JPH0212029B2 - - Google Patents

Info

Publication number
JPH0212029B2
JPH0212029B2 JP56089240A JP8924081A JPH0212029B2 JP H0212029 B2 JPH0212029 B2 JP H0212029B2 JP 56089240 A JP56089240 A JP 56089240A JP 8924081 A JP8924081 A JP 8924081A JP H0212029 B2 JPH0212029 B2 JP H0212029B2
Authority
JP
Japan
Prior art keywords
insulating film
region
electrode
source
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56089240A
Other languages
Japanese (ja)
Other versions
JPS57204161A (en
Inventor
Izumi Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56089240A priority Critical patent/JPS57204161A/en
Publication of JPS57204161A publication Critical patent/JPS57204161A/en
Publication of JPH0212029B2 publication Critical patent/JPH0212029B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、特に相
補型MIS FETの電極形成工程の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improvement in the electrode formation process of a complementary MIS FET.

相補型MIS FET例えばシリコン基板表面にn
チヤネル及びpチヤネルMOS FETの双方を具
備せしめたC MOS FETを高密度化、高集積
化することを目的として、基板表面を被覆する絶
縁膜及び燐硅酸ガラス(PSG)層を、リアクテ
イブ・イオン・エツチング法のようなドライエツ
チング法により選択的に除去してソース及びドレ
イン電極窓を開口することにより、位置合せ余裕
を微小化する製造方法が既に提唱されている。
Complementary MIS FET For example, n
In order to increase the density and integration of CMOS FETs, which are equipped with both channel and p-channel MOS FETs, the insulating film and phosphosilicate glass (PSG) layer covering the substrate surface are coated with reactive ions. - A manufacturing method has already been proposed in which the alignment margin is made smaller by selectively removing the material using a dry etching method such as an etching method to open source and drain electrode windows.

上記製造方法は、リアクテイブ・イオン・エツ
チング法のような直進性を有するドライエツチン
グ法を用いてソース及びドレインの電極窓を開口
することにより電極窓内壁面を基板表面に対し略
垂直な壁面となし得ることから、従来の湿式エツ
チング法を用いて開口した場合に電極窓の内壁面
がテーパ面となるために生じるゲート電極肩部を
被覆するPSG層が極度に薄くなるという危険性
が除去されるのを利用し、従来設けられていたゲ
ート電極とソース及びドレイン電極窓との間隔の
余裕を大幅に削減し、素子の微細化を行なおうと
するものである。
In the above manufacturing method, the inner wall surface of the electrode window is made almost perpendicular to the substrate surface by opening the source and drain electrode windows using a linear dry etching method such as reactive ion etching method. This eliminates the risk of the PSG layer covering the gate electrode shoulder becoming extremely thin due to the tapered inner wall surface of the electrode window when opened using the conventional wet etching method. By utilizing this, the conventionally provided spacing margin between the gate electrode and the source and drain electrode windows is significantly reduced, thereby attempting to miniaturize the device.

上記製造方法ではゲート電極肩部のPSG層が
薄くなる危険は除去し得るが、その反面電極窓の
位置が僅かにずれた場合にnチヤネルMOS
FETのn型ソース領域或いはドレイン領域とp
型の素子形成領域とが電極により短絡することが
ある。
The above manufacturing method can eliminate the risk of thinning of the PSG layer at the shoulder of the gate electrode, but on the other hand, if the position of the electrode window is slightly shifted, the n-channel MOS
FET's n-type source or drain region and p-type
There may be a short circuit between the mold and the element forming area due to the electrode.

本発明の目的は上述の派生的問題点を除去し、
n型のソース或いはドレイン領域とp型の素子形
成領域とが電極により短絡する恐れのない半導体
装置の製造方法を提供することにある。
The purpose of the present invention is to eliminate the above-mentioned derivative problems,
It is an object of the present invention to provide a method for manufacturing a semiconductor device in which there is no possibility that an n-type source or drain region and a p-type element formation region are short-circuited by an electrode.

