JP2000146357A - Cooling system - Google Patents

Cooling system

Info

Publication number
JP2000146357A
JP2000146357A JP10314808A JP31480898A JP2000146357A JP 2000146357 A JP2000146357 A JP 2000146357A JP 10314808 A JP10314808 A JP 10314808A JP 31480898 A JP31480898 A JP 31480898A JP 2000146357 A JP2000146357 A JP 2000146357A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer medium
heat
cooling
circulation path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10314808A
Other languages
Japanese (ja)
Other versions
JP4265008B2 (en
Inventor
Koichi Obara
孝一 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP31480898A priority Critical patent/JP4265008B2/en
Publication of JP2000146357A publication Critical patent/JP2000146357A/en
Application granted granted Critical
Publication of JP4265008B2 publication Critical patent/JP4265008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Abstract

PROBLEM TO BE SOLVED: To provide a cooling system in which a plurality of heat transfer media, e.g. fuel and ram air, can be used as a heat sink for cooling a first heat transfer medium and fuel consumption of an aircraft can be reduced in operation. SOLUTION: In order to use a plurality of heat transfer media, e.g. fuel and ram air, as a heat sink for cooling a first heat transfer medium having high temperature and pressure through compression by means of a compressor 3 in a system for cooling an apparatus (heat load) having a high generation rate using a vapor cycle, a fourth heat transfer medium circulation passage 18 for cooling a first heat exchanger 1 is provided and a fourth heat transfer medium is circulated by means of a pump 19. A third heat exchanger 21 for cooling the fourth heat transfer medium with fuel and a fourth heat exchanger 22 for cooling the fourth heat transfer medium with ram air are arranged in that pipeline. Fuel is used as a heat sink when an aircraft is stopping on the ground or flying at a low speed whereas fuel and ram air are used as a heat sink when the aircraft is cruising thus realizing an operation where ram air intake causing drag on the fuselage is minimized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、航空機、船舶、車
両などのベーパサイクルシステムを用いた冷却システム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling system using a vapor cycle system for an aircraft, a ship, a vehicle or the like.

【0002】[0002]

【従来の技術】航空機搭載電子機器は、小型軽量化が求
められ、たとえばレーダ装置などの様に大きな電力を消
費するにもかかわらずコンパクトな設計がされる結果、
熱負荷となるこれら機器の発熱部(以下熱負荷という)
の冷却が問題となり、冷却システムが必要となる。この
種の冷却システムには、冷媒ガスを断熱圧縮し、高温高
圧になったガスを冷却して液化し、膨張弁で断熱自由膨
張させ寒冷な気液2相状態を得て、その液相部の気化潜
熱を冷却に用いるベーパーサイクルが一般的に用いられ
る。図2は従来における冷却システムの構成を示してい
る。
2. Description of the Related Art Aircraft-mounted electronic devices are required to be reduced in size and weight, and are designed to be compact despite consuming a large amount of power, such as radar devices.
Heat generation part of these devices that becomes heat load (hereinafter referred to as heat load)
Cooling becomes a problem, and a cooling system is required. This type of cooling system includes adiabatic compression of refrigerant gas, cooling and liquefaction of high-temperature, high-pressure gas, adiabatic free expansion with an expansion valve to obtain a cold two-phase gas-liquid state, A vapor cycle using the latent heat of vaporization for cooling is generally used. FIG. 2 shows a configuration of a conventional cooling system.

