JPH02242051A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPH02242051A
JPH02242051A JP6099889A JP6099889A JPH02242051A JP H02242051 A JPH02242051 A JP H02242051A JP 6099889 A JP6099889 A JP 6099889A JP 6099889 A JP6099889 A JP 6099889A JP H02242051 A JPH02242051 A JP H02242051A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
heat exchanger
intermediate heat
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6099889A
Other languages
Japanese (ja)
Inventor
Hiroshi Yasuda
弘 安田
Kyuhei Ishihane
久平 石羽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6099889A priority Critical patent/JPH02242051A/en
Publication of JPH02242051A publication Critical patent/JPH02242051A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PURPOSE:To start promptly a refrigerating device for cold temperature service where mixed refrigerant is used, and reduce swiftly the temperature continuously until a specified temperature is obtained from the beginning of operation by installing a bypass pipe which communicates with a low pressure section immediately before a vaporizer from a high pressure section immediately before other decompression devices excluding the decompression device in the final stage by way of an ON/OFF valve, and a decompression mechanism. CONSTITUTION:When an attempt is made to open an ON/OFF valve 12 at the same time when operation starts, a part of R13 liquefied in a first vapor- liquid separator 3 flows into a vaporizer 9 by way of a decompression device 13 of a bypass pipe 14. As a result, low temperature liquefied refrigerant flows into the vaporizer, which makes it possible to generate a cooling capacity. Furthermore, the refrigerant which has left the vaporizer 9 is absorbed into a compressor 1 passing through a second intermediate heat exchanger 7 and a first intermediate heat exchanger 4. It is, therefore, possible to cool the heat exchangers swiftly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷凍装置に係り、特に、低温を得る冷凍サイ
クルにおける起動時間の短縮に好適な冷凍装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refrigeration system, and more particularly to a refrigeration system suitable for shortening the start-up time in a refrigeration cycle that obtains a low temperature.

〔従来の技術〕[Conventional technology]

従来、沸点の興なる複数の冷媒を混合してなる混合冷媒
を用いる低温用の冷凍装置については。
Conventionally, low-temperature refrigeration equipment uses a mixed refrigerant made by mixing a plurality of refrigerants with different boiling points.

例えば実開昭62−189563号公報あるいは実開昭
62−189564号公報記載の技術が知られている。
For example, the technique described in Japanese Utility Model Application Publication No. 62-189563 or Japanese Utility Model Application Publication No. 62-189564 is known.

すなわち、これら各公報に記載された冷凍装置は、混合
冷媒を圧縮し、凝縮器で冷却、一部凝縮してなる気液混
合冷媒を初段気液分離器でガス冷媒と液冷媒とに分け、
このガス冷媒は初段カスケードコンデンサの一方の流路
を経て次段気液分離器に導き、液冷媒は、初段膠層手段
を経て次段カスケードコンデンサの他の一方の流路から
のガス冷媒と共に初段カスケードコンデンサの他の一方
の流路を経て圧縮機に帰還させ、以下順次同様に次段の
気液分離器およびカスケードコンデンサに接続し、終段
カスケードコンデンサからの液冷媒は膨脹手段を介して
蒸発器に導き、蒸発器からのガス冷媒は終段カスケード
コンデンサの他の一方の流路に導くようにしたものであ
る。
That is, the refrigeration equipment described in each of these publications compresses a mixed refrigerant, cools it in a condenser, and separates the partially condensed gas-liquid mixed refrigerant into gas refrigerant and liquid refrigerant in an initial stage gas-liquid separator.
This gas refrigerant is led to the next stage gas-liquid separator through one flow path of the first stage cascade condenser, and the liquid refrigerant passes through the first stage glue layer means to the first stage together with the gas refrigerant from the other flow path of the next stage cascade condenser. The liquid refrigerant is returned to the compressor through the other flow path of the cascade condenser, and then connected to the next stage gas-liquid separator and cascade condenser in the same way, and the liquid refrigerant from the final stage cascade condenser is evaporated via the expansion means. The gas refrigerant from the evaporator is led to the other flow path of the final stage cascade condenser.

特に、例えば実開昭62−189563号公報記載のも
のは、上記構成の冷凍装置において、終段気液分離器の
液冷媒出口は切換弁の一方の流路を経て終段膨張手段に
接続するとともに、この切換弁の他の一方の流路を経て
前記蒸発器に接続された膨脹手段の入口に接続されてい
る。
In particular, in the refrigeration system described in Japanese Utility Model Application Publication No. 62-189563, in which the liquid refrigerant outlet of the final stage gas-liquid separator is connected to the final stage expansion means through one flow path of the switching valve. At the same time, it is connected to the inlet of the expansion means connected to the evaporator through the other flow path of this switching valve.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来技術は1本発明と同様に、冷凍装置の起動時
間の短縮を図るものであるが、幅広い条件での起動時間
の短縮効果について配慮されておらず、十分な効果が得
られないという1IJ−題があった。
Similar to the present invention, the above-mentioned conventional technology aims to shorten the start-up time of the refrigeration equipment, but it does not take into consideration the effect of shortening the start-up time under a wide range of conditions, so that sufficient effects cannot be obtained. 1IJ-There was a title.

