JPS6256418B2 - - Google Patents

Info

Publication number
JPS6256418B2
JPS6256418B2 JP10010981A JP10010981A JPS6256418B2 JP S6256418 B2 JPS6256418 B2 JP S6256418B2 JP 10010981 A JP10010981 A JP 10010981A JP 10010981 A JP10010981 A JP 10010981A JP S6256418 B2 JPS6256418 B2 JP S6256418B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
liquid
temperature side
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10010981A
Other languages
Japanese (ja)
Other versions
JPS582563A (en
Inventor
Taro Mizoguchi
Takahide Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP10010981A priority Critical patent/JPS582563A/en
Publication of JPS582563A publication Critical patent/JPS582563A/en
Publication of JPS6256418B2 publication Critical patent/JPS6256418B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は冷凍装置、詳しくは、単段の圧縮機を
備えた一つの冷凍サイクル系をもち、異なる複数
種の設定蒸発温度の内、最低設定蒸発温度と高温
側設定蒸発温度とを各別の蒸発器で同時に選択で
きる冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a refrigeration system, more specifically, a refrigeration cycle system equipped with a single-stage compressor, which has a minimum set evaporation temperature and a high-temperature setting among a plurality of different set evaporation temperatures. The present invention relates to a refrigeration system in which the evaporation temperature and evaporation temperature can be simultaneously selected for each different evaporator.

従来、此種冷凍装置は、第5図のごとく膨張機
構20及び蒸発器21の直列回路と、膨張機構2
2及び蒸発器23の直列回路との並列回路を、1
種の冷媒による一つの冷凍サイクル系に具備さ
せ、かつ、各膨張機構20,22の減圧抵抗を異
なるごとく設定して、蒸発器21,23におい
て、異なる設定蒸発温度で蒸発させると共に、高
温側蒸発器23をもつた前記直列回路の蒸発器2
3下流側に吸入圧力調整弁24を設けて、前記各
直列回路における出口側圧力を、最低設定蒸発温
度で蒸発する蒸発器21をもつた直列回路の出力
側圧力と一致させるごとく成している。そして、
運転時、最低設定蒸発温度で蒸発する蒸発器21
をもつた直列回路と高温側設定蒸発温度で蒸発す
る蒸発器23をもつた直列回路とを作動させて、
前記最低設定蒸発温度と高温側設定蒸発温度とを
同時に得られるようにしている。尚、25は凝縮
器である。
Conventionally, this type of refrigeration apparatus has a series circuit of an expansion mechanism 20 and an evaporator 21 as shown in FIG.
2 and the series circuit of the evaporator 23,
A single refrigeration cycle system using different refrigerants is provided, and the decompression resistance of each expansion mechanism 20, 22 is set differently, and evaporation is performed at different set evaporation temperatures in the evaporators 21, 23, and high temperature side evaporation is performed. evaporator 2 of said series circuit with vessel 23;
3. A suction pressure regulating valve 24 is provided on the downstream side so that the outlet side pressure in each of the series circuits is made to match the output side pressure of the series circuit having the evaporator 21 that evaporates at the lowest set evaporation temperature. . and,
Evaporator 21 that evaporates at the lowest set evaporation temperature during operation
and a series circuit including an evaporator 23 that evaporates at a set evaporation temperature on the high temperature side,
The minimum set evaporation temperature and the high temperature set evaporation temperature can be obtained at the same time. In addition, 25 is a condenser.

ところが、1種の冷媒を用い、単段の圧縮機1
を備えた一つの冷凍サイクル系で、設定蒸発温度
を高温側から低温側に広範囲に設定可能にしよう
としても、蒸発温度を下げると蒸発圧力が下り圧
縮比が大きくなつて、体積効率、圧縮効率ともに
低下し、成積係数が低下すると共に、冷凍能力が
減少することとなり、蒸発温度の設定範囲を、1
種の使用冷媒に適合した範囲より広くできず、設
定蒸発温度を、高温側から所望の超低温度迄に亘
り設定できない問題があつた。
However, using one type of refrigerant, a single-stage compressor 1
Even if an attempt is made to make it possible to set the set evaporation temperature over a wide range from the high temperature side to the low temperature side in a single refrigeration cycle system equipped with Both of them decrease, the accumulation coefficient decreases, and the refrigeration capacity decreases, so the setting range of the evaporation temperature is reduced to 1.
There was a problem in that it was not possible to set the evaporation temperature wider than the range that was compatible with the type of refrigerant used, and that the set evaporation temperature could not be set from the high temperature side to the desired ultra-low temperature.

しかして本発明は、以上の問題を解決すべく発
明したもので、目的とする所は、単段の圧縮機を
備えた一つの冷凍サイクルをもち、構造が簡単
で、かつ小形にできるものでありながら、異なる
複数種の設定蒸発温度の内、最低蒸発温度と高温
側蒸発温度とを同時に選択でき、かつ、両選択温
度の設定範囲を所望の超低温度から高温度迄に亘
り広範囲に拡大できる効率のよい冷凍装置を提供
する点にある。
The present invention was invented to solve the above problems, and its purpose is to have a single refrigeration cycle equipped with a single-stage compressor, to have a simple structure, and to be compact. However, it is possible to simultaneously select the lowest evaporation temperature and the higher temperature side evaporation temperature among multiple different set evaporation temperatures, and the setting range of both selection temperatures can be expanded over a wide range from the desired ultra-low temperature to high temperature. The aim is to provide efficient refrigeration equipment.