本発明の特徴は同一半導体基板上にnチヤネル
及びpチヤネルMOS FET素子を具備する半導
体装置を製造するに当り、前記nチヤネル及びp
チヤネルMOS FET素子双方のゲート電極表面
を含む半導体基板上に第1の絶縁膜とその上に燐
硅酸ガラス層を形成し、該燐硅酸ガラス層及び第
1の絶縁膜により選択的に除去してソース及びド
レイン電極窓を開口し、該電極窓部において露出
せる半導体基板表面に第2の絶縁膜を形成したの
ち、前記nチヤネル素子領域表面に形成された前
記第2の絶縁膜を除去する工程と、前記燐硅酸ガ
ラス層を加熱溶融せしめる工程と、前記残留せる
第2の絶縁膜を除去して前記電極窓部において半
導体基板表面を露出せしめる工程と、該電極窓部
において露出せる半導体基板表面とオーミツク接
触するソース及びドレイン電極を形成する工程と
を含むことにある。
A feature of the present invention is that when manufacturing a semiconductor device including n-channel and p-channel MOS FET elements on the same semiconductor substrate, the n-channel and p-channel MOS FET elements are
A first insulating film and a phosphosilicate glass layer are formed on the semiconductor substrate including the gate electrode surfaces of both channel MOS FET elements, and selectively removed by the phosphosilicate glass layer and the first insulating film. After opening source and drain electrode windows and forming a second insulating film on the surface of the semiconductor substrate exposed in the electrode windows, removing the second insulating film formed on the surface of the n-channel element region. a step of heating and melting the phosphosilicate glass layer; a step of removing the remaining second insulating film to expose the surface of the semiconductor substrate at the electrode window; and forming source and drain electrodes in ohmic contact with the surface of the semiconductor substrate.

以下本発明の一実施例を第1図〜第5図の要部
断面図を用いて製造工程の順に説明する。
An embodiment of the present invention will be described below in the order of manufacturing steps using sectional views of main parts shown in FIGS. 1 to 5.

本実施例においては、n型領域1と表面の所定
区域に形成されたp型の島状領域(pウエル)2
とからなるシリコン基板3を用い、前記pウエル
2内にnチヤネルMOS FET素子とn型シリコ
ン基板1表面にpチヤネルMOS FET素子を形
成する例を掲げて説明する。
In this embodiment, an n-type region 1 and a p-type island region (p well) 2 formed in a predetermined area on the surface are used.
An example will be described in which an n-channel MOS FET element is formed in the p-well 2 and a p-channel MOS FET element is formed on the surface of the n-type silicon substrate 1 using a silicon substrate 3 consisting of the following.

第1図において、4は素子間絶縁分離領域で例
えば選択酸化法により形成したフイールド酸化
膜、5,6はn型のソース及びドレイン領域、
7,8はp型のソース及びドレイン領域、9,
9′はゲート酸化膜、10,10′は例えばシリコ
ン多結晶よりなるゲート電極である。
In FIG. 1, reference numeral 4 denotes an inter-element insulation isolation region, which is a field oxide film formed by, for example, a selective oxidation method; 5 and 6 denote n-type source and drain regions;
7, 8 are p-type source and drain regions; 9,
9' is a gate oxide film, and 10 and 10' are gate electrodes made of polycrystalline silicon, for example.

上記シリコン基板3に加熱酸化処理を施こし
て、第2図に見られるようにシリコン基板3表面
の露出せる部分即ちソース及びドレイン領域5,
6,7,8表面と、ゲート電極10,10′のシ
リコン多結晶層表面を酸化して、第1の絶縁膜で
ある二酸化シリコン(SiO2)膜11を形成し、
次いで該SiO2膜11上に化学気相成長(CVD)
法により燐硅酸ガラス(PSG)層12を形成す
る。次いでリアクテイブ・イオン・エツチング法
のような直進性を有するドライエツチング法によ
りソース、ドレイン領域5,6,7,8上の
PSG層12及びSiO2膜11を選択的に除去して、
電極窓13,14,15,16を開口する。
The silicon substrate 3 is subjected to a thermal oxidation treatment, and as shown in FIG.
6, 7, 8 surfaces and the silicon polycrystalline layer surfaces of gate electrodes 10, 10' are oxidized to form a silicon dioxide (SiO 2 ) film 11 which is a first insulating film;
Next, chemical vapor deposition (CVD) is performed on the SiO 2 film 11.
A phosphosilicate glass (PSG) layer 12 is formed by a method. Next, the source and drain regions 5, 6, 7, and 8 are etched using a dry etching method that has straightness, such as reactive ion etching.
selectively removing the PSG layer 12 and the SiO 2 film 11;
Electrode windows 13, 14, 15, and 16 are opened.

