b was removed by etching, but during this etching, the BPSG film 19 was removed (oxide film 22a).

22bよりBPSG膜19膜剤9速くエツチングされる
)、エツチングの制御性が悪<BPSG膜19膜剤9化
が難しい欠点がある。
(The BPSG film 19 is etched faster than the BPSG film 22b), and has the disadvantage that the etching controllability is poor and it is difficult to form the BPSG film 19 into a film material 9.

(発明が解決しようとする問題点) 上述したように、従来の製造方法では、コンタクトホー
ル内に形成したシリコン層のエツチング保護膜を制御性
良く除去することが困難であり、層間絶縁膜の平坦化も
難しい欠点がある。
(Problems to be Solved by the Invention) As described above, in the conventional manufacturing method, it is difficult to remove the etching protection film of the silicon layer formed in the contact hole with good control, and the flatness of the interlayer insulating film is difficult to remove. There are drawbacks that make it difficult to convert.

従って、この発明の目的とするところは、コンタクトホ
ール内に形成したシリコン層のエツチング保護膜を制御
性良く除去することができ、層間絶縁膜の平坦化が容易
な半導体装置の製造方法を提供することである。
Therefore, it is an object of the present invention to provide a method for manufacturing a semiconductor device in which an etching protection film of a silicon layer formed in a contact hole can be removed with good control, and an interlayer insulating film can be easily flattened. That's true.

[発明の構成] (問題点を解決するための手段と作用)すなわち、この
発明においては、上記の目的を達成するために、半導体
基体にCMOS構造の素子を形成した後、この半導体基
体上に層間絶縁−を形成し、上記半導体基体上に形成さ
れた一方導電型素子上の層間絶縁膜に配線導出用の第1
のコンタクトホールを形成する。次に、この第1のコン
タクトホール内に選択エピタキシャル成長法により第1
のシリコン層を成長形成し、この第1のシリコン層上お
よび上記層間絶縁膜上にエツチング保護膜としてSIN
膜あるいはCVD・SiO2膜を形成した後、上記半導
体基体上に形成された他方導電型素子上の層間絶縁膜に
配線導出用の第2のコンタクトホールを形成する。そし
て、この第2のコンタクトホール内に選択エピタキシャ
ル成長法により第2のシリコン層を成長形成し、上記第
1.第2のシリコン層上に配線層を形成するようにして
いる。このような製造工程により、エツチング保護膜を
除去する際、層間絶縁膜はエツチングされないので制御
性が良く、層間絶縁膜の平坦化も容易である。
[Structure of the Invention] (Means and Effects for Solving the Problems) That is, in order to achieve the above object, in this invention, after forming a CMOS structure element on a semiconductor substrate, A first layer for leading out wiring is formed on the interlayer insulating film on the one conductivity type element formed on the semiconductor substrate.
Form a contact hole. Next, a first contact hole is formed in this first contact hole by selective epitaxial growth.
A silicon layer of SIN is grown as an etching protection film on this first silicon layer and on the interlayer insulating film.
After forming the film or the CVD/SiO2 film, a second contact hole for leading out the wiring is formed in the interlayer insulating film on the other conductivity type element formed on the semiconductor substrate. Then, a second silicon layer is grown in this second contact hole by a selective epitaxial growth method, and a second silicon layer is grown in the first contact hole. A wiring layer is formed on the second silicon layer. With such a manufacturing process, since the interlayer insulating film is not etched when the etching protection film is removed, controllability is good and the interlayer insulating film can be easily flattened.

〈実施例) 以下、この発明の一実施例について図面を参照して説明
する。第1図(a)〜(C)は、製造工程を順次水して
おり、Nチャネル型のMOSFETとPチャネル型のM
OS  FETのソース。
<Example> Hereinafter, an example of the present invention will be described with reference to the drawings. Figures 1 (a) to (C) show the manufacturing process sequentially, and show an N-channel type MOSFET and a P-channel type MOSFET.
OS FET source.