即ち、本発明冷凍装置は、単段の圧縮機を備え
た一つの冷凍サイクル系内に、蒸発温度の異なる
複数種の冷媒を充填した冷凍装置であつて、前記
冷凍サイクル系内に充填する冷媒数と同数の凝縮
器と蒸発器とを設け、前記凝縮器のうち、高温側
凝縮器を外部冷熱源と熱交換させるごとく成し、
また、前記凝縮器間に、気液分離器を設けて、該
分離器の液域を、低温側凝縮器の冷却部に膨張機
構を介して接続し、かつ、前記分離器のガス域を
前記低温側凝縮器に接続して、高温側冷媒を冷熱
源として低温側冷媒を凝縮させるごとく成す一
方、前記分離器の液域を、膨張機構を介して高温
側蒸発器に接続し、この接続路に、前記高温側蒸
発器の前記分離器における液域への連通又は非連
通を選択する選択手段を設け、かつ、前記低温側
凝縮器を、膨張機構を介して低温側蒸発器に接続
すると共に、前記分離器に、該分離器で分離され
る液冷媒であつて前記高温側蒸発器に該液冷媒を
連通させない時の余剰液冷媒を貯溜する貯溜部を
設けたことを特徴とするものである。
That is, the refrigeration system of the present invention is a refrigeration system in which a single refrigeration cycle system equipped with a single-stage compressor is filled with a plurality of types of refrigerants having different evaporation temperatures. The same number of condensers and evaporators are provided, and among the condensers, the high temperature side condenser is configured to exchange heat with an external cold source,
Further, a gas-liquid separator is provided between the condensers, the liquid region of the separator is connected to the cooling part of the low temperature side condenser via an expansion mechanism, and the gas region of the separator is connected to the cooling part of the low temperature side condenser. The liquid area of the separator is connected to the high temperature side evaporator via an expansion mechanism, and this connecting path a selection means for selecting communication or non-communication of the high-temperature side evaporator with the liquid region in the separator, and connecting the low-temperature side condenser to the low-temperature side evaporator via an expansion mechanism; , characterized in that the separator is provided with a storage section for storing surplus liquid refrigerant separated by the separator when the liquid refrigerant is not communicated with the high temperature side evaporator. be.

以下本発明装置の実施例を図面に基いて説明す
る。
Embodiments of the apparatus of the present invention will be described below with reference to the drawings.

第1図乃至第3図に示したものは、単段の圧縮
機1を備えた一つの冷凍サイクル系内に、蒸発温
度の異なる3種の第1,第2及び第3冷媒を混合
充填したものである。
In the system shown in Figures 1 to 3, three types of first, second, and third refrigerants with different evaporation temperatures are mixed and filled in one refrigeration cycle system equipped with a single-stage compressor 1. It is something.

前記第1,第2及び第3冷媒は、詳しくは、凝
縮圧力P1及び蒸発圧力P2を、前記圧縮機1の適正
な圧縮比に基いて設定したとき同一凝縮圧力P1
おける各凝縮温度T1,T2,T3が、該順に低い
(T1>T2>T3)ものであり、また、同一蒸発圧力
P2における各蒸発温度T4,T5,T6が該順に低い
(T4>T5>T6)それぞれ設定値をもつたものであ
る。そして、これら3つの冷媒は、冷凍サイクル
系の温度、圧力の範囲内で混合したとき、相互に
化学反応を起さず、また、実質的に共沸せず、か
つ相互に溶解する冷媒を選定するのである。以上
のごとく選択する各冷媒として、例えば、第1冷
媒はフロンR12(C Cl2 F2)、第2冷媒はフロ
ンR13(C Cl F3)、第3冷媒はフロンR14(C
F4)を用い、それぞれ例えば設定蒸発温度T4
T5,T6約0℃、−60℃、−110℃で蒸発させるごと
く成すのである。
Specifically, the first, second, and third refrigerants have respective condensing temperatures at the same condensing pressure P 1 when the condensing pressure P 1 and the evaporating pressure P 2 are set based on an appropriate compression ratio of the compressor 1 . T 1 , T 2 , and T 3 are lower in that order (T 1 > T 2 > T 3 ), and the same evaporation pressure
Each of the evaporation temperatures T 4 , T 5 , and T 6 at P 2 has a set value that is lower in that order (T 4 >T 5 >T 6 ). When these three refrigerants are mixed within the temperature and pressure range of the refrigeration cycle system, refrigerants that do not cause chemical reactions with each other, do not substantially azeotrope, and are mutually soluble are selected. That's what I do. For example, the first refrigerant is Freon R12 (C Cl 2 F 2 ), the second refrigerant is Freon R13 (C Cl F 3 ), and the third refrigerant is Freon R14 (C Cl F 3 ), and the third refrigerant is Freon R14 (C Cl F 3 ).
F 4 ), respectively, for example, the set evaporation temperature T 4 ,
T 5 and T 6 are evaporated at approximately 0°C, -60°C, and -110°C.

また、前記圧縮機1は、容量制御機構(図示せ
ず)を具備させるのである。
Further, the compressor 1 is equipped with a capacity control mechanism (not shown).

しかして、前記冷凍サイクル系内に充填する冷
媒数と同数の3つの第1,第2及び第3蒸発器
2,3,4と、第1,第2及び第3凝縮器5,
6,7とを設けて、第1凝縮器5の入口を、前記
圧縮機1の吐出側に接続して、冷却水又は外部な
どの外部冷熱源8により熱交換させると共に、第
1,2凝縮器5,6間に気液分離器9を、また、
第2,3凝縮器6,7間に気液分離器10をそれ
ぞれ設けるのである。そして、圧縮機1から吐出
される高圧ガス状の第1,第2及び第3冷媒の混
合冷媒を、第1凝縮器5において、第1冷媒のみ
前記凝縮温度T1で凝縮させて、気液分離器9
で、ガス状の第1及び第2冷媒と分離させるので
ある。
Therefore, three first, second, and third evaporators 2, 3, and 4, the same number as the number of refrigerants filled in the refrigeration cycle system, and first, second, and third condensers 5,
6 and 7 are provided, and the inlet of the first condenser 5 is connected to the discharge side of the compressor 1 to exchange heat with an external cold source 8 such as cooling water or the outside. A gas-liquid separator 9 is provided between the vessels 5 and 6, and
A gas-liquid separator 10 is provided between the second and third condensers 6 and 7, respectively. Then, the mixed refrigerant of the high-pressure gaseous first, second, and third refrigerants discharged from the compressor 1 is condensed in the first condenser 5 at the condensation temperature T1 , and the gas-liquid Separator 9
Then, the refrigerant is separated from the gaseous first and second refrigerants.