このとき電極窓パターンの位置が僅かにずれて
いて、電極窓13〜16のうちのどれか、例えば
電極窓14がフイールド酸化膜4の端部と重なり
合つたとする。このような場合にはフイールド酸
化膜4の端部が除去されて、図示のごとくn型ド
レイン領域6とpウエル2の間の接合17の端部
が露出してしまう。
At this time, it is assumed that the position of the electrode window pattern is slightly shifted and one of the electrode windows 13 to 16, for example, the electrode window 14 overlaps with the end of the field oxide film 4. In such a case, the end of field oxide film 4 is removed, and the end of junction 17 between n-type drain region 6 and p-well 2 is exposed as shown.

このようになると従来の製造方法では上記n型
ドレイン領域6とpウエル2とはこのあとの工程
で上記電極窓14に形成される電極によつて短絡
され、素子は不良品とならざるを得ない。そのた
め当初意図した程素子を微細化することができな
かつた。本発明はこの点を後述する製造工程によ
り改善しようとするものである。
In this case, in the conventional manufacturing method, the n-type drain region 6 and the p-well 2 are short-circuited by the electrode formed in the electrode window 14 in a subsequent process, and the device is inevitably defective. do not have. Therefore, it was not possible to miniaturize the element as originally intended. The present invention attempts to improve this point through the manufacturing process described below.

上記工程に引き続き、第3図に見られる如くシ
リコン基板3に加熱酸化処理を施こし電極窓13
〜16部基板表面にSiO2膜(第2の絶縁膜)1
8,19,20,21を形成する。ここまでは従
来の製造方法と異なる所はない。
Following the above steps, the silicon substrate 3 is heated and oxidized as shown in FIG.
~16 parts SiO 2 film (second insulating film) 1 on the substrate surface
8, 19, 20, 21 are formed. Up to this point, there is no difference from the conventional manufacturing method.

本実施例においてはこのあと第4図に示すよう
にpチヤネル素子の表面のSiO2膜18,19を
選択的に除去してn型ソース及びドレイン領域
5,6表面を露出せしめる。このようにするには
nチヤネル素子部をレジスト膜(図示せず)等に
より被覆してSiO2膜のエツチング処理を行なえ
ばよい。次いでシリコン基板3を所定の温度で加
熱処理を行なうことにより、PSG層12を溶融
せしめ図示の如く肩部をなだらかにする。本工程
においてPSG層12に含まれるn型不純物の燐
(P)が蒸発し、これが前記電極窓13,14部
基板表面に拡散する。そのため前述の電極14部
において露出せるpウエル2表面もn型に変換さ
れ、図示のようにn型のソース領域6と一体化す
る。このように本実施例においてはnチヤネル素
子の電極窓内のSiO2膜18,19を除去してか
らPSG層を溶融せしめることによりnチヤネル
素子の電極窓部基板表面をすべてn型とすること
ができる。この工程でpチヤネル素子ではSiO2
膜20,21に阻止されて蒸発した燐(P)がp
型のソース及びドレイン領域7,8中に拡散する
ことはない。
In this embodiment, as shown in FIG. 4, the SiO 2 films 18 and 19 on the surface of the p-channel device are then selectively removed to expose the surfaces of the n-type source and drain regions 5 and 6. In order to do this, the n-channel element portion may be covered with a resist film (not shown) or the like, and the SiO 2 film may be etched. Next, the silicon substrate 3 is heated at a predetermined temperature to melt the PSG layer 12 and make the shoulder portion smooth as shown in the figure. In this step, phosphorus (P), which is an n-type impurity contained in the PSG layer 12, is evaporated and diffused onto the surface of the substrate at the electrode windows 13 and 14. Therefore, the surface of the p-well 2 exposed at the electrode 14 portion mentioned above is also converted to n-type, and is integrated with the n-type source region 6 as shown. In this way, in this embodiment, by removing the SiO 2 films 18 and 19 within the electrode window of the n-channel device and then melting the PSG layer, the entire surface of the substrate at the electrode window of the n-channel device is made n-type. Can be done. In this process, SiO 2
The evaporated phosphorus (P) blocked by the membranes 20 and 21 is p
It does not diffuse into the source and drain regions 7, 8 of the mold.

