JPS61190257A - Heat pump type refrigerator - Google Patents

Heat pump type refrigerator

Info

Publication number
JPS61190257A
JPS61190257A JP3098685A JP3098685A JPS61190257A JP S61190257 A JPS61190257 A JP S61190257A JP 3098685 A JP3098685 A JP 3098685A JP 3098685 A JP3098685 A JP 3098685A JP S61190257 A JPS61190257 A JP S61190257A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure reducing
boiling point
heat exchanger
reducing devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3098685A
Other languages
Japanese (ja)
Inventor
章 藤高
中沢 昭
井本 匠
内山 邦泰
香美 雅彦
伸二 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3098685A priority Critical patent/JPS61190257A/en
Publication of JPS61190257A publication Critical patent/JPS61190257A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、非共沸混合冷媒を用いたヒートポンプ式冷凍
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heat pump type refrigeration system using a non-azeotropic mixed refrigerant.

従来の技術 2 ページ 近年、ヒートポンプ式冷凍装置は非共沸混合冷媒を用い
て、能力変化できるものが開発されている。
BACKGROUND ART Page 2 In recent years, heat pump refrigeration systems that use non-azeotropic mixed refrigerants and whose capacity can be varied have been developed.

以下図面を参照しながら、上述した従来のヒートポンプ
式冷凍装置の一例について説明する。
An example of the conventional heat pump type refrigeration system mentioned above will be described below with reference to the drawings.

第2図は従来の非共沸混合冷媒を用いたヒートポンプ式
冷凍装置の回路構成図を示すものである。
FIG. 2 shows a circuit diagram of a conventional heat pump type refrigeration system using a non-azeotropic mixed refrigerant.

第2図において、1は圧縮機、2は四方弁、3は室外側
熱交換器、4,5け減圧装置、6は室内側熱交換器であ
る。また、4,5の減圧装置の間に導管7が分岐してお
り、この導管7け第1の冷媒容器8に接続されている。
In FIG. 2, 1 is a compressor, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 or 5 pressure reducing devices, and 6 is an indoor heat exchanger. Further, a conduit 7 branches between the 4 and 5 pressure reducing devices, and is connected to a first refrigerant container 8 .

この第1の冷媒容器8は減圧装置5と室内側熱交換器6
とを接続する配管を包囲している。9は第2の冷媒容器
であり、室外側熱交換器3と減圧装置4とを接続する配
管を包囲し、開閉調整弁10を介して導管7に接続され
ている。この冷凍サイクルには非共沸混合冷媒を使用し
ている。
This first refrigerant container 8 includes a pressure reducing device 5 and an indoor heat exchanger 6.
It surrounds the piping that connects the A second refrigerant container 9 surrounds a pipe connecting the outdoor heat exchanger 3 and the pressure reducing device 4, and is connected to the conduit 7 via an on-off regulating valve 10. This refrigeration cycle uses a non-azeotropic mixed refrigerant.

以上のように構成されだヒートポンプ式冷凍装置につい
て、以下その動作について説明する。
The operation of the heat pump type refrigeration system configured as described above will be explained below.

まず、冷房運転時、冷媒は図示の実線矢印の方向に流れ
る。ここで、開閉調整弁10は閉塞されており、導管7
によって分流しだ冷媒は第1の冷媒容器8に至るが、第
1の冷媒容器8により包囲された減圧装置5と室内側熱
交換器6を結ぶ配管は冷房運転時低温であるから、第1
の冷媒容器8は冷却され、容器内部には高沸点成分が液
状で貯留され、冷凍サイクルは低沸点成分が流れる。
First, during cooling operation, the refrigerant flows in the direction of the solid arrow shown in the figure. Here, the on-off regulating valve 10 is closed, and the conduit 7
The diverted refrigerant reaches the first refrigerant container 8, but since the piping connecting the pressure reducing device 5 surrounded by the first refrigerant container 8 and the indoor heat exchanger 6 is at a low temperature during cooling operation, the first refrigerant reaches the first refrigerant container 8.
The refrigerant container 8 is cooled, high boiling point components are stored in liquid form inside the container, and low boiling point components flow through the refrigeration cycle.

