JPS62228845A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS62228845A
JPS62228845A JP7150686A JP7150686A JPS62228845A JP S62228845 A JPS62228845 A JP S62228845A JP 7150686 A JP7150686 A JP 7150686A JP 7150686 A JP7150686 A JP 7150686A JP S62228845 A JPS62228845 A JP S62228845A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
separator
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7150686A
Other languages
Japanese (ja)
Other versions
JPH0364783B2 (en
Inventor
茂夫 鈴木
雄二 吉田
和生 中谷
裕二 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7150686A priority Critical patent/JPS62228845A/en
Publication of JPS62228845A publication Critical patent/JPS62228845A/en
Publication of JPH0364783B2 publication Critical patent/JPH0364783B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱ポンプ装置、特に暖冷房装置において、非
共沸混合冷媒を用い、主回路を流れる冷媒濃度を可変す
る事により、常に負荷に適応した冷暖房能力を発生させ
るヒートポンプ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses a non-azeotropic mixed refrigerant in a heat pump device, particularly in a heating and cooling device, and constantly adapts to the load by varying the concentration of the refrigerant flowing through the main circuit. The present invention relates to a heat pump device that generates heating and cooling capacity.

従来の技術 従来、熱ポンプ装置の能力を可変する方法として、冷媒
に非共沸混合冷媒を用い、分離器によって高沸点冷媒と
低沸点冷媒とに分離し、それによって主回路の冷媒組成
を変え能力を可変するものが提案されており、この時冷
媒組成を変えてその吸込み比容積を変え循環量を変える
ものであり、圧縮機回転数を変える方式にこのような分
離方式を付加する事も考えられており、分離の方法とし
ては精留方式を利用したものが提案されている。
Conventional technology Conventionally, as a method of varying the capacity of a heat pump device, a non-azeotropic mixed refrigerant is used as the refrigerant, and a separator separates the refrigerant into a high boiling point refrigerant and a low boiling point refrigerant, thereby changing the refrigerant composition in the main circuit. A system with variable capacity has been proposed, in which the composition of the refrigerant is changed to change its suction specific volume and the amount of circulation, and it is also possible to add such a separation method to the system of changing the compressor rotation speed. A method using rectification has been proposed as a separation method.

我々の先行発明として第2図に示す如きものがある。第
2図において1は圧縮機、2は四方弁、3は負荷側熱交
換器、4は主絞り装置、6は熱源側熱交換器、7は分離
器、8は塔頂冷却熱交換器、9は塔底加熱熱交換器であ
り、暖房時には凝縮器となる負荷側熱交換器3より分離
器7に主回路と並列に冷媒を供給し、分離器7において
、精留方式によりサイクルに封入された非共沸混合冷媒
を高沸点成分と低沸点成分とに分離し、塔底あるいは塔
頂の貯留器10.11より高沸点成分冷媒あるいは低沸
点成分冷媒を主サイクルに注入する事によって主サイク
ルの冷媒組成を変えて能力制御を行なうものであり、こ
の時、暖房および冷房時両者共精留分離を行なわせるた
めに、塔底加熱熱交換器9にては圧縮機1と四方弁2の
間の吐出ガスを加熱源とし、また塔頂冷却熱交換器8に
ては四方弁2とアキュムレータ12の間の吸入ガスを冷
却源としている。このような構成とする事によって冷房
時、暖房時で主サイクルの冷媒流れ方向が逆転しても精
留分離に対して必要な加熱、冷却がなされるものである
Our prior invention is as shown in FIG. 2. In Fig. 2, 1 is a compressor, 2 is a four-way valve, 3 is a load side heat exchanger, 4 is a main throttling device, 6 is a heat source side heat exchanger, 7 is a separator, 8 is a top cooling heat exchanger, Reference numeral 9 denotes a bottom heating heat exchanger. During heating, refrigerant is supplied from the load-side heat exchanger 3, which serves as a condenser, to the separator 7 in parallel with the main circuit, and in the separator 7, the refrigerant is sealed into the cycle by a rectification method. The resulting non-azeotropic mixed refrigerant is separated into high-boiling point components and low-boiling point components, and the high-boiling point component refrigerant or low-boiling point component refrigerant is injected into the main cycle from the reservoir 10.11 at the bottom or top of the tower. Capacity is controlled by changing the refrigerant composition of the cycle, and at this time, in order to perform rectification separation during both heating and cooling, the bottom heating heat exchanger 9 is operated by compressor 1 and four-way valve 2. The discharge gas between the four-way valve 2 and the accumulator 12 is used as a heating source, and the suction gas between the four-way valve 2 and the accumulator 12 is used as a cooling source in the tower top cooling heat exchanger 8. With this configuration, even if the flow direction of the refrigerant in the main cycle is reversed during cooling and heating, the necessary heating and cooling for rectification separation can be achieved.