次いで第5図に示すようにアルミニウム(Al)
のような導電材料を蒸着法或いはスパツタリング
法等により被着せしめ、これをパターニングし
て、各電極窓13〜16においてそれぞれ基板3
表面とオーミツク接触をなすnチヤネル素子のソ
ース、ドレイン電極22,23及びpチヤネル素
子のソース及びドレイン電極24,25を形成し
て、C MOS FETが完成する。
Next, as shown in Figure 5, aluminum (Al)
A conductive material such as is deposited by a vapor deposition method or a sputtering method, and is patterned to form a conductive material on the substrate 3 in each of the electrode windows 13 to 16.
The CMOS FET is completed by forming the source and drain electrodes 22 and 23 of the n-channel device and the source and drain electrodes 24 and 25 of the p-channel device, which make ohmic contact with the surface.

本実施例によれば上述の電極窓14部において
も上記電極窓14内基板表面がすべてn型に変換
されるので従来のように短絡不良を生じることは
ない。なお従来の製造方法ではnチヤネル素子部
もSiO2膜18,19を残せしめたままPSG層1
2の加熱溶融工程を行なつていたため、露出せる
p型の表面をn型に変換することができなかつた
ものである。
According to this embodiment, even in the electrode window 14 portion, the entire surface of the substrate within the electrode window 14 is converted to n-type, so that short circuit failures do not occur as in the conventional case. In addition, in the conventional manufacturing method, the PSG layer 1 is left on the N-channel element part with the SiO 2 films 18 and 19 remaining.
Since the heating and melting step No. 2 was performed, the exposed p-type surface could not be converted to n-type.