一方、開閉調整弁10が閉塞されている状態における暖
房運転時、冷媒は図示の破線矢印方向に流れる。ここで
、第1の冷媒容器8は室内側熱交換器6で液化した高温
冷媒により加熱されるため、第1の冷媒容器8内には冷
媒は液化貯留することなく冷凍サイクルを循環する。こ
の場合冷凍サイクル中の冷媒は混合冷媒が流れ、冷房時
の冷凍サイクルに比較すると暖房時の冷凍サイクル能力
は向上する。
On the other hand, during heating operation in a state where the on-off adjustment valve 10 is closed, the refrigerant flows in the direction of the illustrated broken line arrow. Here, since the first refrigerant container 8 is heated by the high-temperature refrigerant liquefied in the indoor heat exchanger 6, the refrigerant circulates through the refrigeration cycle without being liquefied and stored in the first refrigerant container 8. In this case, a mixed refrigerant flows as the refrigerant in the refrigeration cycle, and the refrigeration cycle capacity during heating is improved compared to the refrigeration cycle during cooling.

また、暖房運転時、暖房能力に余力が生じてきた時に開
閉調整弁10を動作させれば、高沸点成分を第2の冷媒
容器9に導いて貯留し、暖房能力を低減できる(例えば
、特公昭57−31056号公報)。
In addition, during heating operation, if the opening/closing adjustment valve 10 is operated when there is surplus heating capacity, the high boiling point components are guided to the second refrigerant container 9 and stored, thereby reducing the heating capacity (for example, Publication No. 57-31056).

発明が解決しようとする問題点 しかしながら上記のような構成では、冷房運転時には、
冷凍サイクル能力は制御できガいという問題点を有して
いた。
Problems to be Solved by the Invention However, with the above configuration, during cooling operation,
The problem was that the refrigeration cycle capacity could not be controlled.

本発明は上記問題点に鑑み、冷媒混合比率可変装置を設
け、暖房運転時だけでなく冷房運転時も容易な能力制御
が可能なヒートポンプ式冷凍装置を提供するものである
In view of the above problems, the present invention provides a heat pump type refrigeration system which is equipped with a refrigerant mixing ratio variable device and whose capacity can be easily controlled not only during heating operation but also during cooling operation.

問題点を解決するための手段 上記問題点を解決するために本発明のヒートポンプ式冷
凍装置は、非共沸混合冷媒を用い、圧縮機、四方弁、室
外側熱交換器、複数の減圧装置、室内側熱交換器を順次
接続して冷凍サイクルを構成し、前記複数の減圧装置と
並列に2つの逆止弁ケ持つ回路を接続し、さらに、精留
塔と高沸点成分を貯留する第1の冷媒容器と、第1の冷
媒容器と接続された第1の流量調整弁及び低沸点成分を
貯留する第2の冷媒容器と、第2の冷媒容器と接5 ・ 続された第2の流量調整弁からなる冷媒混合比率可変装
置の入口を、前記複数の減圧装置の間に接続し、前記冷
媒混合比率可変装置の出口を、前記2つの逆止弁の間に
接続したものである。
Means for Solving the Problems In order to solve the above problems, the heat pump type refrigeration system of the present invention uses a non-azeotropic mixed refrigerant and includes a compressor, a four-way valve, an outdoor heat exchanger, a plurality of pressure reducing devices, A refrigeration cycle is constructed by sequentially connecting indoor heat exchangers, a circuit having two check valves is connected in parallel with the plurality of pressure reducing devices, and a rectification column and a first circuit for storing high boiling point components are connected in parallel. a refrigerant container, a first flow rate regulating valve connected to the first refrigerant container, a second refrigerant container storing a low boiling point component, and a second flow rate connected to the second refrigerant container. An inlet of a variable refrigerant mixing ratio device comprising a regulating valve is connected between the plurality of pressure reducing devices, and an outlet of the variable refrigerant mixing ratio device is connected between the two check valves.

作  用 本発明は上記した構成によって、非共沸混合冷媒の冷媒
成分を分離し、冷媒混合比率を変化させることにより、
暖房運転時のみならず、冷房運転時においても冷凍装置
の能力制御を容易に制御できる。
Effect The present invention has the above-described configuration, and by separating the refrigerant components of the non-azeotropic mixed refrigerant and changing the refrigerant mixing ratio,
The capacity of the refrigeration system can be easily controlled not only during heating operation but also during cooling operation.