本発明は、上記従来技術における課題を解決するために
なされたもので、混合冷媒を用いた低温用の冷領装置の
起動を速やかに行い、運転開始から所望の低温を得るま
で連続して、速やかな温度低下を可能とする冷領装置の
提供を、その目的とするものである。
The present invention was made in order to solve the problems in the prior art described above, and it quickly starts up a low-temperature cooling device using a mixed refrigerant, and continuously operates from the start of operation until a desired low temperature is obtained. The object of the present invention is to provide a cooling device that enables rapid temperature reduction.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために1本発明の冷凍装置に係る第
1の発明の構成は、複数の冷媒を混合してなる混合冷媒
を圧縮する単一の圧縮機と、その圧縮空気を冷却する凝
縮器と、この凝縮器からの冷媒をガス冷媒と液冷媒とに
分離する初段の気液分離器と、分離されたガス冷媒を一
方の流路に導き他方の流路を流れる低圧低温の冷媒で冷
却する初段の中間熱交換器と、分離された液分媒を減圧
する初段の減圧機構と、減圧した低圧低温の冷媒を前記
初段の中間熱交換器に導く配管系とを基本構成とし、前
記中間熱交換器に接続(以下同様構成の次段の気液分離
器、中間熱交換器、減圧機構、および配管系を少なくと
も1段備え、最終段の中間熱交換器、減圧機構に接続し
てガス冷媒を発生する蒸発器と、この蒸a!器と各中間
熱交換器を経由して前記圧縮機に帰還する配管系とを備
えた冷凍装置において、最終段の減圧機構を除く他の減
圧機構の直前の高圧部から、開閉弁および減圧機構を介
して前記蒸発器直前の低圧部へ連通するバイパス配管を
設けたものである。
In order to achieve the above object, a first aspect of the refrigeration system according to the present invention includes a single compressor that compresses a mixed refrigerant made by mixing a plurality of refrigerants, and a condenser that cools the compressed air. a first-stage gas-liquid separator that separates the refrigerant from the condenser into gas refrigerant and liquid refrigerant, and a low-pressure, low-temperature refrigerant that guides the separated gas refrigerant into one flow path and flows through the other flow path. The basic configuration includes a first-stage intermediate heat exchanger for cooling, a first-stage pressure reduction mechanism for reducing the pressure of the separated liquid disparate, and a piping system that guides the reduced pressure low-pressure low-temperature refrigerant to the first-stage intermediate heat exchanger, Connected to an intermediate heat exchanger (hereinafter, it is equipped with at least one stage of the next stage gas-liquid separator, intermediate heat exchanger, pressure reduction mechanism, and piping system with the same configuration, and connected to the final stage intermediate heat exchanger and pressure reduction mechanism) In a refrigeration system equipped with an evaporator that generates a gas refrigerant, and a piping system that returns to the compressor via this evaporator and each intermediate heat exchanger, other pressure reduction mechanisms other than the final stage pressure reduction mechanism are used. A bypass pipe is provided that communicates from a high pressure section immediately before the mechanism to a low pressure section immediately before the evaporator via an on-off valve and a pressure reducing mechanism.

また、上記目的を達成するために1本発明の冷凍装置に
係る第2の発明の構成は、同一前提において、最終段の
減圧機構を除く他の減圧機構の直前の高圧部から、少な
くとも開閉弁を介して前記最終段の減圧機構の直前に連
通するバイパス配管を設けたものである。
In addition, in order to achieve the above object, the configuration of the second invention related to the refrigeration apparatus of the present invention is based on the same premise, at least the on-off valve is A bypass pipe is provided which communicates with the pressure reduction mechanism at the final stage via the pressure reducing mechanism.

さらに、本発明の冷凍装置に係る第3の発明の構成は、
同一前提において、最終段の減圧機構を除く他の減圧機
構の直後の低圧部から、少なくとも開閉弁を介して前記
蒸発器直前の低圧部へ連通するバイパス配管を設けたも
のである。
Furthermore, the configuration of the third invention related to the refrigeration apparatus of the present invention is as follows:
On the same premise, a bypass pipe is provided that communicates from the low pressure section immediately after the pressure reducing mechanism other than the final stage pressure reducing mechanism to the low pressure section immediately before the evaporator via at least an on-off valve.

またさらに、上記各構成のいずれかにおいて、蒸発器の
温度を検知するセンサと、少なくとも一つのバイパス配
管の開閉弁を制御するコントローラとを設け、蒸発器の
温度に応じて少なくとも一つの開閉弁を制御するもので
ある。
Furthermore, in any of the above configurations, a sensor for detecting the temperature of the evaporator and a controller for controlling at least one on-off valve of the bypass pipe are provided, and the at least one on-off valve is controlled according to the temperature of the evaporator. It is something to control.

なお付記すると、上記目的を達成するために。Additionally, in order to achieve the above purpose.

本発明では、起動時には、複数の中間熱交換器をバイパ
スする流路を形成し、圧縮機から吐出された冷媒を凝縮
器、減圧機構、蒸発器の順に@環させ、急速に、蒸発器
をはじめ、その他の構成機器の温度を低下させるように
したものである。
In the present invention, at startup, a flow path is formed that bypasses a plurality of intermediate heat exchangers, and the refrigerant discharged from the compressor is circulated in the order of the condenser, the pressure reduction mechanism, and the evaporator, and the evaporator is rapidly activated. First, the temperature of other components is lowered.

さらに、蒸発器の温度を検知して、コントローラの指令
により、複数のバイパス配管の開閉弁を順次に切換え、
中間熱交換器をバイパスしながら蒸発器の温度を急速に
低下できるようにしたものである。
Furthermore, the temperature of the evaporator is detected and the on-off valves of multiple bypass pipes are sequentially switched according to commands from the controller.
This allows the temperature of the evaporator to be rapidly lowered while bypassing the intermediate heat exchanger.

〔作用〕[Effect]

混合冷媒を用いた冷凍装置の各部温度は、起動直前の状
態では、周囲温度と同じになっている。
The temperature of each part of a refrigeration system using a mixed refrigerant is the same as the ambient temperature immediately before startup.