【0003】図2に示す従来の冷却システムは、第1伝
熱媒体循環路60、第2伝熱媒体流路50および第3伝
熱媒体循環路66の三つの流体流路で構成されている。
それぞれの流体流路の間は熱交換器を介して熱の授受が
行われる。すなわち、第1伝熱媒体循環路60と第2伝
熱媒体流路50は第1熱交換器51を介して、また第1
伝熱媒体循環路60と第3伝熱媒体循環路66は第2熱
交換器52を介して熱の授受が行われる。これら各伝熱
媒体循環路の主な構成はつぎのとおりである。すなわ
ち、第1伝熱媒体循環路60は、冷媒ガスである第1伝
熱媒体、例えば代替フロンガスの循環路で、モータ53
Aで駆動されるコンプレッサ53、制御弁56、第1熱
交換器(コンデンサ)51、膨張弁55、第2熱交換器
(エバポレータ)52が循環路を構成する管路で接続さ
れている。さらに、コンプレッサ53をバイパスする管
路が設けられ制御弁54が介設されている。またコンプ
レッサ53の出口の管路には流量センサ59、圧力セン
サ64が、エバポレータ52の出口の管路には温度セン
サ57、圧力センサ58が介設されている。第3伝熱媒
体循環路66は伝熱媒体例えばエチレングリコール混合
液(第3伝熱媒体)の循環路で、ポンプ61、第2熱交
換器52および熱負荷62が循環路を構成する管路で接
続されている。また熱負荷の入口の管路には温度センサ
65が介設されている。
[0003] The conventional cooling system shown in FIG. 2 is composed of three fluid flow paths of a first heat transfer medium circulation path 60, a second heat transfer medium flow path 50 and a third heat transfer medium circulation path 66. .
Heat is exchanged between the respective fluid flow paths via a heat exchanger. That is, the first heat transfer medium circulation path 60 and the second heat transfer medium flow path 50 are connected via the first heat exchanger 51 to the first heat transfer medium
The heat transfer medium circulation path 60 and the third heat transfer medium circulation path 66 exchange heat through the second heat exchanger 52. The main configuration of each of these heat transfer medium circulation paths is as follows. That is, the first heat transfer medium circulating path 60 is a circulating path of a first heat transfer medium, which is a refrigerant gas, for example, an alternative CFC gas.
A compressor 53, a control valve 56, a first heat exchanger (condenser) 51, an expansion valve 55, and a second heat exchanger (evaporator) 52, which are driven by A, are connected by a pipe constituting a circulation path. Further, a pipe line bypassing the compressor 53 is provided, and a control valve 54 is provided. In addition, a flow sensor 59 and a pressure sensor 64 are provided in an outlet pipe of the compressor 53, and a temperature sensor 57 and a pressure sensor 58 are provided in an outlet pipe of the evaporator 52. The third heat transfer medium circulation path 66 is a circulation path for a heat transfer medium, for example, an ethylene glycol mixed liquid (third heat transfer medium), and a pipe in which the pump 61, the second heat exchanger 52, and the heat load 62 form a circulation path. Connected by Further, a temperature sensor 65 is provided in a pipe at the inlet of the heat load.

【0004】つぎにこの従来の冷却システムの作動につ
いて説明する。第1伝熱媒体循環路60では、第1伝熱
媒体となるガスは、モータ53Aで駆動されるコンプレ
ッサ53で断熱圧縮され、高温高圧となったガスは三方
弁である制御弁56をとおってコンデンサ51に導か
れ、コンデンサ51の第1伝熱媒体循環路60の対向流
路である第2伝熱媒体流路50を流れる第2伝熱媒体
(例えばヒートシンクとなる燃料タンクの燃料など)と
の間で熱交換し冷却され、大部分は液化して膨張弁55
に導かれ、膨張弁55で断熱自由膨張し、寒冷な気液2
相状態の流体(気液2相流体)となる。この気液2相流
体は、エバポレータ52に導かれ、エバポレータ52に
おける第1伝熱媒体の対向流路である第3伝熱媒体循環
路66を循環している第3伝熱媒体(例えばエチレング
リコール混合液)との間で熱交換し、液相部の気化潜熱
で第3伝熱媒体を冷却し気化する。その気化した第1伝
熱媒体はコンプレッサ53の入口に入力され再び圧縮さ
れて循環する。第3伝熱媒体循環路66では、ポンプ6
1により第3伝熱媒体が循環されており、前記のとおり
エバポレータ52で冷却された第3伝熱媒体は、熱負荷
62に導かれ熱負荷62を冷却して再びポンプ61の入
口に戻され循環する。
Next, the operation of the conventional cooling system will be described. In the first heat transfer medium circulation path 60, the gas serving as the first heat transfer medium is adiabatically compressed by the compressor 53 driven by the motor 53A, and the high temperature and high pressure gas passes through the control valve 56 which is a three-way valve. A second heat transfer medium (for example, fuel in a fuel tank serving as a heat sink) which is guided by the condenser 51 and flows through a second heat transfer medium flow path 50 which is a flow path facing the first heat transfer medium circulation path 60 of the condenser 51; And heat is exchanged between them, and most of them are liquefied and expanded.
, And is insulated and freely expanded by the expansion valve 55, and the cold gas-liquid 2
It becomes a fluid in a phase state (gas-liquid two-phase fluid). This gas-liquid two-phase fluid is guided to the evaporator 52 and circulates through a third heat transfer medium circulation path 66 that is a flow path facing the first heat transfer medium in the evaporator 52 (for example, ethylene glycol). And the third heat transfer medium is cooled and vaporized by the latent heat of vaporization of the liquid phase. The vaporized first heat transfer medium is input to the inlet of the compressor 53, is compressed again, and circulates. In the third heat transfer medium circulation path 66, the pump 6
1, the third heat transfer medium is circulated, and the third heat transfer medium cooled by the evaporator 52 is guided to the heat load 62 to cool the heat load 62, and is returned to the inlet of the pump 61 again. Circulate.