そして、前記第1凝縮器5の出口を気液分離器
9の入口に接続すると共に、該気液分離器9の第
1冷媒を貯溜する液域を、三方弁11の共通ポー
トに接続して、該三方弁11の切換ポート11a
を第2凝縮器6の冷却部6aの入口を膨張機構1
2を介して接続し、冷却部6aの出口を圧縮機1
の吸入側に接続する。そして、三方弁11は、共
通ポートに対し切換ポート11aを、全閉するこ
となく常時全開乃至中間開状態とし、かつ、気液
分離器9の第2,第3冷媒のガス域を第2凝縮器
6に接続して、該凝縮器6において、冷却部6a
を通る高温側の第1冷媒を冷熱源として低温側の
第2,第3冷媒を冷却し、第2冷媒を前記凝縮温
度T2で凝縮させるごとく成すのである。
The outlet of the first condenser 5 is connected to the inlet of the gas-liquid separator 9, and the liquid region of the gas-liquid separator 9 that stores the first refrigerant is connected to the common port of the three-way valve 11. , the switching port 11a of the three-way valve 11
The inlet of the cooling section 6a of the second condenser 6 is connected to the expansion mechanism 1.
2, and connect the outlet of the cooling section 6a to the compressor 1.
Connect to the suction side of the The three-way valve 11 keeps the switching port 11a with respect to the common port in a fully open or intermediately open state at all times without fully closing it, and the gas region of the second and third refrigerants of the gas-liquid separator 9 is condensed into the second condensation state. In the condenser 6, a cooling section 6a is connected to the condenser 6.
The first refrigerant on the high-temperature side passing through is used as a cold heat source to cool the second and third refrigerants on the low-temperature side, and the second refrigerant is condensed at the condensation temperature T2 .

また、前記気液分離器9の液域を接続した三方
弁11の他方の切換ポート11bを、膨張機構1
3を介して前記第1蒸発器2の入口に接続し、該
蒸発器2の出口を前記第2凝縮器6の冷却部6a
の入口に接続する。そして、前記三方弁11は、
前記第1蒸発器2の前記分離器9における液域へ
の連通又は非連通を選択する選択手段を構成する
ものであつて、該三方弁11の共通ポートに対し
切換ポート11bを、選択的に全閉又は中間開状
態に制御することにより、前記第1蒸発器2を前
記分離器9の液域に選択的に非連通又は連通させ
て、該第1蒸発器2を非選択又は選択すべく成す
のである。第1蒸発器2を選択したときには、所
定流量の第1冷媒を前記設定蒸発温度T4で蒸発
させるのである。
Further, the other switching port 11b of the three-way valve 11 connected to the liquid region of the gas-liquid separator 9 is connected to the expansion mechanism 1.
3 to the inlet of the first evaporator 2, and the outlet of the evaporator 2 to the cooling section 6a of the second condenser 6.
Connect to the entrance of The three-way valve 11 is
It constitutes a selection means for selecting communication or non-communication with the liquid region in the separator 9 of the first evaporator 2, and selectively connects the switching port 11b to the common port of the three-way valve 11. By controlling the fully closed or intermediately open state, the first evaporator 2 is selectively disconnected or communicated with the liquid region of the separator 9, so that the first evaporator 2 is not selected or selected. It will be accomplished. When the first evaporator 2 is selected, a predetermined flow rate of the first refrigerant is evaporated at the set evaporation temperature T4 .

さらに、前記第2凝縮器6の出口を気液分離器
10の入口に接続して、液状の第2冷媒と、ガス
状の第3冷媒とを分離させると共に、該気液分離
器10の第2冷媒を貯溜する液域を、三方弁14
の共通ポートに接続して、該三方弁14の切換ポ
ート14aを、第3凝縮器7の冷却部7aの入口
に膨張機構15を介して接続し、冷却部7aの出
口を第2凝縮器6の冷却部6aの入口に接続す
る。そして、三方弁14は、共通ポートに対し切
換ポート14aを、全閉することなく常時全開乃
至中間開状態とする。また、気液分離器10の第
3冷媒のガス域を第3凝縮器7に接続して、該凝
縮器7において、冷却部7aを通る高温側の第2
冷媒を冷熱源として低温側の第3冷媒を冷却し、
凝縮温度T3で凝縮させるごとく成すのである。
Further, the outlet of the second condenser 6 is connected to the inlet of the gas-liquid separator 10 to separate the liquid second refrigerant and the gaseous third refrigerant, and the second condenser 6 is separated from the gas-liquid third refrigerant. 2. The liquid area where the refrigerant is stored is connected to the three-way valve 14.
The switching port 14a of the three-way valve 14 is connected to the inlet of the cooling section 7a of the third condenser 7 via the expansion mechanism 15, and the outlet of the cooling section 7a is connected to the common port of the second condenser 6. It is connected to the inlet of the cooling section 6a. The three-way valve 14 always keeps the switching port 14a in a fully open or intermediately open state with respect to the common port without fully closing it. Further, the gas region of the third refrigerant of the gas-liquid separator 10 is connected to the third condenser 7, and in the condenser 7, the second refrigerant on the high temperature side passes through the cooling section 7a.
Cooling the third refrigerant on the low temperature side using the refrigerant as a cold heat source,
This is done as if it were condensed at a condensation temperature of T3 .

