JPH0226061A - Manufacture of semiconductor integrated circuit - Google Patents

Manufacture of semiconductor integrated circuit

Info

Publication number
JPH0226061A
JPH0226061A JP17597988A JP17597988A JPH0226061A JP H0226061 A JPH0226061 A JP H0226061A JP 17597988 A JP17597988 A JP 17597988A JP 17597988 A JP17597988 A JP 17597988A JP H0226061 A JPH0226061 A JP H0226061A
Authority
JP
Japan
Prior art keywords
oxide film
electrode
emitter
gate oxide
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17597988A
Other languages
Japanese (ja)
Inventor
Toru Yamaoka
徹 山岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP17597988A priority Critical patent/JPH0226061A/en
Publication of JPH0226061A publication Critical patent/JPH0226061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce contamination of a gate oxide film by performing vapor deposition of a polysilicon film two times, namely, directly after growing the gate oxide film and directly before forming a gate electrode and an emitter electrode. CONSTITUTION:After forming a collector wall layer 9, a thin silicon oxide film 19 to become a gate oxide film is formed, later, a polysilicon film 11 is made to continuously grow. Then, the polysilicon film 11 is made to grow, then being selectively etched to simultaneously form a gate electrode 15 of a MOS transistor, an emitter electrode 16 and a collector electrode 17 coming in contact with an emitter region 13 and a collector contact region 14 of an NPN transistor. In this way, vapor deposition of the polysilicon film 11 for forming the gate electrode 15 of the MOS transistor and the emitter electrode 13 of the NPN transistor is performed divided in two times, namely, directly after growing the gate oxide film 10 and directly before forming the gate electrode 15 and the emitter electrode 13. Thereby, a problem of contamination of gate oxide film is eliminated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、同一半導体基板内にバイポーラトランジスタ
とMOS)ランジスタを形成する半導体集積回路の製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor integrated circuit in which a bipolar transistor and a MOS (MOS) transistor are formed within the same semiconductor substrate.

従来の技術 バイポーラトランジスタとCMOS(相補形MO3)ト
ランジスタを同一半導体基板内に集積化するBl−CM
O8技術において、NPN)ランジスタの高速化のため
にエミッタ電極をポリシリコンで直接引き出すいわゆる
ポリシリコンエミッタ構造を採用する技術が発表されて
いる。Bi −CMOS技術において、上記ポリシリコ
ンエミッタ構造を採用する場合、ポリシリコンエミッタ
電極の形成とCMOSトランジスタのポリシリコンゲー
ト電極の形成は別個に、すなわち異なるマスクを用いて
形成されるのが通例である。これらエミッタ電極とゲー
ト電極を同一のポリシリコン膜を用いて同時形成しよう
とした場合、ゲート酸化膜成長を行った後、ポリシリコ
ン成長を行う前に、エミッタ領域のゲート酸化膜を選択
的に開口する工程を行う必要があり、ゲート酸化膜が汚
染される恐れがあつた。
Conventional technology BL-CM that integrates bipolar transistors and CMOS (complementary MO3) transistors on the same semiconductor substrate
In O8 technology, a technology has been announced that employs a so-called polysilicon emitter structure in which the emitter electrode is directly drawn out from polysilicon in order to increase the speed of NPN transistors. In Bi-CMOS technology, when the above polysilicon emitter structure is adopted, the formation of the polysilicon emitter electrode and the formation of the polysilicon gate electrode of the CMOS transistor are usually performed separately, that is, using different masks. . If an attempt is made to simultaneously form these emitter electrodes and gate electrodes using the same polysilicon film, the gate oxide film in the emitter region must be selectively opened after the gate oxide film is grown but before the polysilicon growth is performed. Therefore, there was a risk that the gate oxide film would be contaminated.

発明が解決しようとする課題 C(7)ような従来の製造方法では、CMOSトランジ
スタのゲート電極とNPNトランジスタのエミッタ電極
を形成するために、二層のポリシリコン膜と二種類のマ
スクが必要となり、工程が複雑化するという問題があっ
た。また、ゲート電極とエミッタ電極を同時に形成しよ
うとした場合、ゲート酸化膜の選択的な開口工程によっ
てゲート酸化膜が汚染される可能性が大きいという問題
があった。
Problem to be Solved by the Invention In the conventional manufacturing method such as C(7), two layers of polysilicon films and two types of masks are required to form the gate electrode of the CMOS transistor and the emitter electrode of the NPN transistor. , there was a problem that the process became complicated. Furthermore, when attempting to form the gate electrode and the emitter electrode at the same time, there is a problem in that the gate oxide film is highly likely to be contaminated by the selective opening process of the gate oxide film.