【0005】温度センサ65で検出する第3伝熱媒体の
温度が目標値より低く(高く)なったときにはモータ5
3Aの回転速度を下降(上昇)させ、コンプレッサ53
の入口圧力を高く(低く)することによりエバポレータ
52での第1伝熱媒体の流量を減少(増加)させて第3
伝熱媒体の温度を上げる(下げる)温度制御がコントロ
ーラ63により行われている。
When the temperature of the third heat transfer medium detected by the temperature sensor 65 becomes lower (higher) than the target value, the motor 5
The rotation speed of the 3A is lowered (increased) and the compressor 53
The flow rate of the first heat transfer medium in the evaporator 52 is reduced (increased) by increasing (lowering) the
Temperature control for increasing (decreasing) the temperature of the heat transfer medium is performed by the controller 63.

【0006】さらに、システムを安定に作動させるた
め、第1伝熱媒体循環路60では、コンプレッサ入口の
温度センサ57、圧力センサ58の信号を用いてコンプ
レッサ53に流入する第1伝熱媒体が液状のままで流入
しないように膨張弁55の開度を制御する完全ガス化制
御がコントローラ63で行われている。
Further, in order to stably operate the system, the first heat transfer medium flowing into the compressor 53 in the first heat transfer medium circulation path 60 is supplied to the compressor 53 using signals from the temperature sensor 57 and the pressure sensor 58 at the compressor inlet. Complete gasification control for controlling the opening degree of the expansion valve 55 so as not to flow as it is is performed by the controller 63.

【0007】またコンプレッサ53に流入する第1伝熱
媒体の流量がコンプレッサ入口圧力と出口圧力の比(圧
縮比)に依存する一定の値を下回るとサージングが発生
し不安定になるため流量センサ59によるガス流量、コ
ンプレッサ入口の圧力センサ58、出口の圧力センサ6
4によるそれぞれの圧力を検出し、コンプレッサ53に
流入するガスの流量が一定値以下にならないようにコン
プレッサ53をバイパスする管路に介設された制御弁5
4の開度を制御するコンプレッササージング防止制御が
コントローラ63で行われている。
If the flow rate of the first heat transfer medium flowing into the compressor 53 falls below a certain value which depends on the ratio of the inlet pressure to the outlet pressure (compression ratio) of the compressor, surging occurs and the flow becomes unstable. Flow rate, compressor inlet pressure sensor 58, outlet pressure sensor 6
The control valve 5 is provided in a pipe that bypasses the compressor 53 so that the flow rate of the gas flowing into the compressor 53 does not become lower than a predetermined value.
The controller 63 performs compressor surging prevention control for controlling the opening degree of the compressor 4.

【0008】さらにコンプレッサ53で圧縮された第1
伝熱媒体が第2伝熱媒体によりコンデンサ51で過度に
冷却されるとガスが液化することにより圧力が下がりす
ぎ、膨張弁55で必要な寒冷が得られなくなるので、第
1伝熱媒体のコンデンサ51の入口での圧力を圧力セン
サ64で検出し、圧力が所定範囲に入るように三方弁5
6によりコンデンサ51をバイパスする第1伝熱媒体の
量を調節するコンデンサ圧力の維持制御も前記コントロ
ーラ63で行われている。
Further, the first compressed by the compressor 53
If the heat transfer medium is excessively cooled in the condenser 51 by the second heat transfer medium, the gas will be liquefied and the pressure will decrease too much, and the required cooling will not be obtained in the expansion valve 55. The pressure at the inlet of the valve 51 is detected by a pressure sensor 64, and the three-way valve 5 is controlled so that the pressure falls within a predetermined range.
The controller 63 also controls the maintenance of the condenser pressure for adjusting the amount of the first heat transfer medium that bypasses the condenser 51 by 6.

【0009】[0009]

【発明が解決しようとする課題】従来の冷却システムは
以上のように構成されているが、燃料のみを循環して第
1伝熱媒体の冷却源としたとき、時間とともに燃料温度
が上昇する。これによりコンデンサでの第1伝熱媒体の
液化量が減少し、冷却能力が低下する。一方機体に開口
部を設け外気(ラム空気)を取り込み第1伝熱媒体の冷
却源とした場合、航空機が停止中や極低速で飛行してい
る間はラム空気が十分導入できないので別途ファンなど
の強制送風手段を設ける必要がある。また、航空機の巡
航時にラム空気を取込むと推進の抵抗となるドラッグが
発生する。ドラッグが発生すると燃料消費が増加するの
で、外気を取込んでの冷却は可能な限り少なく押さえる
要求がある。本発明は、このような事情に鑑みてなされ
たものであり、第1伝熱媒体を冷却するヒートシンクと
して、燃料とラム空気など複数の伝熱媒体が使用でき、
かつ航空機の燃料消費量を削減して運転できる冷却シス
テムを提供することを目的とする。
The conventional cooling system is configured as described above. However, when only the fuel is circulated and used as the cooling source for the first heat transfer medium, the fuel temperature rises with time. As a result, the amount of liquefaction of the first heat transfer medium in the condenser decreases, and the cooling capacity decreases. On the other hand, if the airframe is provided with an opening to take in outside air (ram air) and use it as a cooling source for the first heat transfer medium, the ram air cannot be introduced sufficiently while the aircraft is stopped or flying at extremely low speed, so a separate fan It is necessary to provide forced air blowing means. In addition, if ram air is taken in during the cruise of the aircraft, a drag occurs that causes resistance in propulsion. Since the fuel consumption increases when a drag occurs, there is a demand for minimizing cooling by taking in outside air. The present invention has been made in view of such circumstances, and a plurality of heat transfer media such as fuel and ram air can be used as a heat sink for cooling the first heat transfer medium.
It is another object of the present invention to provide a cooling system that can operate with reduced fuel consumption of an aircraft.