実施例 以下本発明の一実施例のヒートポンプ式冷凍装置につい
て、図面を参照しながら説明する。
EXAMPLE Hereinafter, a heat pump type refrigeration system according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の回路構成図である。圧縮機11、四方
弁12、室外側熱交換器131複数の↓ 減圧装置14.15室内側熱交換器16が直列に接続さ
れている。また、複数の減圧装置14.。
FIG. 1 is a circuit diagram of the present invention. A compressor 11, a four-way valve 12, an outdoor heat exchanger 131, a plurality of pressure reducing devices 14, 15 and an indoor heat exchanger 16 are connected in series. In addition, a plurality of pressure reducing devices 14. .

15と並列に逆止弁17.I8を持つ回路が接続されて
いる。さらK、精留塔19と、高沸点成分を貯留する第
1の冷媒容器20と、第1の冷媒室6ページ 器20と接続された第1の流量調整弁21、低沸点成分
を貯留する第2の冷媒容器22と、第2の冷媒容器22
と接続された第2の流量調整弁23、減圧装置24から
なる冷媒混合比率可変装置25の入口を、複数の減圧装
置14.15の間に接続し、冷媒混合比率可変装置25
の出口を、2つの逆止弁17.18の間に接続している
。ここで本発明における冷凍サイクルに使用する冷媒は
性質能力の異なる複数の冷媒を混合した非共沸混合冷媒
である。
15 and in parallel with the check valve 17. A circuit with I8 is connected. Furthermore, a rectification column 19, a first refrigerant container 20 for storing high boiling point components, and a first flow rate regulating valve 21 connected to the first refrigerant chamber 6-pager 20 for storing low boiling point components. second refrigerant container 22; second refrigerant container 22
The inlet of the refrigerant mixing ratio variable device 25 consisting of the second flow rate regulating valve 23 and the pressure reducing device 24 connected to the refrigerant mixing ratio variable device 25 is connected between the plurality of pressure reducing devices 14.15.
The outlet of is connected between two check valves 17,18. The refrigerant used in the refrigeration cycle of the present invention is a non-azeotropic mixed refrigerant that is a mixture of a plurality of refrigerants having different properties and capabilities.

冷房運転時、冷媒は実線矢印方向に流れる。すなわち、
圧縮機11を出た冷媒は四方弁12を通り、室外側熱交
換器13に流入して、放熱し液化する。冷媒は逆止弁1
7の作用により、減圧装置14に流れる。ここで冷媒は
気液2層となり、一部の冷媒は冷媒混合比可変装置25
に流入する。
During cooling operation, refrigerant flows in the direction of the solid arrow. That is,
The refrigerant that has exited the compressor 11 passes through the four-way valve 12, flows into the outdoor heat exchanger 13, radiates heat, and liquefies. Refrigerant check valve 1
7, it flows to the pressure reducing device 14. Here, the refrigerant becomes two layers of gas and liquid, and some of the refrigerant is transferred to the refrigerant mixing ratio variable device 25.
flows into.

一方、残りの冷媒は減圧装置15に流入する。冷   
   1媒混合比可変装置25に流入した冷にけ、まず
、精留塔19で高沸点成分と低沸点成分に分離され、高
沸点成分は第1の冷媒容器20に液冷媒として7ベ 貯留される。!、た低沸点成分は第2の冷媒容器22に
液冷媒として貯留される。そして、第1の流量調整弁2
1、第2の流量調整弁23全制御することによって、冷
媒の混合比を変化させる。そして、減圧装置24により
減圧され、逆止弁18を通って、減圧装置15を流れて
来た冷媒と合流し、室内側熱交換器16に流入し、室内
の熱を奪って気化し、四方弁12を通って圧縮機11に
吸込捷れる。
On the other hand, the remaining refrigerant flows into the pressure reducing device 15. cold
The chilled water that has flowed into the single-component mixing ratio variable device 25 is first separated into high-boiling point components and low-boiling point components in the rectification column 19, and the high-boiling point components are stored in the first refrigerant container 20 as a liquid refrigerant. Ru. ! , and other low boiling point components are stored in the second refrigerant container 22 as a liquid refrigerant. And the first flow rate regulating valve 2
1. The mixture ratio of the refrigerant is changed by fully controlling the second flow rate regulating valve 23. The refrigerant is then depressurized by the decompression device 24, passes through the check valve 18, joins with the refrigerant that has flowed through the depressurization device 15, flows into the indoor heat exchanger 16, absorbs indoor heat, vaporizes, and The air is sucked into the compressor 11 through the valve 12.