このため、冷凍装置内に封入された低沸点冷媒はガス化
している。この状態で圧縮機を起動するとガス化した低
沸点冷媒を含む冷媒は、複数の中間熱交換器、冷媒分離
泰、減圧機構から成る複雑な流路を通って流れることを
強制されるため、大きな圧力損失を生じ、その結果とし
て、冷媒装置の低圧圧力が低下する。このため、冷媒循
環流量が激減し、冷却性能が低下し、ますます蒸発器の
温度低下が遅くなる。
Therefore, the low boiling point refrigerant sealed in the refrigeration device is gasified. When the compressor is started in this state, the refrigerant, including the gasified low-boiling refrigerant, is forced to flow through a complex flow path consisting of multiple intermediate heat exchangers, refrigerant separators, and pressure reduction mechanisms, resulting in a large A pressure loss occurs and, as a result, the low-pressure pressure of the refrigerant system decreases. As a result, the refrigerant circulation flow rate is drastically reduced, cooling performance is lowered, and the temperature of the evaporator decreases even more slowly.

本発明では、この場合、凝縮器から、低圧機構を介して
、直接、蒸発器へ流入するバイパス配管を形成できるの
で、冷媒流路は単純となり、冷媒は流れやすくなって冷
却性能が増すことになり。
In this case, the present invention can form a bypass pipe that directly flows from the condenser to the evaporator via the low-pressure mechanism, so the refrigerant flow path becomes simple, the refrigerant flows easily, and the cooling performance increases. Become.

蒸発器の温度を急速に低下させることができる。The temperature of the evaporator can be reduced rapidly.

この際、バイパス配管の入口が、高沸点冷媒を多く含む
位置では、蒸発器の低下温度に限界があるので、蒸発(
至)の温度を検知しながら、バイパス配管の入口を、順
次、下流側に切換えるように構成している。
At this time, if the inlet of the bypass piping is located at a location that contains a large amount of high boiling point refrigerant, there is a limit to the temperature drop of the evaporator, so evaporation (
The inlet of the bypass piping is sequentially switched to the downstream side while detecting the temperature of (to).

〔実施例〕〔Example〕

以下1本発明の各実施例を第1図ないし第5図を参照し
て説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 5.

まず、第1図は、本発明の第1の実施例に係る冷凍装置
の冷凍サイクル系M図である。
First, FIG. 1 is a refrigeration cycle system M diagram of a refrigeration apparatus according to a first embodiment of the present invention.

第1ai!lにおいて、lは圧縮機、2は凝縮器、3は
、初段の気液分離器に係る第1の気液分離器、4は、初
段すなわち第1の中間熱交換器、5は、初段すなわち第
1の減圧機構、6は1次段の気液分III器に係る第2
の気液分離器、7は1次段すなわち第2の中間熱交換器
、8は、次段すなわち第2の減圧機構、9は蒸発器、1
0は、最終段の減圧機構で、ここでは第3の減圧機構、
11は膨張タンク、12は、バイパス配管14に具備さ
れた開閉弁、13は、バイパス配管14の途中に設けら
れた減圧機構、14は、第1の減圧機構5の直前の高圧
部から蒸発器9直前の低圧部へ連通ずるバイパス配管で
ある。
1st ai! 1, l is a compressor, 2 is a condenser, 3 is a first gas-liquid separator related to the first stage gas-liquid separator, 4 is the first stage, that is, the first intermediate heat exchanger, and 5 is the first stage, that is, the first intermediate heat exchanger. a first pressure reducing mechanism; 6 is a second pressure reducing mechanism related to the first stage gas-liquid separation III device;
7 is a first stage or second intermediate heat exchanger; 8 is a next stage or second pressure reduction mechanism; 9 is an evaporator;
0 is the final stage pressure reducing mechanism, here the third pressure reducing mechanism,
11 is an expansion tank, 12 is an on-off valve provided in the bypass pipe 14, 13 is a pressure reduction mechanism provided in the middle of the bypass pipe 14, and 14 is an evaporator from a high pressure section immediately before the first pressure reduction mechanism 5. This is a bypass piping that communicates with the low pressure section just before 9.

このような冷凍サイクル構成において、減圧機構として
、キャピラリチューブあるいは手動または電動の膨張弁
の使用が考えられる。第1図では。
In such a refrigeration cycle configuration, a capillary tube or a manual or electric expansion valve may be used as the pressure reduction mechanism. In Figure 1.

キャピラリチューブを用いた場合を想定している。It is assumed that a capillary tube is used.

この冷凍サイクルに封入される冷媒として、例えば、沸
点の高い順に、R12,R13,R14が混合して用い
られる。
As the refrigerant sealed in this refrigeration cycle, for example, R12, R13, and R14 are mixed and used in descending order of boiling point.

まず、定常で運転されている場合について動作を説明す
る。
First, the operation in the case of steady operation will be explained.