【0010】[0010]

【問題を解決するための手段】上記の課題を解決するた
めに本発明の冷却システムは、第1伝熱媒体となる冷媒
ガスをコンプレッサで断熱圧縮し、高温高圧となったガ
スを、第1熱交換器に導き、冷却源となる第2伝熱媒体
との間で熱交換した後、膨張弁に導き断熱自由膨張さ
せ、寒冷な気液2相状態を得て第2熱交換器に導き、そ
の液相部の気化潜熱により冷却目的となる流体を冷却
し、ガスとなってコンプレッサに再入力され循環する第
1伝熱媒体循環路を具備してなる冷却システムにおい
て、前記第1熱交換器の冷却媒体となる前記第2伝熱媒
体の代わりの第4伝熱媒体の循環路である第4伝熱媒体
循環路と、該第4伝熱媒体循環路に前記第1熱交換器と
は別個の複数の熱交換器とを設け、該複数の熱交換器そ
れぞれにおいて別個の冷却源となる流体と第4伝熱媒体
との間で熱交換し得るようにし、各冷却源を単独で用い
たときの問題を解決する冷却システムを構成したことを
特徴とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a cooling system of the present invention adiabatically compresses a refrigerant gas serving as a first heat transfer medium with a compressor and converts the gas having a high temperature and a high pressure into a first gas. After conducting the heat to the heat exchanger and exchanging heat with the second heat transfer medium serving as a cooling source, the heat is guided to the expansion valve and adiabatically free-expanded to obtain a cold gas-liquid two-phase state and guided to the second heat exchanger. A cooling system comprising a first heat transfer medium circulating passage for cooling a fluid to be cooled by the latent heat of vaporization of the liquid phase portion, re-entering a gas as a gas, and circulating the first heat transfer medium. A fourth heat transfer medium circulation path that is a circulation path of a fourth heat transfer medium instead of the second heat transfer medium that serves as a cooling medium of the vessel; and the first heat exchanger is connected to the fourth heat transfer medium circulation path. Is provided with a plurality of separate heat exchangers, and separate cooling is performed in each of the plurality of heat exchangers. And adapted to heat exchange between the fluid and the fourth heat transfer medium as a source, and characterized by being configured the cooling system to solve the problem when using the cooling source alone.

【発明の実施の形態】図1は、本発明が提供する冷却シ
ステムの実施例を示す構成図である。図1に示す本発明
の冷却システムの冷却に係わる流路は、第1伝熱媒体循
環路10、第3伝熱媒体循環路17、第4伝熱媒体循環
路18、第2伝熱媒体流路20、第5伝熱媒体流路24
の五つの流体流路で構成されている。それぞれの流体流
路の間は熱交換器を介して各伝熱媒体間で熱の授受が行
われる。すなわち、第1伝熱媒体循環路10と第4伝熱
媒体循環路18は第1熱交換器1を介して、また第1伝
熱媒体循環路10と第3伝熱媒体循環路17は第2熱交
換器2を介して、また第4伝熱媒体循環路18と第2伝
熱媒体流路20は第3熱交換器21を介して、さらに第
4伝熱媒体循環路18と第5伝熱媒体流路24は第4熱
交換器を介して熱の授受が行われる。
FIG. 1 is a block diagram showing an embodiment of a cooling system provided by the present invention. The flow path relating to the cooling of the cooling system of the present invention shown in FIG. 1 includes a first heat transfer medium circulation path 10, a third heat transfer medium circulation path 17, a fourth heat transfer medium circulation path 18, and a second heat transfer medium flow path. Path 20, fifth heat transfer medium flow path 24
And five fluid flow paths. Heat is exchanged between the heat transfer media between the respective fluid flow paths via the heat exchanger. That is, the first heat transfer medium circulation path 10 and the fourth heat transfer medium circulation path 18 pass through the first heat exchanger 1, and the first heat transfer medium circulation path 10 and the third heat transfer medium circulation path 17 2 through the heat exchanger 2, the fourth heat transfer medium circulation path 18 and the second heat transfer medium flow path 20 through the third heat exchanger 21, and further the fourth heat transfer medium circulation path 18 and the fifth The heat transfer medium flow path 24 exchanges heat via the fourth heat exchanger.