発明が解決しようとする問題点 以上述べた先行発明の熱ポンプ装置においては、基本的
に冷媒の組成制御が可能であり、かつそれが冷房時、暖
房時共必要な場合に適している。
Problems to be Solved by the Invention In the heat pump device of the prior invention described above, it is basically possible to control the composition of the refrigerant, and it is suitable when this is necessary for both cooling and heating.

しかる(C実際にこのような組成分離サイクルを用いて
冷暖房時共能力を制御する場合、暖房時には全体的に低
沸点成分を主サイクル内に多くして能力を稼ぎ、逆に冷
房時には低沸点成分+7 ノチでは高圧が上昇するので
、高沸点成分リッチな生サイクルとして効率を上げる運
転方法が望まれる場合もあり、このような場合には、冷
房時のみ精留分離を行なって主サイクルを高沸点に富ん
だ組成で運転し、暖房時には低沸点に富む封入冷媒組成
そのままで運転し、精留分離を行なわないのが望ましい
ものである。
However, when actually using such a compositional separation cycle to control the joint capacity during cooling and heating, during heating the low boiling point components are generally increased in the main cycle to gain capacity, and conversely during cooling the low boiling point components are increased. Since high pressure increases at +7 nochi, it may be desirable to operate the raw cycle rich in high-boiling components to increase efficiency. During heating, it is desirable to operate the refrigerant with a composition rich in low boiling points, and to operate with the same composition as the enclosed refrigerant, which is rich in low boiling points, without performing rectification separation.

また、先行発明の構成によれば、冷房時、暖房時共また
主サイクルの濃度可変の有無にかかわらず精留分離用の
加熱、冷却が作用しており、吐出ガスで加熱し、吸入ガ
スで冷却すると、凝縮器入口温度が低下する事により特
に暖房始に能力損失の発生があるものであった。また塔
頂冷却熱交換器では吸入ガスを用いているために、熱伝
達率が低く熱交換器として大きくなるものであった。
In addition, according to the configuration of the prior invention, heating and cooling for rectification separation are active during both cooling and heating, regardless of whether or not the concentration is varied in the main cycle. When cooling, the temperature at the condenser inlet drops, which causes a loss of capacity, especially at the start of heating. Furthermore, since the overhead cooling heat exchanger uses suction gas, the heat transfer coefficient is low and the heat exchanger becomes large.

そこで本発明では、暖房時には精留分離なしとし、冷房
時には精留分離によって高効率運転をし、更に暖房時、
の効率をも上げる熱ポンプ装置を得ようとするものであ
り、更に塔頂熱交換器を小型化しようとするものである
Therefore, in the present invention, there is no rectification separation during heating, high efficiency operation is achieved by rectification separation during cooling, and furthermore, during heating,
The aim is to obtain a heat pump device that increases the efficiency of the heat exchanger, and also to reduce the size of the tower top heat exchanger.

問題点を解決するための手段 分離器の塔底と、冷暖房時の凝縮器出口とを接続する導
入部と、分離器の塔底と冷暖房時の蒸発器入口とを接続
する導出部とで分離器と主サイクルを接続し、四方弁よ
り熱源側熱交換器の間の冷媒配管を分離器塔底加熱源と
して位置させ、絞り装置より負荷側熱交換器の間の冷媒
配管を分離器塔頂冷却源として位置させる構成とするも
のである。
Means for solving the problem Separation is performed using an introduction section that connects the bottom of the separator and the condenser outlet for heating/cooling, and an outlet that connects the bottom of the separator and the inlet of the evaporator for heating/cooling. The refrigerant piping between the four-way valve and the heat exchanger on the heat source side is located at the bottom of the separator column as a heating source, and the refrigerant piping between the expansion device and the load side heat exchanger is placed at the top of the separator tower. It is configured to be positioned as a cooling source.