以上説明したごとく本発明によりたとえ電極窓
の位置ずれがあつても素子が不良となることがな
くなるので、素子を十分に微細化することが可能
となり、しかも製造歩留が向上する。
As explained above, according to the present invention, even if the electrode window is misaligned, the element will not become defective, so it becomes possible to sufficiently miniaturize the element, and furthermore, the manufacturing yield is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明の一実施例を製造工程
の順に示す要部断面図である。 図において、1はn型領域、2はp型島状領
域、3は半導体基板、4は素子間絶縁分離領域、
5,6はnチヤネルMIS FET素子のソース、ド
レイン領域、9はゲート絶縁膜、10はゲート電
極、11は第1の絶縁膜、12は燐硅酸ガラス
層、13,14,15,16は電極窓、18,1
9,20,21は第2の絶縁膜、22,23,2
4,25は電極を示す。
1 to 5 are sectional views of essential parts showing an embodiment of the present invention in the order of manufacturing steps. In the figure, 1 is an n-type region, 2 is a p-type island region, 3 is a semiconductor substrate, 4 is an inter-element isolation region,
5 and 6 are source and drain regions of the n-channel MIS FET element, 9 is a gate insulating film, 10 is a gate electrode, 11 is a first insulating film, 12 is a phosphosilicate glass layer, 13, 14, 15, and 16 are Electrode window, 18,1
9, 20, 21 are second insulating films, 22, 23, 2
4 and 25 indicate electrodes.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板表面に素子間絶縁分離領域と、該
素子間絶縁分離領域により画定された一導電型及
び逆導電型の素子形成領域と、それぞれの領域表
面にそれぞれの領域とは反対導電型のソース及び
ドレイン領域と該ソース及びドレイン領域に挾ま
れた領域上にゲート絶縁膜を介して配設されたゲ
ート電極とを有するnチヤネルMIS FET及びp
チヤネルMIS FETの双方を具備してなる半導体
装置を製造するに当り、前記nチヤネル及びpチ
ヤネルMIS FET双方のゲート電極表面を含む半
導体基板上に第1の絶縁膜を形成する工程と、該
第1の絶縁膜上に燐硅酸ガラス層を形成する工程
と、該燐硅酸ガラス層及び前記第1の絶縁膜を選
択的に除去して前記双方のソース及びドレイン領
域に対する電極窓を開口する工程と、該電極窓部
において露出せる半導体基板表面に第2の絶縁膜
を形成する工程と、前記nチヤネルMIS FET領
域表面に形成された前記第2の絶縁膜を除去する
工程と、前記燐硅酸ガラス層を加熱溶融せしめる
工程と、前記残留せる第2の絶縁膜を除去して前
記電極窓部において半導体基板表面を露出せしめ
る工程と、該電極窓部において露出せる半導体基
板表面とオーミツク接触するソース及びドレイン
電極を形成する工程とを含むことを特徴とする半
導体装置の製造方法。
1. An inter-element insulation isolation region on the surface of a semiconductor substrate, element formation regions of one conductivity type and opposite conductivity type defined by the inter-element insulation isolation region, and a source of an opposite conductivity type to each region on the surface of each region. An n-channel MIS FET and a p-channel MIS FET having a drain region and a gate electrode disposed on a region sandwiched between the source and drain regions with a gate insulating film interposed therebetween.
In manufacturing a semiconductor device comprising both a channel MIS FET, a step of forming a first insulating film on a semiconductor substrate including surfaces of gate electrodes of both the n-channel and p-channel MIS FETs; forming a phosphosilicate glass layer on the first insulating film; and selectively removing the phosphosilicate glass layer and the first insulating film to open electrode windows for both source and drain regions. a step of forming a second insulating film on the surface of the semiconductor substrate exposed in the electrode window portion; a step of removing the second insulating film formed on the surface of the n-channel MIS FET region; a step of heating and melting the silicate glass layer; a step of removing the remaining second insulating film to expose the surface of the semiconductor substrate at the electrode window; and ohmic contact with the surface of the semiconductor substrate exposed at the electrode window. 1. A method of manufacturing a semiconductor device, comprising the step of forming source and drain electrodes.
JP56089240A 1981-06-09 1981-06-09 Manufacture of semiconductor device Granted JPS57204161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56089240A JPS57204161A (en) 1981-06-09 1981-06-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56089240A JPS57204161A (en) 1981-06-09 1981-06-09 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS57204161A JPS57204161A (en) 1982-12-14
JPH0212029B2 true JPH0212029B2 (en) 1990-03-16

Family

ID=13965214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56089240A Granted JPS57204161A (en) 1981-06-09 1981-06-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS57204161A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2508782B2 (en) * 1988-01-27 1996-06-19 日本電気株式会社 Method for manufacturing CMOS semiconductor device
US5759869A (en) * 1991-12-31 1998-06-02 Sgs-Thomson Microelectronics, Inc. Method to imporve metal step coverage by contact reflow

Also Published As

Publication number Publication date
JPS57204161A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
JPH1126597A (en) Fabrication of semiconductor device
JPH063812B2 (en) Method for manufacturing semiconductor device
JP3000739B2 (en) Vertical MOS field effect transistor and method of manufacturing the same
JPH0212029B2 (en)
JPH11220122A (en) Manufacture of semiconductor device
JPS61182267A (en) Manufacture of semiconductor device
JP2000223699A (en) Fabrication of semiconductor device
JPH03163833A (en) Semiconductor device and manufacture thereof
US5192705A (en) Method for manufacturing semiconductor stacked CMOS devices
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH06196689A (en) Insulated gate field-effect semiconductor device and manufacture thereof
JPS61251163A (en) Manufacture of bi-mis integrated circuit
JP2623711B2 (en) Semiconductor device
JP3521921B2 (en) Method for manufacturing semiconductor device
EP0528290B1 (en) Semiconductor device and manufacturing method thereof
JPH03257873A (en) Non-volatile semiconductor memory device and manufacture thereof
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JP2830076B2 (en) Method for manufacturing semiconductor device
JPS60788B2 (en) Manufacturing method of silicon gate MIS semiconductor device
JPH1070269A (en) Fabrication of mis transistor
JPS616867A (en) Manufacture of semiconductor device
JPH0457097B2 (en)
JPH0290671A (en) Manufacture of semiconductor integrated circuit
JPH02192125A (en) Manufacture of vertical mosfet
JPS62108574A (en) Mos transistor device