【0011】各伝熱媒体循環路の主な構成はつぎのとお
りである。すなわち、第1伝熱媒体循環路10は、冷媒
ガスである第1伝熱媒体、例えば代替フロンガスの循環
路で、モータ3Aで駆動されるコンプレッサ3、制御弁
16、第1熱交換器(コンデンサ)1、膨張弁5、第2
熱交換器(エバポレータ)2が循環路を構成する管路で
接続されている。さらに、コンプレッサ3をバイパスす
る管路が設けられ制御弁4が介設されている。また、制
御弁16の一つのポート16Bと第1熱交換器1の出口
を接続する第1熱交換器のバイパス管路が設けられてい
る。さらに、コンプレッサ3の出口の管路には流量セン
サ9、圧力センサ15が、エバポレータ2の出口の管路
には温度センサ7、圧力センサ8が介設されている。
The main structure of each heat transfer medium circulation path is as follows. That is, the first heat transfer medium circulating path 10 is a circulating path of a first heat transfer medium, which is a refrigerant gas, for example, an alternative chlorofluorocarbon gas, and the compressor 3 driven by the motor 3A, the control valve 16, the first heat exchanger (condenser) ) 1, expansion valve 5, second
A heat exchanger (evaporator) 2 is connected by a pipe constituting a circulation path. Further, a pipe line bypassing the compressor 3 is provided, and a control valve 4 is provided. In addition, a bypass line of the first heat exchanger that connects one port 16B of the control valve 16 and the outlet of the first heat exchanger 1 is provided. Further, a flow sensor 9 and a pressure sensor 15 are provided in a pipe at an outlet of the compressor 3, and a temperature sensor 7 and a pressure sensor 8 are provided in a pipe at an outlet of the evaporator 2.

【0012】第3伝熱媒体循環路17は伝熱媒体、例え
ばエチレングリコール混合液(第3伝熱媒体)の循環路
で、ポンプ11、第2熱交換器2、熱負荷12が循環路
を構成する管路で接続されている。また熱負荷の入口の
管路には温度センサ14が介設されている。第4伝熱媒
体循環路18は第4伝熱媒体、例えばエチレングリコー
ル混合液の循環路でポンプ19、第3熱交換器21、第
4熱交換器22が循環路を構成する管路で接続されてい
る。第3熱交換器21の第4伝熱媒体の対向路には第2
伝熱媒体流路20が配設されておりその出口には制御弁
23と温度センサ25が介設されている。第4熱交換器
22の第4伝熱媒体の対向路には第5伝熱媒体流路24
が配設されておりその出口には制御弁26が介設されて
いる。
The third heat transfer medium circulation path 17 is a circulation path for a heat transfer medium, for example, an ethylene glycol mixed liquid (third heat transfer medium), and the pump 11, the second heat exchanger 2, and the heat load 12 pass through the circulation path. They are connected by the constituent pipelines. Further, a temperature sensor 14 is provided in a pipe at the inlet of the heat load. The fourth heat transfer medium circulating path 18 is a circulating path of a fourth heat transfer medium, for example, an ethylene glycol mixed liquid, and the pump 19, the third heat exchanger 21, and the fourth heat exchanger 22 are connected by a pipe forming a circulating path. Have been. The second heat exchanger 21 has a second heat transfer medium facing the fourth heat transfer medium.
A heat transfer medium channel 20 is provided, and a control valve 23 and a temperature sensor 25 are provided at the outlet thereof. A fifth heat transfer medium flow path 24 is provided in the fourth heat exchanger 22 in a path facing the fourth heat transfer medium.
The control valve 26 is interposed at the outlet.