ドレイン電極の導出に着目している。すなわち、N型の
半導体基板(比抵抗4Ω・cm)26にP型のウェル領
域27を形成した後、コプラナー法により素子分m用の
フィールド酸化@ 281〜283を形成する。次に、
上記半導体基板26上に薄い酸化膜を介してポリシリコ
ン層を形成し、パターニングを行なってゲート電極29
.30を形成する。そして、これらのゲート電極29.
30をマスクにしてセルファラインに不純物のイオン注
入を行なうことにより、上記半導体基板26の表面領域
内にはP+型の不純物拡散層(Pチャネル型MO8FE
Tのソース、ドレイン領域)31a、31bを、上記ウ
ェル領域27の表面領域内にはN+型の不純物拡散層(
Nチャネル型MO8FETのソース、ドレイン領域) 
32a 、 32bをそれぞれ形成する。このようにし
てPチャネル型およびNチャネル型のMOS  FET
を形成した半導体基体上に、CVD−8iO2膜33を
例えば3000人堆積形成し、コ(F)CVD−8i 
0211i33上にBPSG膜34膜島4いはPSG膜
)を700OA堆積形成する。そして、このBPSG膜
34膜島4をPOCM3雰囲気中で、例えば900℃の
温度により60分間アニールして平坦化する。次に、上
記Nチャネル型のMOS  FETのソース、ドレイン
領域としてのN+型抵拡散層32a32b上のCvD−
8iO2膜33t’3 J: (F B P S G 
II!t! 34に−D ンタクトホール35a、35
bを開孔し、これらのコンタクトホール35a、35b
内に選択エピタキシャル成長法によりN+型のシリコン
層36a、36bを成長形成する。この選択エピタキシ
ャル成長法の条件は、例えばH2ガスが100 M/m
ln 。
We are focusing on the derivation of the drain electrode. That is, after forming a P-type well region 27 on an N-type semiconductor substrate (specific resistance: 4 Ω·cm) 26, field oxides 281 to 283 for elements m are formed by a coplanar method. next,
A polysilicon layer is formed on the semiconductor substrate 26 through a thin oxide film, and patterned to form a gate electrode 29.
.. form 30. These gate electrodes 29.
30 as a mask, impurity ions are implanted into the self-line, thereby forming a P+ type impurity diffusion layer (P channel type MO8FE) in the surface region of the semiconductor substrate 26.
T source and drain regions) 31a and 31b, and an N+ type impurity diffusion layer (
Source and drain regions of N-channel MO8FET)
32a and 32b are formed, respectively. In this way, P-channel type and N-channel type MOS FET
For example, 3,000 people deposit a CVD-8iO2 film 33 on the semiconductor substrate formed with CO(F)CVD-8i.
A BPSG film 34 (film island 4 or PSG film) of 700 OA is deposited on the 0211i33. Then, this BPSG film 34 film island 4 is flattened by annealing for 60 minutes at a temperature of, for example, 900° C. in a POCM3 atmosphere. Next, the CvD-
8iO2 film 33t'3 J: (F B P S G
II! T! 34-D contact hole 35a, 35
b, and these contact holes 35a, 35b
N+ type silicon layers 36a and 36b are grown therein by selective epitaxial growth. The conditions for this selective epitaxial growth method are, for example, H2 gas at 100 M/m
ln.

5iH2Cj22ガスが400cc/min 、 HC
l1fjスが1//1n 、PH3ガスが200cc/
minの流量で、全圧力を100torrとし、反応室
内の温度は900℃とする。
5iH2Cj22 gas 400cc/min, HC
l1fj gas is 1//1n, PH3 gas is 200cc/
The total pressure is 100 torr, and the temperature inside the reaction chamber is 900° C. with a flow rate of min.

次に、(b)図に示すように、上記半導体基体上に例え
ば500人のStN膜37をエツチング保l!膜として
形成し、このSiN膜3膜管7って上記BPSGIf!
34および上記シリコン1i36a、36bを保護しつ
つ、Pチャネル型のMOS  FETのソース、トレイ
ン導出用のコンタクトホール38a。
Next, as shown in Figure (b), a StN film 37 of, for example, 500 layers is etched on the semiconductor substrate. This SiN film 3 film tube 7 is formed as a film, and this SiN film 3 film tube 7 is the above-mentioned BPSG If!
34 and a contact hole 38a for leading out the source and train of a P-channel type MOS FET while protecting the silicon 1i36a and 36b.

38bを開孔する。38b is drilled.