本発明は上記問題を解決するもので、MOSトランジス
タのゲート電極とNPN )ランジスタのエミッタ電極
をゲート酸化膜の汚染の可能性の少ない方法で同時に形
成することを可能にする半導体集積回路の製造方法を提
供することを目的とするものである。
The present invention solves the above-mentioned problems, and is a method for manufacturing a semiconductor integrated circuit that allows the gate electrode of a MOS transistor and the emitter electrode of an NPN transistor to be formed simultaneously using a method that is less likely to contaminate the gate oxide film. The purpose is to provide the following.

課題を解決するための手段 上記問題を解決するために本発明は、ゲート酸化膜成長
後連続的に多結晶シリコン膜を成長させる工程と、NP
N)ランジスタのエミッタおよびベースとコレクタコン
タクト形成予定領域上の前記多結晶シリコン膜を選択的
に除去する工程と、前記エミッタおよびコレクタコンタ
クト形成予定領域上の前記ゲート酸化膜を選択的に除去
する工程と、エミッタおよびベースとコレクタコンタク
ト領域形成後に多結晶シリコン膜を成長させる工程と、
前記多結晶シリコン膜を選択的にエツチングすることに
よりMOSトランジスタのゲート電極とNPN トラン
ジスタのエミッタ電極およびコレクタ電極を同時に形成
する工程とを備えたものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides a step of continuously growing a polycrystalline silicon film after growing a gate oxide film, and a step of continuously growing a polycrystalline silicon film after growing a gate oxide film.
N) selectively removing the polycrystalline silicon film on the regions where the emitter, base and collector contacts of the transistor are planned to be formed, and selectively removing the gate oxide film on the regions where the emitter and collector contacts are planned to be formed. and a step of growing a polycrystalline silicon film after forming the emitter, base and collector contact regions;
The method includes a step of simultaneously forming a gate electrode of a MOS transistor and an emitter electrode and a collector electrode of an NPN transistor by selectively etching the polycrystalline silicon film.

作用 上記構成により、MOSトランジスタのゲ〒ト電極とN
PN)−ランジスタのエミッタ電極を形成するためのポ
リシリコン膜の蒸着を、ゲート酸化膜の成長直後と、ゲ
ート電極とエミッタ電極の形成直前の二層に分けて行う
ので、NPNトランジスタのエミッタ領域形成時に行う
選択的な開口工程による、ゲート酸化膜の汚染の可能性
を問題にすることなしに、MOS)ランジスタのゲート
電極とNPN)ランジスタのエミッタ電極を同時に形成
することができ、工程が簡略化される。
Operation With the above configuration, the gate electrode of the MOS transistor and the N
Since the polysilicon film for forming the emitter electrode of the NPN transistor is deposited in two layers, immediately after the growth of the gate oxide film and immediately before the formation of the gate and emitter electrodes, it is possible to form the emitter region of the NPN transistor. The gate electrode of a MOS transistor and the emitter electrode of an NPN transistor can be formed simultaneously without worrying about the possibility of contamination of the gate oxide film due to the selective opening process that is sometimes performed, simplifying the process. be done.

実施例 以下本発明の一実施例を図面に基づいて説明する。Example An embodiment of the present invention will be described below based on the drawings.

第1図は本発明の一実施例の半導体集積回路の製造方法
の工程流れ図を示し、これを用いてその製造方法を説明
する。まず、第1図Ca)に示すように、n型埋め込み
領域2,21およびn型埋め込み領域3,31が選択的
に形成されたp型車結晶シリコン基板1の上に、比抵抗
1〜5Ω儂のn型シリコンエピタキシャル層4を形成し
、n型不純物の拡散でn型埋め込み領域2,21の上に
はこれに繋がるNウェル領域5を、またn型不純物の拡
散でn型埋め込み領域3の上にはこれに繋がるp型分離
領域6を形成し、またn型埋め込み領域31の上にはP
ウェル領域7を形成する。さらに、選択酸化法により厚
いシリコン酸化膜を成長させ、素子分離領域8を形成す
る。
FIG. 1 shows a process flowchart of a method for manufacturing a semiconductor integrated circuit according to an embodiment of the present invention, and the manufacturing method will be explained using this. First, as shown in FIG. 1 Ca), on a p-type wheel crystal silicon substrate 1 on which n-type buried regions 2 and 21 and n-type buried regions 3 and 31 are selectively formed, a resistivity of 1 to 5 Ω is applied. My n-type silicon epitaxial layer 4 is formed, and an N-well region 5 connected to this is formed on the n-type buried regions 2 and 21 by diffusion of n-type impurities, and an n-type buried region 3 is formed by diffusion of n-type impurities. A p-type isolation region 6 connected to this is formed on the top, and a P-type isolation region 6 is formed on the n-type buried region 31.
A well region 7 is formed. Furthermore, a thick silicon oxide film is grown by selective oxidation to form element isolation regions 8.