次に、暖房運転時には、冷媒は破線矢印の方向に流れる
。すなわち、圧縮機11、四方弁12を通り室内側熱交
換器16で放熱し液化する。その後、減圧装置15を通
り、気液2層となった後一部の冷媒は冷媒混合比可変装
置25に流れ、混合比を制御され逆止弁17を流れる。
Next, during heating operation, the refrigerant flows in the direction of the dashed arrow. That is, it passes through the compressor 11 and the four-way valve 12, radiates heat in the indoor heat exchanger 16, and is liquefied. Thereafter, after passing through the pressure reducing device 15 and becoming two layers of gas and liquid, some of the refrigerant flows to the refrigerant mixture ratio variable device 25, where the mixture ratio is controlled and flows through the check valve 17.

残りの冷媒は減圧装置14を通り、冷媒混合比可変装置
25から流れて来た冷媒と合流し室外側熱交換器13で
吸熱し気化して、四方弁12を通って圧縮機11に戻る
The remaining refrigerant passes through the pressure reducing device 14, merges with the refrigerant flowing from the refrigerant mixture ratio variable device 25, absorbs heat in the outdoor heat exchanger 13, vaporizes, and returns to the compressor 11 through the four-way valve 12.

以」二のように本実施例によれば、冷媒混合比率可変装
置25を設けることにより、暖房運転時のみならず、冷
房運転時も、負荷に応じて冷媒混合比率可変装置25の
第1の流量調整弁21、第2の流量調整弁23を制御し
、冷凍サイクルを循環する冷媒の混合比率を変化させて
、冷凍装置の能力制御を容易に行なうことができる。
As described above, according to this embodiment, by providing the variable refrigerant mixing ratio device 25, the first variable refrigerant mixing ratio device 25 is adjusted according to the load not only during heating operation but also during cooling operation. By controlling the flow rate adjustment valve 21 and the second flow rate adjustment valve 23 and changing the mixing ratio of the refrigerant circulating in the refrigeration cycle, the capacity of the refrigeration system can be easily controlled.

発明の効果 以上のように本発明は、非共沸混合冷媒をヒートポンプ
式冷凍装置に用い、冷凍サイクルの複数の減圧装置と並
列に2つの逆止弁を持つ回路を接続し、さらに、精留塔
と、高沸点成分を貯留する第1の冷媒容器と第1の流量
調整弁及び低沸点成分を貯留する第2の冷媒容器と第2
の流量調整弁からなる冷媒混合比率可変装置の入口を、
前記複数の減圧装置の間に接続し、WI記冷媒混合比率
可変装置の出口を前記2つの逆止弁の間に接続すること
により、暖房運転時のみならず、冷房運転時においても
、負荷に応じて前記第1流量調整弁と第2の流量調整弁
を制御して、冷媒混合比率を変化させ冷凍装置の能力制
御を容易に行なうことが9 ヘ−ノ できる。
Effects of the Invention As described above, the present invention uses a non-azeotropic mixed refrigerant in a heat pump type refrigeration system, connects a circuit having two check valves in parallel with a plurality of pressure reducing devices of the refrigeration cycle, and furthermore, A column, a first refrigerant container for storing high boiling point components, a first flow rate regulating valve, a second refrigerant container for storing low boiling point components, and a second refrigerant container for storing high boiling point components.
The inlet of the refrigerant mixing ratio variable device consisting of the flow rate adjustment valve is
By connecting between the plurality of pressure reducing devices and connecting the outlet of the variable refrigerant mixing ratio device described in WI between the two check valves, the load can be controlled not only during heating operation but also during cooling operation. Accordingly, the first flow rate regulating valve and the second flow rate regulating valve can be controlled to change the refrigerant mixing ratio to easily control the capacity of the refrigeration system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例におけるヒートポンプ式冷凍
装置の構成回路図、第2図は従来のヒートポンプ式冷凍
装置の構成回路図である。 11・・・・・・圧縮機、12 ・・・・四方弁、13
 ・・・室外側熱交換器、14.15・・・・複数の減
圧装置、16・・・・室内側熱交換器、17.18・・
・・・・逆止弁、19・・・・精留塔、20・・・・・
・第1の冷媒容器、21・・・・第1の流量調整弁、2
2・・・・・・第2の冷媒容器、23・・・・・・第2
の流量調整弁、25・・・・・・冷媒混合比率可変装置
FIG. 1 is a configuration circuit diagram of a heat pump type refrigeration system according to an embodiment of the present invention, and FIG. 2 is a configuration circuit diagram of a conventional heat pump type refrigeration system. 11...Compressor, 12...Four-way valve, 13
...Outdoor heat exchanger, 14.15...Multiple pressure reducing devices, 16...Indoor heat exchanger, 17.18...
... Check valve, 19 ... Rectification column, 20 ...
・First refrigerant container, 21...first flow rate adjustment valve, 2
2...Second refrigerant container, 23...Second
Flow rate adjustment valve, 25...Refrigerant mixing ratio variable device.