次に、(C)図に示すように、上記コンタクトホール3
8a、38b内に選択エピタキシャル成長法によりP+
型のシリコン層39a、39bを成長形成する。この選
択エピタキシャル成長法の条件は、上記シリコン層36
a、36bの形成時におけるPH3ガスに代えて821
−16ガスを用い、他の条件は同じとする。そして、上
記3iNg!J37をHPOaを用いてエツチング除去
する。その後、スパッタ法により半導体基体上にアルミ
ニウム層を形成し、このアルミニウム層をパターニング
し一〇− て配線40a〜40dを形成する。
Next, as shown in Figure (C), the contact hole 3 is
8a and 38b by selective epitaxial growth.
Mold silicon layers 39a and 39b are grown. The conditions for this selective epitaxial growth method are as follows:
821 instead of PH3 gas when forming a and 36b
-16 gas is used and other conditions are the same. And the above 3iNg! J37 is removed by etching using HPOa. Thereafter, an aluminum layer is formed on the semiconductor substrate by sputtering, and this aluminum layer is patterned to form interconnections 40a to 40d.

このような製造方法によれば、SiN膜3膜管7去する
際にBPSG膜34膜島4チングされることがないので
、エツチングの制御が容易であり、BPSGl134を
平坦化できる。
According to such a manufacturing method, since the BPSG film 34 is not etched when removing the SiN film 3 and the film tube 7, etching can be easily controlled and the BPSGl 134 can be planarized.

なお、上記実施例では、シ゛リコン層36a、36bの
エツチング保護膜として3iNII37を用いたが、こ
れに代えてCVD−8iO2膜を用いても良い。
In the above embodiment, 3iNII37 was used as the etching protection film for the silicon layers 36a and 36b, but a CVD-8iO2 film may be used instead.

また、配線40a〜40dと拡散層31a、 31b、
 32a。
In addition, the wirings 40a to 40d and the diffusion layers 31a, 31b,
32a.

32bとを接続する場合について説明したが、配線40
a〜40dと半導体基板26上に形成された配線層、例
えばゲート電I!i29あるいは30とを接続する場合
にも適応が可能なのはもちろんである。
32b, but the wiring 40
a to 40d and wiring layers formed on the semiconductor substrate 26, such as gate electrodes I! Of course, it can also be applied when connecting with i29 or i30.

[発明の効果] 以上説明したようにこの発明によれば、コンタクトホー
ル内に形成したシリコン層のエツチング保護膜を制御性
良く除去することができ、層間絶縁膜の平坦化が容易な
半導体装置の製造方法が得られる。
[Effects of the Invention] As explained above, according to the present invention, the etching protection film of the silicon layer formed in the contact hole can be removed with good control, and the interlayer insulating film can be easily flattened in a semiconductor device. A manufacturing method is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係わる半導体装置の製造
方法について説明するための図、第2図は従来の半導体
装置の製造方法について説明するための図である。 26・・・半導体基板、33・・・CVD−8iO2膜
、34・B P S G膜、35a、 35b−’1g
10)コンタクトホール、36a、36b・・・第1の
シリコン層、37・・・SiN膜(Iツチング保護膜)
 、38a 、 38b−・・第2のコンタクトホール
、39a、39b・・・第2のシリコン層、40a〜4
0d・・・配線。
FIG. 1 is a diagram for explaining a method for manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a diagram for explaining a conventional method for manufacturing a semiconductor device. 26...Semiconductor substrate, 33...CVD-8iO2 film, 34.BPSG film, 35a, 35b-'1g
10) Contact holes, 36a, 36b...first silicon layer, 37...SiN film (I-cutting protective film)
, 38a, 38b--Second contact hole, 39a, 39b--Second silicon layer, 40a-4
0d...Wiring.