【0013】つぎに本発明が提供する図1の冷却システ
ムの作動について説明する。第1伝熱媒体が、モータ3
Aで駆動されるコンプレッサ3で断熱圧縮され、高温・
高圧のガスとなり、コンデンサ1に導かれる。コンデン
サ1の第1伝熱媒体循環路10の対向流路は第4伝熱媒
体循環路18で、高温・高圧のガスは第4伝熱媒体循環
路18を流れる第4伝熱媒体により冷却される。冷却さ
れたガスの大部分は液化し気液2相流体となり、膨張弁
5に導かれ、膨張弁5で断熱自由膨張することにより、
寒冷な気液2相流体となり、エバポレータ2に入力され
る。エバポレータ2の第1伝熱媒体循環路10の対向流
路は第3伝熱媒体循環路25で、前記の寒冷な気液2相
流体は、熱負荷12を冷却するためにポンプ11により
循環されている第3伝熱媒体と熱交換し、気化潜熱によ
り第3伝熱媒体を冷却して気化しコンプレッサ入口にも
どる。第3伝熱媒体循環路17を循環する第3伝熱媒体
により熱負荷12を冷却する。
Next, the operation of the cooling system of FIG. 1 provided by the present invention will be described. The first heat transfer medium is a motor 3
A is adiabatically compressed by the compressor 3 driven by
It becomes a high-pressure gas and is led to the condenser 1. The opposed flow path of the first heat transfer medium circulation path 10 of the condenser 1 is a fourth heat transfer medium circulation path 18, and the high-temperature and high-pressure gas is cooled by the fourth heat transfer medium flowing through the fourth heat transfer medium circulation path 18. You. Most of the cooled gas is liquefied to become a gas-liquid two-phase fluid, which is guided to the expansion valve 5, and is adiabatically and freely expanded by the expansion valve 5.
It becomes a cold gas-liquid two-phase fluid and is input to the evaporator 2. The opposing flow path of the first heat transfer medium circulation path 10 of the evaporator 2 is a third heat transfer medium circulation path 25, and the cold gas-liquid two-phase fluid is circulated by the pump 11 to cool the heat load 12. The third heat transfer medium exchanges heat with the third heat transfer medium, and the third heat transfer medium is cooled and vaporized by the latent heat of vaporization and returns to the compressor inlet. The heat load 12 is cooled by the third heat transfer medium circulating in the third heat transfer medium circulation path 17.

【0014】第4伝熱媒体は、第4伝熱媒体循環路18
に介設された第3熱交換器21の第4伝熱媒体循環路1
8の対向流路である第2伝熱媒体流路20を流れる流体
(例えばエンジンに供給される燃料)との間で熱交換し
冷却される。さらに第4伝熱媒体は、第4伝熱媒体循環
路18に介設された第4熱交換器22の第4伝熱媒体循
環路18の対向流路である第5伝熱媒体流路24を流れ
る流体(例えば機外から取り込まれたラム空気)との間
でも熱交換し冷却される。
The fourth heat transfer medium is connected to a fourth heat transfer medium circulation path 18.
Heat transfer medium circulation path 1 of third heat exchanger 21 interposed in
The heat exchange with the fluid (for example, fuel supplied to the engine) flowing through the second heat transfer medium flow path 20, which is the flow path opposite to the flow path 8, is cooled. Further, the fourth heat transfer medium includes a fifth heat transfer medium flow path 24 which is a flow path opposite to the fourth heat transfer medium circulation path 18 of the fourth heat exchanger 22 provided in the fourth heat transfer medium circulation path 18. Is also exchanged with a fluid flowing through the air (for example, ram air taken in from outside) to be cooled.

【0015】温度センサ14で検出する出力信号はコン
トローラ13に入力され、第3伝熱媒体の温度が目標値
より低く(高く)なったときには、モータ3Aの回転速
度を下降(上昇)させ、コンプレッサ3の入口圧力を高
く(低く)することによりエバポレータ2での第1伝熱
媒体の流量を減少(増加)させて第3伝熱媒体の温度を
上げる(下げる)ように温度制御される。
The output signal detected by the temperature sensor 14 is input to the controller 13, and when the temperature of the third heat transfer medium becomes lower (higher) than the target value, the rotation speed of the motor 3A is decreased (increased), and The temperature is controlled so that the flow rate of the first heat transfer medium in the evaporator 2 is decreased (increased) and the temperature of the third heat transfer medium is increased (decreased) by increasing (lowering) the inlet pressure of the third heat transfer medium.

【0016】さらに、システムを安定に作動させるた
め、前記第1伝熱媒体循環路10では温度センサ7、圧
力センサ8の信号がコントローラ13に入力されコンプ
レッサ3に流入する第1伝熱媒体が液状のままで流入し
ないように膨張弁5の開度を制御する前記完全ガス化制
御が行われている。またコンプレッサ3に流入する第1
伝熱媒体の流量が減少しすぎるとサージングが発生し不
安定になるため、流量センサ9によりガス流量、圧力セ
ンサ8、15により圧力を検出し、これらの出力信号も
コントローラ13に入力され、コンプレッサ3に流入す
るガスの流量が一定値以下にならないようにコンプレッ
サ3のバイパス管路に介設された制御弁4の開度を制御
する前記コンプレッササージング防止制御が行われてい
る。さらにコンプレッサ3で圧縮された第1伝熱媒体が
第4伝熱媒体によりコンデンサ1で過度に冷却されない
ように、第1伝熱媒体のコンデンサ1の入口での圧力を
圧力センサ15で検出し、圧力が所定範囲に入るように
三方弁16の一方のポート16Aを通って第1熱交換器
1をバイパスする第1伝熱媒体の量を調節する前記コン
デンサ圧力の維持制御も前記コントローラ13で行われ
ている。
Further, in order to operate the system stably, the signals of the temperature sensor 7 and the pressure sensor 8 are input to the controller 13 in the first heat transfer medium circulating path 10 so that the first heat transfer medium flowing into the compressor 3 is liquid. The complete gasification control for controlling the opening of the expansion valve 5 so as not to flow as it is is performed. In addition, the first
If the flow rate of the heat transfer medium decreases too much, surging occurs and becomes unstable. Therefore, the gas flow rate is detected by the flow rate sensor 9 and the pressure is detected by the pressure sensors 8 and 15, and the output signals thereof are also input to the controller 13, and the compressor 13 The compressor surging prevention control is performed in which the opening of a control valve 4 provided in a bypass pipe of the compressor 3 is controlled so that the flow rate of gas flowing into the compressor 3 does not become lower than a predetermined value. Further, the pressure sensor 15 detects the pressure of the first heat transfer medium at the inlet of the condenser 1 so that the first heat transfer medium compressed by the compressor 3 is not excessively cooled by the condenser 1 by the fourth heat transfer medium. The controller 13 also controls the condenser pressure to control the amount of the first heat transfer medium that bypasses the first heat exchanger 1 through one port 16A of the three-way valve 16 so that the pressure falls within a predetermined range. Have been done.