圧縮機lから吐出された冷媒は、凝縮器2で冷却され、
一番沸点の高いR12が凝縮液化し、第1の気液分離器
3において、ガス状冷媒と液冷媒とに分離される。液冷
媒は、第1の減圧機構5で絞られ、低圧低温冷媒となっ
て第1の中間熱交換器4の低圧側入口に流入する。ガス
状冷媒は、R13とR14が主成分であり、第1の中間
熱交換器4において、他方の通路を流れる低温低圧の冷
媒と熱交換して冷却され、24目に沸点が高いR13が
液化して、第2の気液分離器6で、R14のガス冷媒と
R13の液冷媒とが分離される。液分媒は、第2の減圧
機構8によって絞られ、低圧低湿冷媒となって第2の中
間交換器7の低圧側入口に流入する。R14のガス状冷
媒は、第2の中間熱交換!!I7において冷却されて液
化し、最終段の減圧機構10によって減圧されて蒸発器
9に流入し、この冷凍サイクルの中で最も低い温度を発
生させる。蒸発器を出た冷媒は、第2.第1の中間熱交
換器7,4を経て、圧縮機1に吸入される。
The refrigerant discharged from the compressor 1 is cooled in the condenser 2,
R12, which has the highest boiling point, is condensed and liquefied, and is separated into a gaseous refrigerant and a liquid refrigerant in the first gas-liquid separator 3. The liquid refrigerant is throttled by the first pressure reducing mechanism 5, becomes a low-pressure low-temperature refrigerant, and flows into the low-pressure side inlet of the first intermediate heat exchanger 4. The gaseous refrigerant is mainly composed of R13 and R14, and is cooled in the first intermediate heat exchanger 4 by exchanging heat with the low-temperature, low-pressure refrigerant flowing through the other passage, and at the 24th point, R13, which has a higher boiling point, is liquefied. Then, the second gas-liquid separator 6 separates the R14 gas refrigerant and the R13 liquid refrigerant. The liquid separation medium is throttled by the second pressure reducing mechanism 8 and becomes a low pressure, low humidity refrigerant that flows into the low pressure side inlet of the second intermediate exchanger 7. The R14 gaseous refrigerant is the second intermediate heat exchanger! ! It is cooled and liquefied in I7, and the pressure is reduced by the final stage pressure reducing mechanism 10, and it flows into the evaporator 9, generating the lowest temperature in this refrigeration cycle. The refrigerant leaving the evaporator is transferred to the second. It passes through the first intermediate heat exchangers 7 and 4 and is sucked into the compressor 1.

次に、このような冷凍装置が起動される状況について説
明する。
Next, a situation in which such a refrigeration system is activated will be described.

起動前は、冷凍装置の各部は周囲の温度と同一になって
おり、本実施例の場合、使用されている混合冷媒のうち
、液状能があるのは、R12のみである。他のR13お
よびR14は、沸点が低いため、ガス状冷媒として、膨
張タンク11を始めとする機器の中に存在している。
Before startup, each part of the refrigeration system is at the same temperature as the ambient temperature, and in the case of this embodiment, among the mixed refrigerants used, only R12 has a liquid state. The other R13 and R14 have low boiling points and therefore exist as gaseous refrigerants in equipment including the expansion tank 11.

まず、バイパス回路14を用いないで、起動を行う場合
について考える。
First, consider the case where startup is performed without using the bypass circuit 14.

圧縮機lの運転を開始すると、凝縮器2で、さらにR1
2の液化が促進される。第1の気液分離器3でR12は
液冷媒となって分離され、第1の減圧機構5で減圧され
、第1の中間熱交換器4の低圧側に流入し、中間熱交換
器を冷却する。第1の気液分11113で分離されたR
13とR14のガス冷媒は、第1の中間熱交換器4で冷
却されるが、低温低圧となったR12によって冷却され
るのみであり、定常運転の場合のように、第2の中間熱
交換器7の低圧側から流入するより温度の低い冷媒がな
いため不十分な冷却で生じる。この結果、第1の中間熱
交換l1I4では、R13の凝縮液化する量は少なく、
第2の気液分離器6では、R14のガスに混じって、未
凝縮のR13のガス状冷媒が、第2の中間熱交換器7の
高圧側に流入する。
When compressor 1 starts operating, condenser 2 further increases R1.
Liquefaction of 2 is promoted. R12 is separated as a liquid refrigerant in the first gas-liquid separator 3, the pressure is reduced in the first pressure reducing mechanism 5, and it flows into the low pressure side of the first intermediate heat exchanger 4 to cool the intermediate heat exchanger. do. R separated in the first gas-liquid fraction 11113
The gas refrigerants 13 and R14 are cooled in the first intermediate heat exchanger 4, but are only cooled by R12, which has become low temperature and low pressure. This occurs due to insufficient cooling because there is no refrigerant with a lower temperature flowing in from the low pressure side of the vessel 7. As a result, in the first intermediate heat exchange l1I4, the amount of R13 condensed and liquefied is small;
In the second gas-liquid separator 6, the uncondensed R13 gaseous refrigerant flows into the high-pressure side of the second intermediate heat exchanger 7, mixed with the R14 gas.

第2の気液分離器6を出た少量のR13の液化冷媒は、
第2の減圧機構8で減圧され、第2の中間熱交換器7の
低圧側に流入するが、液化流社が少ないため、第2の中
間熱交換器7ではほとんど液化が生じないガス状冷媒が
最終段の減圧機構10を流れようとする。ところが、ガ
ス状冷媒であるため、キャピラリチューブのような固定
抵抗の減圧機構では、大きな流路抵抗となり、減圧機構
10は、はとんど冷媒を流せない状況となる。この結果
、蒸発器9の温度は低下しないまま冷凍装置の低圧圧力
が低下し、圧縮機1から吐出される冷媒流量も極端に低
下するので、蒸発器9の温度は、ますます低下しにくく
なる。すなわち、運転開始後、長期間にわたって蒸発器
9での冷却能力が発生しない状態が継続することになる
The small amount of R13 liquefied refrigerant that exited the second gas-liquid separator 6 is
The gaseous refrigerant is depressurized by the second pressure reducing mechanism 8 and flows into the low pressure side of the second intermediate heat exchanger 7, but since there is little liquefaction flow, the gaseous refrigerant is hardly liquefied in the second intermediate heat exchanger 7. is about to flow through the final stage pressure reducing mechanism 10. However, since it is a gaseous refrigerant, in a pressure reducing mechanism with a fixed resistance such as a capillary tube, there will be a large flow path resistance, and the pressure reducing mechanism 10 will be in a situation where the refrigerant cannot flow most of the time. As a result, the low pressure of the refrigeration system decreases without decreasing the temperature of the evaporator 9, and the flow rate of refrigerant discharged from the compressor 1 also decreases extremely, making it increasingly difficult for the temperature of the evaporator 9 to decrease. . That is, after the start of operation, the state in which the cooling capacity of the evaporator 9 is not generated continues for a long period of time.