作  用 上記構成になる本発明によれば、分離器は低沸点貯留方
式で主サイクルと接続され、冷房時には四方弁より熱源
側熱交換器の間は高温冷媒となるので分離器塔底を加熱
でき、絞り装置より負荷側熱交換器の間は低温冷媒とな
り分離器塔頂を冷却できる。これにより冷房時には精留
分離がなされ、低沸点貯留方式であるので主サイクルを
高沸点に富んだ冷媒組成とする事ができる。一方暖同時
には分離器での精留を働かせる加熱、冷却作用がなく精
留分離がなされず、封入冷媒組成の低沸点に富んだ冷媒
組成で運転できるとともに、精留分離の加熱、冷却がな
いので熱損失のない運転ができるものである。
According to the present invention configured as described above, the separator is connected to the main cycle in a low boiling point storage system, and during cooling, high-temperature refrigerant flows between the four-way valve and the heat source side heat exchanger, so the bottom of the separator column is heated. Between the throttle device and the load-side heat exchanger, the refrigerant becomes a low-temperature refrigerant and can cool the top of the separator tower. As a result, rectification separation is performed during cooling, and since it is a low boiling point storage method, the main cycle can have a refrigerant composition rich in high boiling points. On the other hand, during heating, there is no heating or cooling effect that activates rectification in the separator, so no rectification separation occurs, and operation can be performed with a refrigerant composition rich in low boiling points of the enclosed refrigerant composition, and there is no heating or cooling for rectification separation. This allows operation without heat loss.

実施例 本発明による熱ポンプ装置を冷暖房装置に適用した第1
図をもって以下に説明する。
Embodiment A first example in which the heat pump device according to the present invention is applied to an air-conditioning device.
This will be explained below using figures.

図において1〜4,6は先行発明と同一の構成要素であ
り、負荷側熱交換器3と絞り装置4の間より分離器13
に接続する配管14と、絞り装置4と熱源側熱交換器6
の間より分離器13に接続する配管15が設けられてお
シ、主サイクル運転時、冷媒は主に絞り装置4を通るも
のと、前記の配管14.16を通って分離器13を経由
して主サイクルと並列に流れるものとに分かれる。この
時分離器13の上部には配管16が設けられて分離器1
3より発生するガスを塔頂熱交換器17の部分て冷却液
化し、貯留器18に貯留し、液を貯留器18より塔頂に
還流するだめの配管19が設けられている。
In the figure, 1 to 4 and 6 are the same components as in the previous invention, and a separator 13 is connected between the load side heat exchanger 3 and the expansion device 4.
piping 14 connected to , the expansion device 4 and the heat source side heat exchanger 6
During main cycle operation, the refrigerant mainly passes through the throttling device 4 and the above-mentioned pipes 14 and 16 and then via the separator 13. It is divided into a main cycle and a parallel cycle. At this time, a piping 16 is provided at the upper part of the separator 13 so that the separator 1
3 is cooled and liquefied at the top heat exchanger 17, stored in a reservoir 18, and a reservoir piping 19 is provided for refluxing the liquid from the reservoir 18 to the top of the tower.

この時塔頂冷却器17に導かれる冷媒は負荷側熱交換器
3より絞り装置4tでの間の冷媒であり、また配管16
を通る冷媒を加熱する塔底熱交換器20に導かれる冷媒
は熱源側熱交換器eと四方弁2との間の冷媒であるよう
に構成している。更に配管14.15には絞り21.2
2と並列に逆止弁23.24が設けられている。かかる
構成による熱ポンプ装置において、冷暖房時の動作につ
いて説明する。
At this time, the refrigerant introduced to the tower top cooler 17 is the refrigerant between the load-side heat exchanger 3 and the expansion device 4t, and the piping 16
The refrigerant guided to the bottom heat exchanger 20 that heats the refrigerant passing through is configured to be the refrigerant between the heat source side heat exchanger e and the four-way valve 2. Furthermore, the piping 14.15 has a restriction 21.2.
Check valves 23, 24 are provided in parallel with 2. In the heat pump device having such a configuration, the operation during cooling and heating will be explained.