次に第1図中)に示すように、n型不純物の拡散により
NPN)ランジスタのコレクタウオール層9を形成した
後、ゲート酸化膜となる薄いシリコン酸化膜10を形成
し、その後連続的に1000〜2000Aのポリシリコ
ン膜Uを成長させる。次に、n型埋め込み領域2上のN
ウェル領域5とコレクタウオール層9の、NPN)ラン
ジスタのエミッタおよびベースとコレクタコンタクト形
成予定領域上のポリシリコン膜Uと、エミッタおよびコ
レクタコンタクト形成予定領域5上のゲート酸化膜10
とを選択的に除去した後、p型の不純物を選択的にイオ
ン注入してn型埋め込み領域2上のNウェル領域5に活
性ベース領域認を形成し、さらにn型の不純物を選択的
にイオン注入して活性ベース領域セおよびコレクタウオ
ール層9にエミッタ領域口およびコレクタコンタクト領
域14を形成する。
Next, as shown in FIG. 1), after forming a collector all layer 9 of an NPN transistor by diffusing n-type impurities, a thin silicon oxide film 10 that will become a gate oxide film is formed, and then 1000 A polysilicon film U of ~2000A is grown. Next, N on the n-type buried region 2
The polysilicon film U on the well region 5 and collector all layer 9, the area where the emitter, base and collector contacts of the NPN transistor are planned to be formed, and the gate oxide film 10 on the area where the emitter and collector contacts are planned to be formed.
After selectively removing p-type impurities, an active base region is formed in the N-well region 5 on the n-type buried region 2 by selectively ion-implanting p-type impurities, and further n-type impurities are selectively implanted. An emitter region opening and a collector contact region 14 are formed in the active base region and collector all layer 9 by ion implantation.

次に第1図(C)に示すように2000〜3000Aの
ポリシリコン膜を成長させ、これを選択的にエツチング
してMOS)−ランジスタのゲート電極正と、NPN)
ランジスタのエミッタ領域Uおよびコレクタコンタクト
領域14に接触するエミッタ電極16およびコレクタ電
極17とを同時に形成する。
Next, as shown in FIG. 1(C), a polysilicon film of 2000 to 3000 A is grown and selectively etched to form MOS)-transistor gate electrodes and NPN).
An emitter electrode 16 and a collector electrode 17 that contact the emitter region U and collector contact region 14 of the transistor are formed at the same time.

コノ後、図示していないが、Nウェル領域5とPウェル
領域7にそれぞれソース領域とドレイン領域を形成し、
活性ベース領域以とソース領域およびドレイン領域の上
にコンタクト窓を形成し、このコンタクト窓にアルミニ
ウムの電極を形成してBi −CMOS集積回路を完成
する。
After this, although not shown, a source region and a drain region are formed in the N well region 5 and the P well region 7, respectively.
Contact windows are formed above the active base region and the source and drain regions, and aluminum electrodes are formed in the contact windows to complete the Bi-CMOS integrated circuit.

発明の効果 以上のように、本発明の半導体集積回路の製造方法によ
れば、Bi−CMO5集積回路の製造工程において、M
OSトランジスタのゲート電極とNPNトランジスタの
エミッタ電極を形成するためのポリシリコン膜の蒸着を
、ゲート酸化膜の成長直後と、ゲート電極とエミッタ電
極の形成直前の二層に分けて行うので、ゲート酸化膜の
汚染を問題にすることなしに、MOSトランジスタのゲ
ート電iとNPN)ランジスタのエミッタ電極を同時に
形成することが可能となり、工程が簡略化される。
Effects of the Invention As described above, according to the method for manufacturing a semiconductor integrated circuit of the present invention, in the manufacturing process of a Bi-CMO5 integrated circuit, M
The polysilicon film for forming the gate electrode of the OS transistor and the emitter electrode of the NPN transistor is deposited in two layers: immediately after the growth of the gate oxide film and immediately before the formation of the gate electrode and emitter electrode. It becomes possible to form the gate electrode of the MOS transistor and the emitter electrode of the NPN transistor at the same time without causing film contamination, thereby simplifying the process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(C)は本発明の一実施例による半導体
集積回路の製造方法を示す工程流れ図である。 1・・・p型車結晶シリコン基板・2,21°°n型埋
め込み領域、3,31・・・p型埋め込み領域、4・・
・n型シリコンエピタキシャル層、5・・・Nウェル領
M、6・・・p型分離領域、7・・・Pウェル領域、8
・・・素子分離領域、9・・・NPNトランジスタのコ
レクタウオール[,10・・・シリコン酸化膜、11・
・・ポリシリコン膜、ν・・・活性ベース領域、詔・・
・エミッタ領域、14・・・コレクタコンタクト領域、
15・・・ゲート電極、16・・・エミッタ電極、17
・・・コレクタ電極。
FIGS. 1A to 1C are process flow charts showing a method for manufacturing a semiconductor integrated circuit according to an embodiment of the present invention. 1... P-type wheel crystal silicon substrate, 2, 21°° n-type buried region, 3, 31... p-type buried region, 4...
・N-type silicon epitaxial layer, 5... N-well region M, 6... P-type isolation region, 7... P-well region, 8
... Element isolation region, 9... Collector all of NPN transistor [,10... Silicon oxide film, 11...
...polysilicon film, ν...active base region, edict...
- Emitter region, 14... collector contact region,
15... Gate electrode, 16... Emitter electrode, 17
...Collector electrode.