そこで、バイパイ配管14を用いる場合について説明す
る。
Therefore, a case where the by-pipe piping 14 is used will be explained.

運転開始と同時に開閉弁12を開くと、第1の気液分離
器3で液化されたR13の一部が、バイバス配管14の
減圧機構13を介して、蒸発器9に流れ込む、このため
、運M開始と同時に、蒸発器9では、低温となった液化
冷媒が流れるため、冷却能力を発生することができる。
When the on-off valve 12 is opened at the same time as the start of operation, a part of the R13 liquefied in the first gas-liquid separator 3 flows into the evaporator 9 via the pressure reduction mechanism 13 of the bypass piping 14. Simultaneously with the start of M, the liquefied refrigerant at a low temperature flows in the evaporator 9, so that cooling capacity can be generated.

さらに蒸発器9を出た冷媒は、第2の中間熱交換器7お
よび第1の中間熱交換器4を通って、圧縮機1に吸入さ
れるため、これらの熱交換器を速やかに冷却することが
できる。バイパス配管14を通らず、第1の減圧装置5
を経て@環する冷媒、および第1の気液分離器3で分離
されたガス状冷媒の流れについては、前述の通りである
Furthermore, the refrigerant that has exited the evaporator 9 passes through the second intermediate heat exchanger 7 and the first intermediate heat exchanger 4 and is sucked into the compressor 1, thereby rapidly cooling these heat exchangers. be able to. The first pressure reducing device 5 does not pass through the bypass pipe 14.
The flow of the refrigerant circulating through the gaseous refrigerant and the gaseous refrigerant separated by the first gas-liquid separator 3 is as described above.

本実施例によれば、冷凍装置の中間熱交換器および蒸発
器の温度を低く低下することができるため、運転開始か
ら所望の低温を得るまで、連続して急速なり−ルダウン
の効果が期待できるので、省電力および信頼性向上の効
果がある。
According to this embodiment, the temperatures of the intermediate heat exchanger and evaporator of the refrigeration system can be lowered to a low level, so a continuous rapid drop-down effect can be expected from the start of operation until the desired low temperature is obtained. Therefore, it has the effect of saving power and improving reliability.

次に、第2図は、本発明の第2の実施例に係る冷凍装置
の冷凍サイクル系統図である1図中、第1@と同一符号
のものは同等部分であるから、その説明を省略する。
Next, FIG. 2 is a refrigeration cycle system diagram of a refrigeration system according to a second embodiment of the present invention. In FIG. do.

第2図の実施例が第1図の実施例と相違するところは、
バイパス配管14Aには、減圧機構を設けず、開閉弁1
2のみを具備し、バイパス配管14Aは第1の減圧機構
5の直前の高圧部から最終段に係る第3の減圧機構10
の直前へ連通ずるように接続されたことである。
The difference between the embodiment shown in FIG. 2 and the embodiment shown in FIG. 1 is as follows.
The bypass pipe 14A is not provided with a pressure reducing mechanism, and the on-off valve 1 is
2, and the bypass pipe 14A extends from the high pressure section immediately before the first pressure reducing mechanism 5 to the third pressure reducing mechanism 10 related to the final stage.
It is connected so that it communicates with the front of the

第2図の実施例によれば、先の第1図の実施例と同様の
効果を期待することができる。
According to the embodiment shown in FIG. 2, the same effects as the previous embodiment shown in FIG. 1 can be expected.

次に、第3図に1本発明の第3の実施例に係る冷凍装置
の冷凍サイクル系統図である0図中、第1図と同一符号
のものは同等部分であるから、その説明を省略する。
Next, FIG. 3 shows a refrigeration cycle system diagram of a refrigeration system according to a third embodiment of the present invention. In FIG. 0, parts with the same symbols as in FIG. do.

第3図の実施例が、先の第2の実施例と相違するところ
は、バイパス配管14Bは、第1の減圧機構5の直後の
低圧部から最終段に係る第3の減圧機41110の直後
、すなわち蒸発器9直前の低圧部へ連通ずるように接続
されたことである。
The difference between the embodiment shown in FIG. 3 and the second embodiment is that the bypass pipe 14B extends from the low pressure section immediately after the first pressure reducing mechanism 5 to immediately after the third pressure reducing machine 41110 related to the final stage. That is, it is connected so as to communicate with the low pressure section immediately before the evaporator 9.

第3図の実施例によれば、先の第1,2図の実施例と同
様の効果を期待することができる。
According to the embodiment shown in FIG. 3, the same effects as the embodiments shown in FIGS. 1 and 2 can be expected.

次に、第4図は1本発明の第4の実施例に係る冷凍装置
の冷凍サイクル系統図である6図中、第1図と同一符号
のものは同等部分であるから、その説明を省略する。
Next, FIG. 4 is a refrigeration cycle system diagram of a refrigeration system according to a fourth embodiment of the present invention. In FIG. 6, parts with the same reference numerals as those in FIG. do.

第4図の実施例の構成は、第1図の実施例に加えて、蒸
発器9の入口、出口配管に設けた温度センサ16,17
と、これら温度センサ16,17の出力信号を取り込ん
で開閉弁12を制御するコントローラ15とを設けたも
のである。
In addition to the configuration of the embodiment shown in FIG. 1, the configuration of the embodiment shown in FIG.
and a controller 15 that takes in the output signals of these temperature sensors 16 and 17 and controls the on-off valve 12.

運転開始と同時に開閉弁12が開けられるが。The on-off valve 12 is opened at the same time as the start of operation.

バイパス配管14の効果が十分に現われ、蒸発器9を始
め中間熱交換器の温度がある程度まで低下すると、バイ
パス配管14の使用は好ましくない状態が生じてくる。
When the effect of the bypass piping 14 is fully realized and the temperature of the intermediate heat exchanger including the evaporator 9 decreases to a certain degree, a situation arises in which the use of the bypass piping 14 is not desirable.