【0017】本発明の冷却システムは、以上の構成によ
り、熱負荷12で発生する熱は第3伝熱媒体により冷却
され、温度が上昇した第3伝熱媒体は第1伝熱媒体循環
路10のエバポレータ2で冷却され、第1伝熱媒体が獲
得した熱はコンプレッサ3で圧縮された後コンデンサ1
で第4伝熱媒体循環路18を循環する第4伝熱媒体で冷
却される。さらに第4伝熱媒体は、第3熱交換器21の
第2伝熱媒体流路20を流れヒートシンクである第2伝
熱媒体例えば航空機の燃料で冷却される。すなわち、熱
負荷12で発生した熱は、ヒートシンクである燃料に運
ばれ燃料で冷却され、運ばれた熱は燃料の温度上昇の形
で蓄積される。しかし燃料は温度が上がりすぎると第1
伝熱媒体が冷えにくくなり、第1伝熱媒体の圧力が上が
ってコンプレッサの負荷が増すとともに冷えにくくなる
など限界がある。そこで第4熱伝熱媒体循環路18に介
設されている第4熱交換器22の第5伝熱媒体流路22
を流れる第5伝熱媒体例えば機外から取り入れられるラ
ム空気も冷却に使用し、第4伝熱媒体を冷却して熱は外
気に放熱される。しかし航空機が地上にあるか極低速で
飛行している間は外気を取り込むためには第5伝熱媒体
流路20にファンなどの強制送風手段を設ける必要があ
る。また航空機の巡航時ラム空気を取り込むと機体の推
進の抵抗となるドラッグが発生する。ドラッグが発生す
ると燃料消費が増加するので、外気を取り込んでの冷却
は可能な限り少なく押さえる要求がある。本発明の冷却
システムでは、ヒートシンクとして、燃料と外気とが両
方利用できるようにシステムを構成し、地上または低速
時には、燃料をヒートシンクとし、巡航中には燃料温度
を温度センサー25で検出し、コントローラ13で監視
しながら燃料をヒートシンクとして使用し、ラム空気の
取入れ口に介設されている制御弁26を閉にする。そし
て、燃料温度が限界に近づいた場合制御弁26を開にし
ラム空気を取込んで冷却し得るようにする。このような
システムの運転制御もコントローラ13により行う。な
お、図示例では、制御弁16が第1伝熱媒体循環路で第
1熱交換器1を通る管路とバイパス管路に介設されてい
るが、第4伝熱媒体循環路18の第1熱交換器を通る管
路とそのバイパス管路に介設しても良い。また制御弁2
2は三方弁を用いているが、2個の制御弁に置き換える
こともできる。
According to the cooling system of the present invention, the heat generated by the heat load 12 is cooled by the third heat transfer medium, and the third heat transfer medium whose temperature has risen is increased by the first heat transfer medium circulation path 10. The heat obtained by the first heat transfer medium is cooled by the evaporator 2 of the
At the fourth heat transfer medium circulating through the fourth heat transfer medium circulation path 18. Further, the fourth heat transfer medium flows through the second heat transfer medium passage 20 of the third heat exchanger 21 and is cooled by the second heat transfer medium which is a heat sink, for example, aircraft fuel. That is, the heat generated by the heat load 12 is transferred to the fuel as the heat sink and cooled by the fuel, and the transferred heat is accumulated in the form of a rise in the temperature of the fuel. However, if the fuel temperature rises too high,
There is a limit, for example, that the heat transfer medium becomes difficult to cool, the pressure of the first heat transfer medium increases, the load on the compressor increases, and the heat transfer medium becomes hard to cool. Therefore, the fifth heat transfer medium flow path 22 of the fourth heat exchanger 22 provided in the fourth heat transfer medium circulation path 18
The fifth heat transfer medium flowing through the air, for example, ram air taken in from outside the machine is also used for cooling, and the fourth heat transfer medium is cooled to release the heat to the outside air. However, while the aircraft is on the ground or flying at an extremely low speed, it is necessary to provide forced air blowing means such as a fan in the fifth heat transfer medium flow path 20 in order to take in outside air. In addition, when ram air is taken in during the cruise of the aircraft, drag occurs that is a resistance to the propulsion of the aircraft. Since the fuel consumption increases when a drag occurs, there is a need to reduce the cooling by taking in the outside air as much as possible. In the cooling system of the present invention, the system is configured so that both fuel and outside air can be used as a heat sink. While monitoring at 13, the fuel is used as a heat sink and the control valve 26 interposed at the ram air intake is closed. Then, when the fuel temperature approaches the limit, the control valve 26 is opened to take in the ram air and cool it. The operation control of such a system is also performed by the controller 13. In the illustrated example, the control valve 16 is provided in the first heat transfer medium circulation path in the pipe passing through the first heat exchanger 1 and in the bypass pipe. (1) It may be interposed in a pipe passing through the heat exchanger and its bypass pipe. Control valve 2
2 uses a three-way valve, but can be replaced with two control valves.