まず暖房時には図の実線で示す冷媒流の如く冷媒が流れ
、配管14よシ分離器13に入る冷媒は液冷媒のままで
入シ、分離器13内でガスの発生がないので精留作用が
なされず、主サイクルの冷媒組成は封入時の低沸点に富
む冷媒組成のままであり、高暖房能力を維持する運転が
できる。この時、塔頂熱交換器17においては分離器1
3内の冷媒とほとんど同じ温度であるので熱交換器とし
て作用しないが、塔底熱交換器2oにおいては、分離器
13よυ配管15を通って流出する液冷媒を冷却する事
になる。このように暖房時には完全に精留作用を停止す
る事ができ、更に分離器13側で冷媒を加熱する事によ
る熱損失がなく効率の高い運転ができるものである。ま
た分離器13よシ流出する液冷媒を熱源側熱交換器θを
出た低温冷媒によシ更に過冷却する事になり、冷凍能力
が増加し、効率の高い運転ができるものである。
First, during heating, the refrigerant flows as shown by the solid line in the figure, and the refrigerant enters the separator 13 through the piping 14 as a liquid refrigerant, and since no gas is generated in the separator 13, the rectification effect is effective. Instead, the refrigerant composition of the main cycle remains the same as the refrigerant composition rich in low boiling points at the time of sealing, allowing operation to maintain high heating capacity. At this time, in the top heat exchanger 17, the separator 1
Since the temperature is almost the same as that of the refrigerant in the column 3, it does not act as a heat exchanger, but in the bottom heat exchanger 2o, the liquid refrigerant flowing out through the separator 13 and the υ pipe 15 is cooled. In this way, the rectifying action can be completely stopped during heating, and there is no heat loss due to heating the refrigerant on the separator 13 side, allowing highly efficient operation. Furthermore, the liquid refrigerant flowing out of the separator 13 is further supercooled by the low temperature refrigerant exiting the heat source side heat exchanger θ, increasing the refrigerating capacity and enabling highly efficient operation.

次に冷房運転時についてその動作を説明する、冷房時に
は図の破線に示す冷媒流の如く冷媒が流れ、配管15よ
り分離器13に入る液冷媒は塔底熱交換器20において
、高温のガス冷媒により加熱されてガス成分を発生して
分離器13に流入する。分離器13に流入したガス成分
は分離器13内を上昇し、配管16を通シ塔頂熱交換器
1γにおいて低d冷媒で冷却されて液化し、貯留器1已
に貯留され配管19より塔頂部に還流されて、この液と
上昇してくるガスとが分離器13内で気液接触して精留
作用を行ない貯留器18には低沸点冷媒が貯留され、主
サイクルは高沸点に富んだサイクル組成となり、冷房時
に低沸点冷媒で運転された場合の高圧上昇がなく、かつ
高効率で運転ができるものである。
Next, the operation during cooling operation will be explained. During cooling, the refrigerant flows as shown by the broken line in the figure, and the liquid refrigerant that enters the separator 13 from the pipe 15 is exchanged with the high temperature gas refrigerant in the bottom heat exchanger 20. is heated to generate gas components, which flow into the separator 13. The gas component that has flowed into the separator 13 rises inside the separator 13, passes through the pipe 16, is cooled with a low-d refrigerant in the top heat exchanger 1γ, and is liquefied. The liquid is refluxed to the top, and this liquid and the rising gas come into gas-liquid contact in the separator 13 to perform a rectifying action, and a low-boiling point refrigerant is stored in the reservoir 18, and the main cycle is rich in high-boiling point refrigerant. It has a cycle composition, which eliminates the high pressure rise that occurs when operating with a low boiling point refrigerant during cooling, and allows operation with high efficiency.