すなねち、蒸発器9で低温を発生できる状態となっても
、バイパス配管14からは、上流部からの沸点の高いR
12が蒸発器9へ流れ込み、蒸発器9の21度低下を妨
たける。蒸発器に設けられた温度センサ16および17
は、この状態を検知し、コントローラ15はこの状況を
判断しつ、IA閉弁12を閉止する動作を行う。
In other words, even if the evaporator 9 is able to generate a low temperature, the bypass pipe 14 will still have high boiling point R flowing from the upstream section.
12 flows into the evaporator 9 and prevents the evaporator 9 from decreasing by 21 degrees. Temperature sensors 16 and 17 provided on the evaporator
detects this state, and the controller 15 performs an operation to close the IA closing valve 12 while determining this state.

この結果、装置の運転開始から目的とする所望の低温が
得られるまで、スムーズな運転が可能となる。
As a result, smooth operation is possible from the time the device starts operating until the desired desired low temperature is obtained.

なお、温度センサ16と17は、どちらか一方でも良い
し、2つの温度センサを用いて、温度差を検知するよう
にしても良い。
Note that either one of the temperature sensors 16 and 17 may be used, or two temperature sensors may be used to detect a temperature difference.

次に、第5図は1本発明の第5の実施例に係る冷凍装置
の冷凍サイクル系統図である0図中、第1図および第4
図と同一符号のものは先の実施例と同等部分であるから
、その説明を省略する。
Next, FIG. 5 is a refrigeration cycle system diagram of a refrigeration system according to a fifth embodiment of the present invention.
Components with the same reference numerals as those in the drawings are the same parts as in the previous embodiment, so their explanation will be omitted.

第5図の実施例の構成は、第1の減圧機構5の直前の高
圧部から蒸発器9の直前の低圧部へ、開閉弁12と減圧
機構13を有する第1のバイパス配管14と、第2の減
圧機構8の直前羅圧部から蒸発器9の直前の低圧部へ、
開閉弁12′と減圧機構13′を有する第2のバイパス
配管14′とを備えたものである。
The configuration of the embodiment shown in FIG. 5 includes a first bypass pipe 14 having an on-off valve 12 and a pressure reducing mechanism 13, which extends from a high pressure section immediately before the first pressure reducing mechanism 5 to a low pressure section immediately before the evaporator 9. from the pressure section immediately before the pressure reducing mechanism 8 of No. 2 to the low pressure section immediately before the evaporator 9,
It is equipped with an on-off valve 12' and a second bypass pipe 14' having a pressure reducing mechanism 13'.

第5図の実施例では、蒸発器9の温度を温度センサ16
で検知し、運転開始からの蒸発器9の温度を検知しなが
ら (1)開閉弁12を開、開閉弁12′を閉。
In the embodiment shown in FIG. 5, the temperature of the evaporator 9 is measured by a temperature sensor 16.
While detecting the temperature of the evaporator 9 from the start of operation, (1) Open the on-off valve 12 and close the on-off valve 12'.

(2)開閉弁12を閉、開閉弁12′を開、(3)開閉
弁12.12’とも閉の状態へ移行していく制御を行う
(2) Control is performed to close the on-off valve 12 and open the on-off valve 12', and (3) to close both the on-off valves 12 and 12'.

第5図の実施例によれば、第4@の実施例よりさらにき
め細かい運転制御が可能となる。
According to the embodiment shown in FIG. 5, more fine-grained operation control is possible than in the fourth embodiment.

なお、上記の各実施例では、気液分離は2段階のものを
説明したが1本発明はこれに限るものではなく、さらに
段数を増やした場合にも本発明は適用できる。
In each of the above embodiments, gas-liquid separation is performed in two stages, but the present invention is not limited to this, and the present invention can be applied even when the number of stages is further increased.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、混合冷媒
を用いた低温用の冷凍装置の起動を速やかに行い、運転
開始から所望の低温を得るまで連続して、速やかに温度
低下を可能とする冷凍装置を提供することができる。
As explained in detail above, according to the present invention, a low-temperature refrigeration system using a mixed refrigerant can be started quickly, and the temperature can be rapidly lowered continuously from the start of operation until the desired low temperature is obtained. It is possible to provide a refrigeration device that does the following.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1の実施例に係る冷凍装置の冷凍
サイクル系M図、第2図は1本発明の第2の実施例に係
る冷凍装置の冷凍サイクル系統図、第3図は、本発明の
第3の実施例に係る冷凍装置の冷凍サイクル系統図、第
4図は、本発明の第4の実施例に係る冷凍装置の冷凍サ
イクル系統図、第5図は、本発明の第5の実施例に係る
冷凍装置の冷凍サイクル系統図である。 1・・・圧縮機、2・・・凝縮器、3・・・第↓の気液
分離器、4・・・第1の中間熱交換器、5・・・第1の
減圧機構、6・・・第2の気液分離器、7・・・第2の
中間熱交換器、8・・・第2の減圧機構、9・・・蒸発
器、10・・・第3の減圧機構、12.12’ ・・・
開閉弁、13.13’・・・減圧機構、14.14’ 
 14A、14B・・・バイパス配管、15・・・コン
トローラ、16.17・・・温度センサ。 ’411!1 毛 3 の Z 第 2 口 璃 4 目
1 is a refrigeration cycle system M diagram of a refrigeration system according to a first embodiment of the present invention, FIG. 2 is a refrigeration cycle system diagram of a refrigeration system according to a second embodiment of the present invention, and FIG. is a refrigeration cycle system diagram of a refrigeration system according to a third embodiment of the present invention, FIG. 4 is a refrigeration cycle system diagram of a refrigeration system according to a fourth embodiment of the present invention, and FIG. It is a refrigeration cycle system diagram of the refrigeration apparatus based on the 5th Example. DESCRIPTION OF SYMBOLS 1... Compressor, 2... Condenser, 3... ↓th gas-liquid separator, 4... First intermediate heat exchanger, 5... First pressure reduction mechanism, 6... ...Second gas-liquid separator, 7...Second intermediate heat exchanger, 8...Second pressure reduction mechanism, 9...Evaporator, 10...Third pressure reduction mechanism, 12 .12'...
Opening/closing valve, 13.13'...pressure reduction mechanism, 14.14'
14A, 14B... Bypass piping, 15... Controller, 16.17... Temperature sensor. '411!1 Hair 3 Z No. 2 Mouth 4 eyes