また、前記気液分離器10の液域を接続した三
方弁14の他方の切換ポート14bを、膨張機構
16を介して前記第2蒸発器3の入口に接続し、
該蒸発器3の出口を前記第3凝縮器7の冷却部7
aの入口に接続する。そして、前記三方弁14
は、前記第2蒸発器3の前記分離器10における
液域への連通又は非連通を選択する選択手段を構
成するものであつて、該三方弁14の共通ポート
に対し切換ポート14bを、選択的に全閉又は中
間開状態に制御することにより、前記第2蒸発器
3を前記分離器10の液域に選択的に非連通又は
連通させて、該第2蒸発器3を非選択的又は選択
すべく成すのである。第2蒸発器3を選択したと
きには、所定流量の第2冷媒を前記設定蒸発温度
T5で蒸発させるのである。
Further, the other switching port 14b of the three-way valve 14 connected to the liquid region of the gas-liquid separator 10 is connected to the inlet of the second evaporator 3 via the expansion mechanism 16,
The outlet of the evaporator 3 is connected to the cooling section 7 of the third condenser 7.
Connect to the entrance of a. And the three-way valve 14
constitutes a selection means for selecting communication or non-communication of the second evaporator 3 with the liquid region in the separator 10, and selects the switching port 14b from the common port of the three-way valve 14. By controlling the second evaporator 3 to be fully closed or intermediately open, the second evaporator 3 is selectively disconnected or communicated with the liquid region of the separator 10, and the second evaporator 3 is controlled to be in a non-selective or intermediately open state. We do it because we choose it. When the second evaporator 3 is selected, a predetermined flow rate of the second refrigerant is supplied to the set evaporation temperature.
It is evaporated at T5 .

また、前記第3凝縮器7の出口を、膨張機構1
7を介して前記第3蒸発器4の入口に接続し、該
蒸発器4の出口を、第3凝縮器7の冷却部7aの
入口に接続して、第3蒸発器4において、常時第
3冷媒を蒸発温度T6で蒸発させるのである。
Further, the outlet of the third condenser 7 is connected to the expansion mechanism 1.
7 to the inlet of the third evaporator 4, and the outlet of the evaporator 4 is connected to the inlet of the cooling section 7a of the third condenser 7. The refrigerant is evaporated at the evaporation temperature T6 .

そして、前記各気液分離器9,10には、第
1,第2蒸発器2,3を選択して流通させる各所
定流量に見合う量の冷媒を、非選択時に貯溜しう
る容量をもつた貯溜部9a,10,を設け、前記
貯溜部9aでは、分離器9で分離される液冷媒で
あつて第1蒸発器2に該液冷媒を連通させない時
の余剰液冷媒を貯溜させるのであり、又、貯溜部
10aでは、分離器10で分離される液冷媒であ
つて第2蒸発器3に該液冷媒を連通させない時の
余剰液冷媒を貯溜させるのである。
Each of the gas-liquid separators 9 and 10 has a capacity capable of storing an amount of refrigerant corresponding to each predetermined flow rate selected and distributed to the first and second evaporators 2 and 3 when not selected. Storage parts 9a and 10 are provided, and the storage part 9a stores liquid refrigerant separated by the separator 9, which is surplus when the liquid refrigerant is not communicated with the first evaporator 2. Further, in the storage section 10a, surplus liquid refrigerant, which is the liquid refrigerant separated by the separator 10 and is not communicated with the second evaporator 3, is stored.

しかして、以上の構成において、運転する場合
3種の前記した設定蒸発温度T4,T5,T6のう
ち、最低温度の蒸発温度T6の他、高温側の蒸発
温度T4,T5の少くとも一方を選択できるもので
あつて、先ず、最高蒸発温度T4を選択する場合
について説明する。この場合には、前記三方弁1
1を、共通ポートに対し切換ポート11a,11
bをともに中間開状態に保持して第1蒸発器2を
選択すると共に、三方弁14を、共通ポートに対
し、切換ポート14aを全開状態、また切換ポー
ト14bを全閉状態に保持して第2蒸発器3を非
選択するのである。
Therefore, in the above configuration, when operating, in addition to the lowest evaporation temperature T 6 among the three set evaporation temperatures T 4 , T 5 , T 6 , the evaporation temperatures T 4 , T 5 on the high temperature side are set. First, the case where the highest evaporation temperature T4 is selected will be explained. In this case, the three-way valve 1
1 to the switching ports 11a and 11 for the common port.
b are both held in an intermediately open state to select the first evaporator 2, and the three-way valve 14 is held in the common port with the switching port 14a fully open and the switching port 14b fully closed. 2 evaporator 3 is not selected.

斯くて、前記圧縮機1を駆動することにより、
第1図及び第4図モリエル線図の実線、点線、鎖
線(それぞれ第1,第2,第3冷媒を表わす)矢
印のごとく、第1,2,3冷媒の混合ガス冷媒が
吐出圧力P1で吐出(点イ)して、第1凝縮器5に
流入し、外部冷熱源8により冷却され、第1冷媒
のみ凝縮圧力P1凝縮温度T1で凝縮液化し、気液
分離器9において、ガス状の第2,3冷媒から分
離して貯溜される(点ロ)、斯く貯溜した第1冷
媒は第1蒸発器2に流す所定流量の冷媒と共に三
方弁11に流入し、切換ポート11b,11aか
ら分れて流出し、それぞれ膨張弁13,12で圧
力P2に減圧され(点ハ)、前者は第1蒸発器2を
流通して設定蒸発温度T4で蒸発気化し、該蒸発
温度T4が得られる。そして、蒸発器2から流出
して、後者の減圧液冷媒と共に第2凝縮器6の冷
却部6aに流入する。そして、前記気液分離器9
のガス域から第2凝縮器6に流入して来る第2,
第3冷媒により蒸発温度T4で蒸発気化されて、
圧縮機1に吸入される(点ニ)のである。
Thus, by driving the compressor 1,
As shown by the arrows of solid lines, dotted lines, and chain lines (representing the first, second, and third refrigerants, respectively) in the Mollier diagrams of Fig. 1 and Fig. 4, the mixed gas refrigerant of the first, second, and third refrigerants has a discharge pressure of P 1 The refrigerant is discharged (point A), flows into the first condenser 5, is cooled by an external cold source 8, and is condensed and liquefied only at a condensing pressure P1 and a condensing temperature T1 , and then in a gas-liquid separator 9. The first refrigerant, which is separated from the gaseous second and third refrigerants and stored (point B), flows into the three-way valve 11 together with a predetermined flow rate of refrigerant flowing into the first evaporator 2, and is connected to the switching port 11b, The former flows through the first evaporator 2 and is evaporated at a set evaporation temperature T4, and the former flows through the first evaporator 2 and is evaporated at a set evaporation temperature T4 . T4 is obtained. Then, it flows out from the evaporator 2 and flows into the cooling section 6a of the second condenser 6 together with the latter reduced pressure liquid refrigerant. And the gas-liquid separator 9
The second gas flowing into the second condenser 6 from the gas region of
It is evaporated by the third refrigerant at an evaporation temperature T 4 ,
It is sucked into the compressor 1 (point d).