この時、冷却源として絞り装置4より負荷側熱交換器3
の間の気液二相冷媒を用いているために熱伝達率を大き
くとれ、それ故塔頂熱交換器17構成としてコンパクト
にできるものである。
At this time, the load side heat exchanger 3 is used as a cooling source from the expansion device 4.
Since a gas-liquid two-phase refrigerant is used in between, a high heat transfer coefficient can be obtained, and therefore the top heat exchanger 17 can be configured compactly.

また、例えば冷房時に分離器13への導入部となる配管
15に絞りを設けて中間圧とした状態で分離器13にガ
ス成分を発生させて導入する事により、塔底熱交換器2
0での加熱量を、小さくし、分離時に発生する熱損失を
小さくする事も可能である。また基本的には暖房時分離
がかからないが、冷房時に分離をかける場合とかけない
場合とを併用する方法としては、バイパスを用いたりし
て加熱を止めたり、分離器13へ流入する冷媒量を多く
したり、貯留器18から低圧配管へ冷媒を戻す等によっ
て可能である。本実施例では塔底熱交換器20を配管1
5に付設したが、配管14に付設してもよく、また両方
の配管にまたがる如く構成しても良い。
In addition, for example, during cooling, by providing a throttle in the piping 15 that serves as the introduction part to the separator 13 to generate and introduce gas components into the separator 13 at an intermediate pressure, the bottom heat exchanger 2
It is also possible to reduce the amount of heating at zero and reduce the heat loss that occurs during separation. Basically, separation is not applied during heating, but as a method of using both separation during cooling and cases where separation is not applied, it is possible to stop heating by using a bypass, or to reduce the amount of refrigerant flowing into the separator 13. This is possible by increasing the amount of refrigerant, or by returning the refrigerant from the reservoir 18 to the low-pressure piping. In this embodiment, the bottom heat exchanger 20 is connected to the pipe 1
5, but it may be attached to the pipe 14, or may be configured to span both pipes.

発明の詳細 な説明したように本発明になる熱ポンプ装置においては
、非共沸混合冷媒を冷房時、暖房時に適した冷媒組成で
運転し、冷房時には高沸点成分に富んだ冷媒組成で運転
して効率を上げるように精留分離を行ない、暖房時には
封入組成そのままの低沸点成分に富んだ冷媒組成で運転
して高能力を発揮するものであり、この時冷房時の精留
分離用加熱源として熱源側熱交換器と四方弁の間の高温
冷媒を用い、冷却源として絞り装置より負荷側熱交換器
の間の低温冷媒を用いているので、暖房時には逆にこの
加熱源が過冷却源として作用して作用してサイクルの効
率を高め、冷房分離時の冷却源での冷媒は気液二相状態
であるので熱交換器としてコンパクトにできるものであ
る。
As described in detail, in the heat pump device of the present invention, a non-azeotropic mixed refrigerant is operated with a refrigerant composition suitable for cooling and heating, and is operated with a refrigerant composition rich in high boiling point components during cooling. During heating, the refrigerant is operated with a refrigerant composition rich in low-boiling components, which is the same as the sealed composition, to achieve high performance.At this time, the heating source for rectification separation during cooling is As a cooling source, a high-temperature refrigerant is used between the heat exchanger on the heat source side and the four-way valve, and a low-temperature refrigerant between the heat exchanger on the load side is used as a cooling source, rather than a throttling device, so during heating, this heating source becomes a supercooling source. The refrigerant in the cooling source during cooling separation is in a gas-liquid two-phase state, so it can be made compact as a heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の熱ポンプ装置の構歓図、第
2図は本発明に関する先行発明の一実施例を示すサイク
ル構成図である。 1・・・・・・圧縮機、3・・・・・・負荷側熱交換器
、2・・・・・・四方弁、4・・・・・・絞り装置、6
・・・・・・熱源側熱交換器、13・・・・・・分離器
、17・・・・・・塔頂熱交換器、20・・・・・・塔
底熱交換器。
FIG. 1 is a schematic diagram of a heat pump device according to an embodiment of the present invention, and FIG. 2 is a cycle configuration diagram showing an embodiment of a prior invention related to the present invention. 1... Compressor, 3... Load side heat exchanger, 2... Four-way valve, 4... Throttle device, 6
... Heat source side heat exchanger, 13 ... Separator, 17 ... Tower top heat exchanger, 20 ... Tower bottom heat exchanger.