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基体にCMOS構造の素子を形成する工程
と、上記半導体基体上に層間絶縁膜を形成する工程と、
上記半導体基体上に形成された一方導電型素子上の層間
絶縁膜に配線導出用の第1のコンタクトホールを形成す
る工程と、この第1のコンタクトホール内に選択エピタ
キシャル成長法により第1のシリコン層を成長形成する
工程と、この第1のシリコン層上および上記層間絶縁膜
上にエッチング保護膜を形成する工程と、上記半導体基
体上に形成された他方導電型素子上の層間絶縁膜に配線
導出用の第2のコンタクトホールを形成する工程と、こ
の第2のコンタクトホール内に選択エピタキシャル成長
法により第2のシリコン層を成長形成する工程と、上記
第1、第2のシリコン層上に配線層を形成する工程とを
具備することを特徴とする半導体装置の製造方法。
(1) a step of forming a CMOS structure element on a semiconductor substrate; a step of forming an interlayer insulating film on the semiconductor substrate;
forming a first contact hole for leading out wiring in an interlayer insulating film on one conductivity type element formed on the semiconductor substrate; and forming a first silicon layer in the first contact hole by selective epitaxial growth. a step of forming an etching protection film on the first silicon layer and the interlayer insulating film, and a step of leading out wiring to the interlayer insulating film on the other conductivity type element formed on the semiconductor substrate. a step of forming a second contact hole for the second contact hole, a step of growing a second silicon layer in the second contact hole by a selective epitaxial growth method, and a step of forming a wiring layer on the first and second silicon layers. 1. A method for manufacturing a semiconductor device, comprising the steps of: forming a semiconductor device;
(2)前記エッチング保護膜は、SiNから成ることを
特徴とする特許請求の範囲第1項記載の半導体装置の製
造方法。
(2) The method of manufacturing a semiconductor device according to claim 1, wherein the etching protection film is made of SiN.
(3)前記エッチング保護膜は、CVD・ SiO_2から成ることを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the etching protection film is made of CVD SiO_2.
(4)前記第1、第2のシリコン層は、半導体基板中に
形成された拡散層上に成長形成されることを特徴とする
特許請求の範囲第1項記載の半導体装置の製造方法。
(4) The method of manufacturing a semiconductor device according to claim 1, wherein the first and second silicon layers are grown on a diffusion layer formed in a semiconductor substrate.
(5)前記第1、第2のシリコン層は、半導体基板上に
形成された配線層上に成長形成されることを特徴とする
特許請求の範囲第1項記載の半導体装置の製造方法。
(5) The method of manufacturing a semiconductor device according to claim 1, wherein the first and second silicon layers are grown on a wiring layer formed on a semiconductor substrate.
JP61089410A 1986-04-18 1986-04-18 Manufacture of semiconductor device Pending JPS62245657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61089410A JPS62245657A (en) 1986-04-18 1986-04-18 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61089410A JPS62245657A (en) 1986-04-18 1986-04-18 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62245657A true JPS62245657A (en) 1987-10-26

Family

ID=13969874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61089410A Pending JPS62245657A (en) 1986-04-18 1986-04-18 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62245657A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170466A (en) * 1988-12-22 1990-07-02 Ricoh Co Ltd Semiconductor integrated circuit device
US5116780A (en) * 1986-11-19 1992-05-26 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device having improved contact resistance characteristics
JP2007158258A (en) * 2005-12-08 2007-06-21 Sony Corp Semiconductor device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116780A (en) * 1986-11-19 1992-05-26 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device having improved contact resistance characteristics
JPH02170466A (en) * 1988-12-22 1990-07-02 Ricoh Co Ltd Semiconductor integrated circuit device
JP2007158258A (en) * 2005-12-08 2007-06-21 Sony Corp Semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
JPS6237815B2 (en)
JPH05109737A (en) Manufacture of thin film transistor
JPH0355984B2 (en)
JPH0637041A (en) Forming method for wiring member
KR100242861B1 (en) Manufacturing method of semiconductor device
JPS62245657A (en) Manufacture of semiconductor device
JP2571004B2 (en) Thin film transistor
JP2629995B2 (en) Thin film transistor
JPH023244A (en) Manufacture of semiconductor device
JPS6116573A (en) Manufacture of mis type semiconductor device
JPS6197967A (en) Semiconductor device and manufacture thereof
JPS63119576A (en) Thin film transistor
JPS613461A (en) Manufacture of semiconductor device
JPH0567634A (en) Manufacture of mis type semiconductor device
JPS62104078A (en) Manufacture of semiconductor integrated circuit device
JPH0213460B2 (en)
JPS61251163A (en) Manufacture of bi-mis integrated circuit
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH0671066B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH06181312A (en) Manufacture of semiconductor device
JPH0226061A (en) Manufacture of semiconductor integrated circuit
JP2512760B2 (en) Manufacturing method of semiconductor integrated circuit
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPH01128570A (en) Manufacture of semiconductor device
JPH0212029B2 (en)