又一方、第2凝縮器6に流入したガス状の第
2,第3冷媒は、冷却部6aを流通する第1冷媒
により冷却されて、第2冷媒のみ凝縮圧力P1、凝
縮温度T2で凝縮して、ガス状の第3冷媒と共に
気液分離器10に流入し(点ホ)、気液分離され
る。
On the other hand, the gaseous second and third refrigerants that have flowed into the second condenser 6 are cooled by the first refrigerant flowing through the cooling section 6a, and only the second refrigerant is condensed at a pressure P 1 and a condensation temperature T 2 . It is condensed, flows into the gas-liquid separator 10 together with the gaseous third refrigerant (point E), and is separated into gas and liquid.

そして、気液分離器10の液域に貯溜した第2
冷媒は、後記する第2蒸発器3の選択時に流す所
定流量に見合う量の第2冷媒を貯溜部10aに残
して、三方弁14に流入し、切換ポート14aの
みから流出して、膨張機構15により圧力P2に減
圧され(点ヘ)、第3凝縮器7の冷却部7aに流
入する。斯く流入した第2冷媒は、前記気液分離
器10のガス域から第3凝縮器7に流入して来る
低温側の第3冷媒により、蒸発温度T5で蒸発気
化され、第2凝縮器6の冷却部6aを通り圧縮機
1に吸入される(点ニ)。
Then, the second liquid stored in the liquid region of the gas-liquid separator 10
The refrigerant flows into the three-way valve 14, leaving an amount of second refrigerant corresponding to a predetermined flow rate flowing when selecting the second evaporator 3, which will be described later, in the storage portion 10a, flows into the three-way valve 14, flows out only from the switching port 14a, and flows into the expansion mechanism 15. It is reduced to pressure P 2 (to point) and flows into the cooling section 7a of the third condenser 7. The second refrigerant that has flowed in this way is evaporated and vaporized at an evaporation temperature T5 by the third refrigerant on the low temperature side that has flowed into the third condenser 7 from the gas region of the gas-liquid separator 10, and then is evaporated into the second condenser 6. It passes through the cooling section 6a and is sucked into the compressor 1 (point D).

また、第3凝縮器7に流入したガス状の第3冷
媒は、冷却部7aを流通する第2冷媒により、凝
縮圧力P1、凝縮温度T3で凝縮して(点ト)、膨張
機構17により圧力P2に減圧される(点チ)。そ
して、第3蒸発器4に流入して、最低の設定蒸発
温度T6で蒸発気化し、第3,第2凝縮器7,6
の冷却部7a,6aを通つて、圧縮機1に吸入さ
れる(点ニ)のであり、前記第3蒸発器4におい
て、最低温度の設定蒸発温度T6が得られる。
Further, the gaseous third refrigerant that has flowed into the third condenser 7 is condensed at a condensing pressure P 1 and a condensing temperature T 3 (point T) by the second refrigerant flowing through the cooling section 7a, and the expansion mechanism 17 The pressure is reduced to P 2 (point 1). Then, it flows into the third evaporator 4, where it is evaporated at the lowest set evaporation temperature T6 , and then into the third and second condensers 7, 6.
The water is sucked into the compressor 1 through the cooling sections 7a and 6a (point d), and the lowest set evaporation temperature T6 is obtained in the third evaporator 4.

次に、3種の前記した設定蒸発温度T4,T5
T6のうち、最低温度T6の他、中間温度T5を選択
する場合について説明する。この場合には、前記
三方弁11を、共通ポートに対し切換ポート11
aを全閉状態、また切換ポート11bを全閉状態
に保持して第1蒸発器2を非選択すると共に、前
記三方弁14を、共通ポートに対し切換ポート1
4a,14bをともに中間開状態に保持して第2
蒸発器3を選択するのである。
Next, the three types of preset evaporation temperatures T 4 , T 5 ,
A case will be described in which the intermediate temperature T5 is selected in addition to the lowest temperature T6 among T6 . In this case, the three-way valve 11 is connected to the switching port 11 to the common port.
a in a fully closed state and the switching port 11b in a fully closed state to de-select the first evaporator 2, and at the same time, the three-way valve 14 is connected to the common port into the switching port 1.
4a and 14b are both held in the intermediate open state, and the second
Evaporator 3 is selected.

斯くて、前記圧縮機1を駆動することにより、
第1,2,3冷媒は第2図のごとく循環する(状
態変化は基本的には第4図と同じであるので省略
する)のであつて、第1図の場合の作用と相違す
る点は、気液分離器9で気液分離された液状の第
1冷媒は、三方弁11に流入し、切換ポート11
aのみから流出して、切換ポート11bから流出
せず、第1蒸発器2の前記した選択時該蒸発器2
に流した所定流量に見合う量の冷媒が気液分離器
9の貯溜部9aに貯溜されることである。
Thus, by driving the compressor 1,
Refrigerants 1, 2, and 3 circulate as shown in Figure 2 (state changes are basically the same as in Figure 4, so omitted). The liquid first refrigerant separated into gas and liquid by the gas-liquid separator 9 flows into the three-way valve 11 and passes through the switching port 11.
When the first evaporator 2 is selected as described above, it flows only from the switching port 11b and does not flow from the switching port 11b.
The refrigerant is stored in the storage portion 9a of the gas-liquid separator 9 in an amount corresponding to the predetermined flow rate.