Claims (1)

【特許請求の範囲】[Claims] 非共沸混合冷媒を用い、圧縮機、四方弁、室外側熱交換
器、複数の減圧装置、室内側熱交換器を順次接続して冷
凍サイクルを構成し、前記複数の減圧装置と並列に2つ
の逆止弁を持つ回路を接続し、さらに、精留塔と高沸点
成分を貯留する第1の冷媒容器と第1の流量調整弁及び
低沸点成分を貯留する第2の冷媒容器と第2の流量調整
弁からなる冷媒混合比率可変装置の入口を前記複数の減
圧装置の間に接続し、前記冷媒混合比率可変装置の出口
を、前記2つの逆止弁の間に接続したヒートポンプ式冷
凍装置。
Using a non-azeotropic mixed refrigerant, a refrigeration cycle is constructed by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, a plurality of pressure reducing devices, and an indoor heat exchanger, and two pressure reducing devices are connected in parallel with the plurality of pressure reducing devices. A rectification column, a first refrigerant container for storing high boiling point components, a first flow rate adjustment valve, a second refrigerant container for storing low boiling point components, and a second refrigerant container for storing low boiling point components are connected. A heat pump type refrigeration system, wherein an inlet of a refrigerant mixture ratio variable device comprising a flow rate adjustment valve is connected between the plurality of pressure reducing devices, and an outlet of the refrigerant mixture ratio variable device is connected between the two check valves. .
JP3098685A 1985-02-19 1985-02-19 Heat pump type refrigerator Pending JPS61190257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3098685A JPS61190257A (en) 1985-02-19 1985-02-19 Heat pump type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3098685A JPS61190257A (en) 1985-02-19 1985-02-19 Heat pump type refrigerator

Publications (1)

Publication Number Publication Date
JPS61190257A true JPS61190257A (en) 1986-08-23

Family

ID=12318943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3098685A Pending JPS61190257A (en) 1985-02-19 1985-02-19 Heat pump type refrigerator

Country Status (1)

Country Link
JP (1) JPS61190257A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022009578A (en) * 2018-06-29 2022-01-14 三菱電機株式会社 Refrigeration cycle device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022009578A (en) * 2018-06-29 2022-01-14 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
US4055963A (en) Heating system
JPH04110574A (en) Method and apparatus for heating and cooling with refrigerant gas
CA1085179A (en) Reversible heat pump system
JP2002243284A (en) Air conditioner
JPS61190257A (en) Heat pump type refrigerator
JP2000146258A (en) Air conditioner and control method therefor
EP3798534A1 (en) A heat pump
JP2000146357A (en) Cooling system
US3005320A (en) Balanced reverse cycle heating and cooling system
JP4023002B2 (en) Aircraft cooling system
JPH06272978A (en) Air conditioner
JPH0297847A (en) Separate type air conditioner designed for multi chambers
US11397015B2 (en) Air conditioning apparatus
WO2023112844A1 (en) Refrigeration device and temperature adjustment system
JPH0439586B2 (en)
JPS63129253A (en) Heat pump device
JPH0439585B2 (en)
JPH0439584B2 (en)
JP2000088360A (en) Cooling system
JPS62228845A (en) Heat pump device
JPS6333628B2 (en)
JPH0439583B2 (en)
JPH03236536A (en) Cooling-heating equipment for plenty of rooms
JPS6256418B2 (en)
JPS6115345B2 (en)