Claims (2)

【特許請求の範囲】[Claims] (1)非共沸混合冷媒を封入し、圧縮機、四方弁、負荷
側熱交換器、絞り装置、熱源側熱交換器を環状に接続し
て主サイクルを構成し、前記主サイクル中の非共沸混合
冷媒を分離する分離器と、前記分離器と前記熱源側熱交
換器と絞り装置の間とを接続する配管と、前記分離器の
塔底と負荷側熱交換器の間とを接続する配管とを有し、
前記絞り装置より前記負荷側熱交換器に至る配管を前記
分離器の塔頂部に付設し、前記四方弁より前記熱源側熱
交換器に至る配管を前記分離器の塔底部に付設したこと
を特徴とする熱ポンプ装置。
(1) A main cycle is constructed by enclosing a non-azeotropic mixed refrigerant and connecting a compressor, a four-way valve, a load-side heat exchanger, a throttling device, and a heat source-side heat exchanger in an annular manner. A separator that separates the azeotropic mixed refrigerant, a pipe that connects the separator, the heat source side heat exchanger, and the throttling device, and a connection between the bottom of the separator and the load side heat exchanger. It has piping to
Piping from the throttle device to the load-side heat exchanger is attached to the top of the separator, and piping from the four-way valve to the heat source-side heat exchanger is attached to the bottom of the separator. heat pump equipment.
(2)分離器を中間圧としたことを特徴とする特許請求
の範囲第1項記載の熱ポンプ装置。
(2) The heat pump device according to claim 1, characterized in that the separator has an intermediate pressure.
JP7150686A 1986-03-28 1986-03-28 Heat pump device Granted JPS62228845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7150686A JPS62228845A (en) 1986-03-28 1986-03-28 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7150686A JPS62228845A (en) 1986-03-28 1986-03-28 Heat pump device

Publications (2)

Publication Number Publication Date
JPS62228845A true JPS62228845A (en) 1987-10-07
JPH0364783B2 JPH0364783B2 (en) 1991-10-08

Family

ID=13462640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7150686A Granted JPS62228845A (en) 1986-03-28 1986-03-28 Heat pump device

Country Status (1)

Country Link
JP (1) JPS62228845A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245965A (en) * 1984-05-18 1985-12-05 松下電器産業株式会社 Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245965A (en) * 1984-05-18 1985-12-05 松下電器産業株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH0364783B2 (en) 1991-10-08

Similar Documents

Publication Publication Date Title
KR890004867B1 (en) Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
JPS62228845A (en) Heat pump device
CN105972864A (en) Non-azeotropic mixed working medium heat pump air-conditioning system with concentration adjustable
CN111964188B (en) Thermosiphon-vapor compression composite refrigeration system
JPS61190257A (en) Heat pump type refrigerator
JPS61276664A (en) Heat pump device
JPS59153075A (en) Refrigeration cycle device
CN116817480A (en) Air conditioning system, control method, controller and storage medium thereof
JPS62116860A (en) Refrigeration cycle
JPS6166054A (en) Heat pump device
JPS636347A (en) Refrigeration cycle
JPH05312409A (en) Heat pump type hot water feeding machine
JPS62134463A (en) Heat pump device
JPH02242051A (en) Refrigerator
JPH0460352A (en) Heat pump device
JPS61217659A (en) Heat pump device
JPH01252871A (en) Device of heat pump
JPH0351673A (en) Heat pump type cooling or heating device
JPH01107061A (en) Heat pump device
JPS6262157A (en) Heat pump device
JPS62245053A (en) Heat pump device
JPS62162854A (en) Heat pump device
JPS62206345A (en) Heat pump device
JPS61161376A (en) Refrigerant rectifier for heat pump
JPH01222162A (en) Heat pump system