また、気液分離器10で気液分離された液状の
第2冷媒は、第2蒸発器3に流す所定流量の冷媒
と共に三方弁14に流入して、切換ポート14
a,14bから分かれて流出し、切換ポート14
bから分れて流出し、切換ポート11bから流出
した冷媒が膨張機構16で減圧して、第2蒸発器
3において設定蒸発温度T5で蒸発されることで
ある。
Further, the liquid second refrigerant separated into gas and liquid by the gas-liquid separator 10 flows into the three-way valve 14 together with a predetermined flow rate of refrigerant flowing into the second evaporator 3, and flows into the switching port 14.
It separates from a and 14b and flows out from the switching port 14.
The refrigerant that flows out from the switching port 11b is depressurized by the expansion mechanism 16, and is evaporated in the second evaporator 3 at the set evaporation temperature T5 .

更に、3種の前記した設定蒸発温度T4,T5
T6の内、最低温度T6の他、最高、中間温度T4
T5をともに選択する場合について説明する。こ
の場合には、前記三方弁11,14は、それぞれ
共通ポートに対し切換ポート11a,11b,1
4a,14bを中間開状態に保持して、第2,3
蒸発器3,4を選択するのである。
Furthermore, the three types of preset evaporation temperatures T 4 , T 5 ,
Among T 6 , in addition to the minimum temperature T 6 , the maximum and intermediate temperatures T 4 ,
The case where both T5 are selected will be explained. In this case, the three-way valves 11 and 14 have switching ports 11a, 11b, and 1 for the common port, respectively.
4a and 14b are held in the intermediate open state, and the second and third
Evaporators 3 and 4 are selected.

斯くて、前記圧縮機1を駆動することにより、
第1,2,3冷媒は、第3図のごとく循環する
(状態変化は基本的には第4図と同じであるので
省略する)のであつて、第1,2図の場合の作用
と相違する点は、気液分離器9,10で分離され
た液状の第1,第2冷媒は、第1,第2蒸発器
2,3に流す所定流量の冷媒と共に、それぞれ三
方弁11,14の切換ポート11a,11b,1
4a,14bからともに流出して、第1,第2蒸
発器2,3において前記した設定蒸発温度T4
T5でそれぞれ蒸発されることである。
Thus, by driving the compressor 1,
The 1st, 2nd, and 3rd refrigerants circulate as shown in Figure 3 (state changes are basically the same as in Figure 4, so omitted), and the operation is different from that in Figures 1 and 2. The point is that the liquid first and second refrigerants separated by the gas-liquid separators 9 and 10, together with a predetermined flow rate of refrigerant flowing into the first and second evaporators 2 and 3, are separated by the three-way valves 11 and 14, respectively. Switching ports 11a, 11b, 1
4a and 14b, and the set evaporation temperature T 4 described above is reached in the first and second evaporators 2 and 3.
Each is evaporated at T 5 .

以上のごとく気液分離器9,10には、貯溜部
9a,10aを設けて、第1,第2蒸発器2,3
の選択時に流す所定流量に見合う量の第1,第2
冷媒を、第1,第2蒸発器2,3の非選択時に、
貯溜部9a,10aに貯溜すべく成したので、三
方弁11,14を制御して、第1,第2蒸発器
2,3を非選択した時には、気液分離器9,10
の貯溜部9a,10aに前記所定流量に見合う量
の第1,第2冷媒が貯溜されると共に、選択時に
は、貯溜部9a,10aから前記所定流量の第
1,第2冷媒が流出して第1,第2蒸発器2,3
を流通することとなる。従つて、選択された第
1,第2蒸発器2,3には、過不足なく液状の第
1,第2冷媒が流通し、確実に前記した設定蒸発
温度T4,T5を得ることができる。
As described above, the gas-liquid separators 9, 10 are provided with the storage parts 9a, 10a, and the first and second evaporators 2, 3
The first and second flow rates correspond to the predetermined flow rate to be flowed when selecting the flow rate.
When the refrigerant is not selected in the first and second evaporators 2 and 3,
Since the storage parts 9a and 10a are configured to store water, when the three-way valves 11 and 14 are controlled to deselect the first and second evaporators 2 and 3, the gas-liquid separators 9 and 10
The first and second refrigerants are stored in the storage portions 9a and 10a in an amount corresponding to the predetermined flow rate, and when selected, the first and second refrigerant at the predetermined flow rate flow out from the storage portions 9a and 10a to 1, second evaporator 2, 3
will be distributed. Therefore, the liquid first and second refrigerants flow through the selected first and second evaporators 2 and 3 in just the right amount, ensuring that the set evaporation temperatures T 4 and T 5 described above are achieved. can.

また、第2,第3凝縮器6,7の冷却部6a,
7aには、運転時に、常時第1,第2冷媒の高温
側減圧液冷媒を流通させて、気液分離器9,10
のガス域から流入して来る第2,3冷媒の低温側
ガス冷媒を凝縮すべくしたので、第3蒸発器4に
は常に減圧液冷媒が流通し、最低温度の設定蒸発
温度T6が得られるのである。
In addition, the cooling parts 6a of the second and third condensers 6 and 7,
7a, during operation, the high temperature side reduced pressure liquid refrigerant of the first and second refrigerants is constantly passed through the gas-liquid separators 9 and 10.
Since the low-temperature side gas refrigerant of the second and third refrigerants flowing in from the gas region of It will be done.

しかも、高温側の設定蒸発温度T4,T5と最低
温度の設定蒸発温度T6とは、第1,2冷媒と第
3冷媒とを選定することにより、1種類の冷媒を
用いたのでは到底得られない、高温側から所望の
超低温度迄に亘る広範囲に設定できるのである。
しかも、圧縮機1を用いながら、圧縮比を大きな
値にすることなく適正な値にできるので、圧縮比
を大きくすることによる問題、即ち体積効率、圧
縮効率が低下して、成績係数が低下すると共に冷
凍能力が減少する問題をなくすることができるの
である。
Moreover, the set evaporation temperatures T 4 and T 5 on the high temperature side and the set evaporation temperature T 6 on the lowest temperature side are determined by selecting the first and second refrigerants and the third refrigerant. It can be set over a wide range from extremely high temperatures that would otherwise be impossible to achieve to extremely low temperatures.
Moreover, while using the compressor 1, the compression ratio can be set to an appropriate value without increasing the value, so the problems caused by increasing the compression ratio, namely, the volumetric efficiency and compression efficiency decrease, and the coefficient of performance decreases. At the same time, it is possible to eliminate the problem of reduction in refrigerating capacity.