Claims (1)

【特許請求の範囲】 1、複数の冷媒を混合してなる混合冷媒を圧縮する単一
の圧縮機と、 その圧縮空気を冷却する凝縮器と、 この凝縮器からの冷媒をガス冷媒と液冷媒とに分離する
初段の気液分離器と、分離されたガス冷媒を一方の流路
に導き他方の流路を流れる低圧低温の冷媒で冷却する初
段の中間熱交換器と、分離された液分媒を減圧する初段
の減圧機構と、減圧した低圧低温の冷媒を前記初段の中
間熱交換器に導く配管系とを基本構成とし、前記中間熱
交換器に接続(以下同様構成の次段の気液分離器、中間
熱交換器、減圧機構、および配管系を少なくとも1段備
え、 最終段の中間熱交換器、減圧機構に接続してガス冷媒を
発生する蒸発器と、 この蒸発器と各中間熱交換器を経由して前記圧縮機に帰
還する配管系とを備えた冷凍装置において、 最終段の減圧機構を除く他の減圧機構の直前の高圧部か
ら、開閉弁および減圧機構を介して前記蒸発器直前の低
圧部へ連通するバイパス配管を設けたことを特徴とする
冷凍装置。 2、複数の冷媒を混合してなる混合冷媒を圧縮する単一
の圧縮機と、 その圧縮空気を冷却する凝縮器と、 この凝縮器からの冷媒をガス冷媒と液冷媒とに分離する
初段の気液分離器と、分離されたガス冷媒を一方の流路
に導き他方の流路を流れる低圧低温の冷媒で冷却する初
段の中間熱交換器と、分離された液冷媒を減圧する初段
の減圧機構と、減圧した低圧低温の冷媒を前記初段の中
間熱交換器に導く配管系とを基本構成とし、前記中間熱
交換器に接続(以下同様構成の次段の気液分離器、中間
熱交換器、減圧機構、および配管系を少なくとも1段備
え、 最終段の中間熱交換器、減圧機構に接続してガス冷媒を
発生する蒸発器と、 この蒸発器と各中間熱交換器を経由して前記圧縮機に帰
還する配管系とを備えた冷凍装置において、 最終段の減圧機構を除く他の減圧機構の直前の高圧部か
ら、少なくとも開閉弁を介して前記最終段の減圧機構の
直前に連通するバイパス配管を設けたことを特徴とする
冷凍装置。 3、複数の冷媒を混合してなる混合冷媒を圧縮する単一
の圧縮機と、 その圧縮空気を冷却する凝縮器と、 この凝縮器からの冷媒をガス冷媒と液冷媒とに分離する
初段の気液分離器と、分離されたガス冷媒を一方の流路
に導き他方の流路を流れる低圧低温の冷媒で冷却する初
段の中間熱交換器と、分離された液分媒を減圧する初段
の減圧機構と、減圧した低圧低温の冷媒を前記初段の中
間熱交換器に導く配管系とを基本構成とし、前記中間熱
交換器に接続(以下同様構成の次段の気液分離器、中間
熱交換器、減圧機構、および配管系を少なくとも1段備
え、 最終段の中間熱交換器、減圧機構に接続してガス冷媒を
発生する蒸発器と、 この蒸発器と各中間熱交換器を経由して前記圧縮機に帰
還する配管系とを備えた冷凍装置において、 最終段の減圧機構を除く他の減圧機構の直後の低圧部か
ら、少なくとも開閉弁を介して前記蒸発器直前の低圧部
へ連通するバイパス配管を設けたことを特徴とする冷凍
装置。 4、請求項1ないし3記載のもののいずれかにおいて、 蒸発器の温度を検知するセンサと、 少なくとも一つのバイパス配管の開閉弁を制御するコン
トローラとを設け、 蒸発器の温度に応じて少なくとも一つの開閉弁を制御す
る ことを特徴とする冷凍装置。
[Claims] 1. A single compressor that compresses a mixed refrigerant made by mixing a plurality of refrigerants, a condenser that cools the compressed air, and a refrigerant from the condenser that is a gas refrigerant and a liquid refrigerant. an initial stage intermediate heat exchanger that guides the separated gas refrigerant into one flow path and cools it with a low-pressure low-temperature refrigerant flowing through the other flow path; The basic structure consists of a first-stage pressure reducing mechanism that reduces the pressure of the refrigerant, and a piping system that leads the reduced pressure, low-pressure, low-temperature refrigerant to the first-stage intermediate heat exchanger, and is connected to the intermediate heat exchanger (hereinafter, the next-stage gas refrigerant with the same configuration). an evaporator that is equipped with at least one stage of a liquid separator, an intermediate heat exchanger, a pressure reduction mechanism, and a piping system, and that is connected to the final stage intermediate heat exchanger and pressure reduction mechanism to generate a gas refrigerant; and this evaporator and each intermediate stage. In a refrigeration system equipped with a piping system that returns to the compressor via a heat exchanger, the high-pressure part immediately before the pressure reducing mechanism other than the final stage pressure reducing mechanism is passed through the on-off valve and the pressure reducing mechanism. A refrigeration system characterized by having a bypass pipe communicating with a low-pressure section immediately before an evaporator. 2. A single compressor that compresses a mixed refrigerant made by mixing multiple refrigerants, and a single compressor that cools the compressed air. a condenser, an initial stage gas-liquid separator that separates the refrigerant from the condenser into gas refrigerant and liquid refrigerant, and a low-pressure, low-temperature refrigerant that guides the separated gas refrigerant into one flow path and flows through the other flow path. The basic configuration includes a first-stage intermediate heat exchanger that cools the separated liquid refrigerant, a first-stage pressure reducing mechanism that reduces the pressure of the separated liquid refrigerant, and a piping system that guides the reduced pressure low-pressure low-temperature refrigerant to the first-stage intermediate heat exchanger, Connected to an intermediate heat exchanger (equipped with at least one stage of the next stage gas-liquid separator, intermediate heat exchanger, pressure reduction mechanism, and piping system with the same configuration, and connected to the final stage intermediate heat exchanger and pressure reduction mechanism) In a refrigeration system equipped with an evaporator that generates a gas refrigerant and a piping system that returns to the compressor via the evaporator and each intermediate heat exchanger, the pressure reduction mechanism other than the final stage pressure reduction mechanism is A refrigeration system characterized in that a bypass pipe is provided that communicates from the immediately preceding high-pressure section through at least an on-off valve immediately before the final stage pressure reducing mechanism. 3. Compressing a mixed refrigerant formed by mixing a plurality of refrigerants. a single compressor that cools the compressed air; a first stage gas-liquid separator that separates the refrigerant from the condenser into gas refrigerant and liquid refrigerant; A first-stage intermediate heat exchanger cools the low-pressure low-temperature refrigerant that is guided into the flow path and flows through the other flow path; a first-stage pressure reduction mechanism that reduces the pressure of the separated liquid fraction; The basic configuration is a piping system leading to the intermediate heat exchanger, and connected to the intermediate heat exchanger (hereinafter, the system is equipped with at least one stage of the next stage gas-liquid separator, intermediate heat exchanger, pressure reduction mechanism, and piping system with the same configuration). , a refrigeration system comprising an intermediate heat exchanger at the final stage, an evaporator connected to a pressure reduction mechanism to generate a gas refrigerant, and a piping system returning to the compressor via the evaporator and each intermediate heat exchanger. A refrigeration system, characterized in that a bypass pipe is provided which communicates from a low pressure section immediately after a pressure reducing mechanism other than the final stage pressure reducing mechanism to a low pressure section immediately before the evaporator via at least an on-off valve. 4. In any one of claims 1 to 3, a sensor for detecting the temperature of the evaporator and a controller for controlling at least one on-off valve of the bypass pipe are provided, and the at least one on-off valve is controlled according to the temperature of the evaporator. A refrigeration device characterized by controlling an on-off valve.
JP6099889A 1989-03-15 1989-03-15 Refrigerator Pending JPH02242051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6099889A JPH02242051A (en) 1989-03-15 1989-03-15 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6099889A JPH02242051A (en) 1989-03-15 1989-03-15 Refrigerator