Claims (1)

【特許請求の範囲】[Claims] 1、ゲート酸化膜成長後連続的に多結晶シリコン膜を成
長させる工程と、NPNトランジスタのエミッタおよび
ベースとコレクタコンタクト形成予定領域上の前記多結
晶シリコン膜を選択的に除去する工程と、前記エミッタ
およびコレクタコンタクト形成予定領域上の前記ゲート
酸化膜を選択的に除去する工程と、エミッタおよびベー
スとコレクタコンタクト領域形成後に多結晶シリコン膜
を成長させる工程と、前記多結晶シリコン膜を選択的に
エッチングすることによりMOSトランジスタのゲート
電極とNPNトランジスタのエミッタ電極およびコレク
タ電極を同時に形成する工程とを備えた半導体集積回路
の製造方法。
1. A step of continuously growing a polycrystalline silicon film after growing a gate oxide film, a step of selectively removing the polycrystalline silicon film on the area where the emitter, base, and collector contacts of the NPN transistor are to be formed; and a step of selectively removing the gate oxide film on the region where the collector contact is to be formed, a step of growing a polycrystalline silicon film after forming the emitter, base and collector contact regions, and selectively etching the polycrystalline silicon film. A method for manufacturing a semiconductor integrated circuit, comprising a step of simultaneously forming a gate electrode of a MOS transistor and an emitter electrode and a collector electrode of an NPN transistor.
JP17597988A 1988-07-14 1988-07-14 Manufacture of semiconductor integrated circuit Pending JPH0226061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17597988A JPH0226061A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17597988A JPH0226061A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPH0226061A true JPH0226061A (en) 1990-01-29

Family

ID=16005580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17597988A Pending JPH0226061A (en) 1988-07-14 1988-07-14 Manufacture of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPH0226061A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202050A (en) * 1993-12-30 1995-08-04 Nec Corp Manufacture of semiconductor device
JPH09172100A (en) * 1995-12-18 1997-06-30 Nec Corp Method for manufacturing semiconductor integrated circuit device
US6459129B1 (en) 1997-03-14 2002-10-01 Nec Corporation BiCMOS device having a CMOS gate electrode and a bipolar emitter each containing two impurities of the same conductivity type

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202050A (en) * 1993-12-30 1995-08-04 Nec Corp Manufacture of semiconductor device
JPH09172100A (en) * 1995-12-18 1997-06-30 Nec Corp Method for manufacturing semiconductor integrated circuit device
US6459129B1 (en) 1997-03-14 2002-10-01 Nec Corporation BiCMOS device having a CMOS gate electrode and a bipolar emitter each containing two impurities of the same conductivity type

Similar Documents

Publication Publication Date Title
JPH0355984B2 (en)
JPS63174366A (en) Manufacture of semiconductor device
JPH0226061A (en) Manufacture of semiconductor integrated circuit
JPS63207177A (en) Manufacture of semiconductor device
JPS60144950A (en) Manufacture of semiconductor device
JPH03201564A (en) Lateral semiconductor device
JPS5933271B2 (en) Manufacturing method of semiconductor device
JPH04112532A (en) Manufacture of semiconductor integrated circuit
JPS59138367A (en) Semiconductor device
JPS6244862B2 (en)
JPH01208865A (en) Manufacture of semiconductor device
JPS6376470A (en) Manufacture of semiconductor device
JPH0290569A (en) Manufacture of semiconductor device
JPS6292359A (en) Manufacture of semiconductor device
JPS639150A (en) Manufacture of semiconductor device
JPH03276635A (en) Manufacture of bipolar transistor
JPH0410548A (en) Manufacture of semiconductor device
JPS61274323A (en) Manufacture of semiconductor device
JPS60140755A (en) Manufacture of semiconductor device
JPH01214166A (en) Semiconductor integrated circuit device with bipolar transistor
JPH09205159A (en) Semiconductor device and its manufacture
JPH02203535A (en) Manufacture of semiconductor device
JPH02159035A (en) Integrated circuit device
JPH0478009B2 (en)
JPS59231833A (en) Semiconductor device and manufacture thereof