尚、以上の説明では、蒸発温度の異なる3種の
冷媒を用いて設定蒸発温度の設定数を3種とした
が、蒸発温度の異なる2種または4種以上の複数
種の冷媒を用いて、設定蒸発温度の設定数を2種
または4種以上とし、該設定蒸発温度の内、最低
温度の他、残りの高温側温度の少くとも1種の温
度を選択することも同様に行なえる。
In the above explanation, three types of refrigerants with different evaporation temperatures were used and the number of set evaporation temperatures was set to three, but using two or more types of refrigerants with different evaporation temperatures, It is also possible to set the number of set evaporation temperatures to two or four or more, and to select at least one of the remaining high-temperature temperatures in addition to the lowest temperature among the set evaporation temperatures.

以上のごとく本発明は、単段の圧縮機1を備え
た一つの冷凍サイクル系内に、蒸発温度の異なる
複数種の冷媒を充填した冷凍装置であつて、前記
冷凍サイクル系内に充填する冷媒数と同数の凝縮
器5,7と蒸発器2,4とを設け、前記凝縮器
5,7のうち、高温側凝縮器5を外部冷熱源と熱
交換させるごとく成し、また、前記凝縮器5,7
間に気液分離器9を設けて、該分離器9の液域
を、低温側凝縮器7の冷却部7aに膨張機構12
を介して接続し、かつ、前記分離器9のガス域
を、前記低温側凝縮器7に接続して、高温側冷媒
を冷熱源として低温側冷媒を凝縮させるごとく成
す一方、前記分離器9の液域を、膨張機構13を
介して高温側蒸発器2に接続し、この接続路に、
前記高温側蒸発器2の前記分離器9における液域
への連通又は非連通を選択する選択手段を設け、
かつ、前記低温側凝縮器7を、膨張機構17を介
して低温側蒸発器4に接続すると共に、前記分離
器9に、該分離器9で分離される液冷媒であつて
前記高温側蒸発器2に該液冷媒を連通させない時
の余剰液冷媒を貯溜する貯溜部9aを設けたので
あるから、低温側蒸発器4には常に減圧液冷媒が
流通し、最低温度の設定蒸発温度が得られ、か
つ、前記分離器9,10の貯溜部9a,10aに
より、高温側蒸発器2,3の非選択時には、選択
時に流通させる高温側冷媒が貯溜され、選択時に
は斯く貯溜された冷媒を流通させられ、高温側設
定温度の少くとも1種の設定温度も同時に併せ得
られるのである。
As described above, the present invention provides a refrigeration system in which one refrigeration cycle system equipped with a single-stage compressor 1 is filled with a plurality of types of refrigerants having different evaporation temperatures. The same number of condensers 5, 7 and evaporators 2, 4 are provided, and among the condensers 5, 7, the high temperature side condenser 5 is configured to exchange heat with an external cold source; 5,7
A gas-liquid separator 9 is provided in between, and the liquid region of the separator 9 is transferred to the cooling section 7a of the low-temperature side condenser 7 by an expansion mechanism 12.
and the gas region of the separator 9 is connected to the low temperature side condenser 7 to condense the low temperature side refrigerant using the high temperature side refrigerant as a cold heat source. The liquid region is connected to the high temperature side evaporator 2 via the expansion mechanism 13, and this connection path is
Providing selection means for selecting communication or non-communication with the liquid region in the separator 9 of the high temperature side evaporator 2,
The low-temperature side condenser 7 is connected to the low-temperature side evaporator 4 via an expansion mechanism 17, and the liquid refrigerant separated by the separator 9 is supplied to the high-temperature side evaporator. 2 is provided with a storage section 9a for storing surplus liquid refrigerant when the liquid refrigerant is not communicated, so that reduced pressure liquid refrigerant always flows through the low temperature side evaporator 4, and the lowest set evaporation temperature can be obtained. , and the storage portions 9a and 10a of the separators 9 and 10 store the high temperature side refrigerant to be circulated when the high temperature side evaporators 2 and 3 are selected, and when the high temperature side evaporators 2 and 3 are selected, the stored refrigerant is circulated. At least one set temperature on the high temperature side can also be obtained at the same time.