Publications (1)

Publication Number Publication Date
JPH02242051A true JPH02242051A (en) 1990-09-26

Family

ID=13158607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6099889A Pending JPH02242051A (en) 1989-03-15 1989-03-15 Refrigerator

Country Status (1)

Country Link
JP (1) JPH02242051A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478540B2 (en) 2001-10-26 2009-01-20 Brooks Automation, Inc. Methods of freezeout prevention and temperature control for very low temperature mixed refrigerant systems
KR100985132B1 (en) * 2001-10-26 2010-10-05 브룩스 오토메이션 인코퍼레이티드 Freezeout prevention system for very low temperature refrigeration using mixed refrigerants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478540B2 (en) 2001-10-26 2009-01-20 Brooks Automation, Inc. Methods of freezeout prevention and temperature control for very low temperature mixed refrigerant systems
KR100985132B1 (en) * 2001-10-26 2010-10-05 브룩스 오토메이션 인코퍼레이티드 Freezeout prevention system for very low temperature refrigeration using mixed refrigerants

Similar Documents

Publication Publication Date Title
US6923016B2 (en) Refrigeration cycle apparatus
US9612047B2 (en) Refrigeration cycle apparatus and refrigerant circulation method
JP4752765B2 (en) Air conditioner
CN110332635B (en) Double-stage compression multi-air-supplementing refrigeration heat pump system, control method and air conditioner
US20030177782A1 (en) Method for increasing efficiency of a vapor compression system by evaporator heating
JP2002168532A (en) Supercritical steam compression system, and device for regulating pressure in high-pressure components of refrigerant circulating therein
CN101568776A (en) Economized refrigeration cycle with expander
JPH11193967A (en) Refrigerating cycle
WO2004044503A2 (en) Refrigeration system with bypass subcooling and component size de-optimization
WO1999010686A1 (en) Cooling cycle
JP2002081767A (en) Air conditioner
JPH1163686A (en) Refrigeration cycle
KR101161381B1 (en) Refrigerant cycle apparatus
JPH04320762A (en) Freezing cycle
JP2002228282A (en) Refrigerating device
JPH10185342A (en) Heat pump type air conditioner
JPH02242051A (en) Refrigerator
JP2002243284A (en) Air conditioner
JPH07332814A (en) Heat pump system
JP2003194427A (en) Cooling device
JP2001241797A (en) Refrigerating cycle
JP2003028518A (en) Air conditioner
CN117553446B (en) Vortex technology-based heat exchange system and control method
JPH0420752A (en) Double-element type freezer device
CN214276190U (en) CO2 air conditioning system for railway vehicle