しかも、高温側の設定蒸発温度と最低温度の設
定蒸発温度とは、高温側冷媒と低温側冷媒とを選
定することにより、1種類の冷媒を用いたのでは
到底得られない高温側から所望の超低温度迄に亘
る広範囲に設定できるのである。しかも、圧縮機
1を用いながら、圧縮比を大きな値にすることな
く適正な値にできるので、圧縮比を大きくするこ
とによる問題、即ち、体積効率、圧縮効率が低下
して、成績係数が低下すると共に冷凍能力が減少
する問題をなくすることができるのである。
Moreover, the set evaporation temperature on the high temperature side and the set evaporation temperature on the minimum temperature can be adjusted by selecting the high temperature side refrigerant and the low temperature side refrigerant. It can be set over a wide range of temperatures, even down to ultra-low temperatures. Moreover, while using compressor 1, the compression ratio can be set to an appropriate value without increasing it to a large value, so the problem caused by increasing the compression ratio is that the volumetric efficiency and compression efficiency decrease, resulting in a decrease in the coefficient of performance. At the same time, it is possible to eliminate the problem of reduced refrigeration capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明の実施例を示す冷媒
配管系統図で、第1図は2種の高温側設定温度の
内最高温度を選定した場合、第2図は中間温度を
選定した場合、第3図は最高温度と中間温度とを
ともに選定した場合を示す図であり、第4図はモ
リエル線図、第5図は従来例を示す説明図であ
る。 1…圧縮機、2…第1蒸発器、3…第2蒸発
器、4…第3蒸発器、5…第1凝縮器、6…第2
凝縮器、6a…冷却部、7…第3凝縮器、7a…
冷却部、9,10…気液分離器、9a,10a…
貯溜部、12,13,15,16,17…膨張機
構。
Figures 1 to 3 are refrigerant piping system diagrams showing an embodiment of the present invention. Figure 1 shows the case where the highest temperature is selected from two types of high-temperature set temperatures, and Figure 2 shows the case where the intermediate temperature is selected. In this case, FIG. 3 is a diagram showing the case where both the maximum temperature and the intermediate temperature are selected, FIG. 4 is a Mollier diagram, and FIG. 5 is an explanatory diagram showing a conventional example. 1... Compressor, 2... First evaporator, 3... Second evaporator, 4... Third evaporator, 5... First condenser, 6... Second
Condenser, 6a...Cooling section, 7...Third condenser, 7a...
Cooling section, 9, 10... Gas-liquid separator, 9a, 10a...
Reservoir, 12, 13, 15, 16, 17... expansion mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 単段の圧縮機1を備えた一つの冷凍サイクル
系内に、蒸発温度の異なる複数種の冷媒を充填し
た冷凍装置であつて、前記冷凍サイクル系内に充
填する冷媒数と同数の凝縮器5,7と蒸発器2,
4とを設け、前記凝縮器5,7のうち、高温側凝
縮器5を外部冷熱源と熱交換させるごとく成し、
また、前記凝縮器5,7間に気液分離器9を設け
て、該分離器9の液域を、低温側凝縮器7の冷却
部7aに膨張機構12を介して接続し、かつ、前
記分離器9のガス域を、前記低温側凝縮器7に接
続して、高温側冷媒を冷熱源として低温側冷媒を
凝縮させるごとく成す一方、前記分離器9の液域
を、膨張機構13を介して高温側蒸発器2に接続
し、この接続路に、前記高温側蒸発器2の前記分
離器9における液域への連通又は非連通を選択す
る選択手段を設け、かつ、前記低温側凝縮器7
を、膨張機構17を介して低温側蒸発器4に接続
すると共に、前記分離器9に、該分離器9で分離
される液冷媒であつて前記高温側蒸発器2に該液
冷媒を連通させない時の余剰液冷媒を貯溜する貯
溜部9aを設けたことを特徴とする冷凍装置。
1 A refrigeration system in which a single refrigeration cycle system equipped with a single-stage compressor 1 is filled with multiple types of refrigerants having different evaporation temperatures, the refrigeration system having the same number of condensers as the number of refrigerants filled in the refrigeration cycle system. 5, 7 and evaporator 2,
4, and among the condensers 5 and 7, the high temperature side condenser 5 is configured to exchange heat with an external cold source,
Further, a gas-liquid separator 9 is provided between the condensers 5 and 7, and the liquid region of the separator 9 is connected to the cooling section 7a of the low-temperature side condenser 7 via an expansion mechanism 12. The gas region of the separator 9 is connected to the low-temperature condenser 7 to condense the low-temperature refrigerant using the high-temperature refrigerant as a cooling heat source, while the liquid region of the separator 9 is is connected to the high-temperature side evaporator 2, and this connection path is provided with a selection means for selecting communication or non-communication of the high-temperature side evaporator 2 with the liquid region in the separator 9, and the low-temperature side condenser 7
is connected to the low-temperature side evaporator 4 via the expansion mechanism 17, and the liquid refrigerant separated by the separator 9 is not communicated with the high-temperature side evaporator 2. A refrigeration system characterized by being provided with a storage section 9a for storing surplus liquid refrigerant.
JP10010981A 1981-06-26 1981-06-26 Refrigerator Granted JPS582563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10010981A JPS582563A (en) 1981-06-26 1981-06-26 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10010981A JPS582563A (en) 1981-06-26 1981-06-26 Refrigerator

Publications (2)

Publication Number Publication Date
JPS582563A JPS582563A (en) 1983-01-08
JPS6256418B2 true JPS6256418B2 (en) 1987-11-25

Family

ID=14265203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10010981A Granted JPS582563A (en) 1981-06-26 1981-06-26 Refrigerator

Country Status (1)

Country Link
JP (1) JPS582563A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161650A (en) * 1983-03-04 1984-09-12 株式会社日立製作所 Two temperature evaporation type cooling device
JP2009150594A (en) * 2007-12-19 2009-07-09 Mitsubishi Heavy Ind Ltd Refrigeration device

Also Published As

Publication number Publication date
JPS582563A (en) 1983-01-08

Similar Documents

Publication Publication Date Title
US5996356A (en) Parallel type refrigerator
JP4123829B2 (en) Refrigeration cycle equipment
EP1788325B1 (en) Freezing apparatus
US20070074536A1 (en) Refrigeration system with bypass subcooling and component size de-optimization
US11913690B2 (en) Refrigeration system with efficient expansion device control, liquid refrigerant return, oil return, and evaporator defrost
WO2017081157A1 (en) A vapour compression system comprising a secondary evaporator
US20210247108A1 (en) Refrigeration system with multiple heat absorbing heat exchangers
RU2732947C2 (en) Thermal network interfacing device
JP3791090B2 (en) Heat pump equipment
JP2698118B2 (en) Air conditioner
JPS6256418B2 (en)
JPH07332814A (en) Heat pump system
JP3723413B2 (en) Air conditioner
JP2002364936A (en) Refrigeration unit
JPH10259959A (en) Heating device using refrigeration cycle
JPH02195156A (en) Low temperature refrigerator
KR100488532B1 (en) Cooling system
JPH04257661A (en) Two stage compression refrigerating cycle device
JPH07208822A (en) Heat pump type refrigerating cycle
JPS6256417B2 (en)
JPS5852461Y2 (en) Heat pump refrigeration equipment
JP2574545B2 (en) Refrigeration cycle device
JPH04292749A (en) Two-stage compression refrigeration cycle device
JPS5918349A (en) Heat pump system separation type air conditioner
JP3368692B2 (en) Refrigeration system using non-azeotropic refrigerant mixture