【発明の効果】本発明の冷却システムは上記のように構
成されており、ヒートシンクとして複数の伝熱媒体、例
えば燃料とラム空気を併用することにより、各伝熱媒体
を単独で用いたときの欠点を補うことができ、燃料消費
が最も少なくなる運転を可能にする。ヒートシンクを燃
料のみに頼るシステムに比べ、航空機の運用範囲が拡大
され、かつラム空気のみに頼るシステムに比べ燃料消費
が軽減でき、複数のヒートシンクを併用することにより
最も燃料消費の少なくなる運転が可能な冷却システムを
提供することができる。
The cooling system according to the present invention is constructed as described above. By using a plurality of heat transfer media as a heat sink, for example, fuel and ram air together, each cooling medium can be used alone. The disadvantages can be compensated and the operation with the lowest fuel consumption is possible. Compared to systems that rely only on fuel for heat sinks, the operating range of the aircraft is expanded, and fuel consumption can be reduced compared to systems that rely solely on ram air, and operation with the least fuel consumption is possible by using multiple heat sinks together It is possible to provide a simple cooling system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる冷却システムの一実施例の構成
を示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment of a cooling system according to the present invention.

【図2】従来の冷却システムの構成を示す図である。FIG. 2 is a diagram showing a configuration of a conventional cooling system.

【符号の説明】[Explanation of symbols]

1・・第1熱交換器(コンデンサ) 2・・第2熱交
換器(エバポレータ) 3・・コンプレッサ 3A・・モータ 4、16、23、26・・制御弁 5・・膨張弁 7、14、25・・温度センサ 8、15・・圧
力センサ 9・・流量センサ 10・・第1伝
熱媒体循環路 11・・ポンプ 12・・熱負荷 13・・コントローラ 17・・第3伝
熱媒体循環路 18・・第4伝熱媒体循環路 19・・ポンプ 20・・第2伝熱媒体流路 21・・第3熱
交換器 22・・第4熱交換器 24・・第5伝
熱媒体流路
1. First heat exchanger (condenser) 2. Second heat exchanger (evaporator) 3. Compressor 3A. Motor 4.16,23,26..Control valve 5.Expansion valve 7,14. 25 ··· Temperature sensor 8, 15 ··· Pressure sensor 9 ··· Flow rate sensor 10 · · · First heat transfer medium circulation path 11 · · · Pump 12 · · · Heat load 13 · · · Controller 17 · · · Third heat transfer medium circulation path 18. Fourth heat transfer medium circulation path 19 Pump 20 Second heat transfer medium path 21 Third heat exchanger 22 Fourth heat exchanger 24 Fifth heat transfer medium flow path

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1伝熱媒体となる冷媒ガスをコンプレッ
サで断熱圧縮し、高温高圧となったガスを、第1熱交換
器に導き、冷却源となる第2伝熱媒体との間で熱交換し
た後、膨張弁に導き断熱自由膨張させ、寒冷な気液2相
状態を得て第2熱交換器に導き、その液相部の気化潜熱
により冷却目的となる流体を冷却し、ガスとなってコン
プレッサに再入力され循環する第1伝熱媒体循環路を具
備してなる冷却システムにおいて、前記第1熱交換器の
冷却媒体となる前記第2伝熱媒体の代わりの第4伝熱媒
体の循環路である第4伝熱媒体循環路と、該第4伝熱媒
体循環路に前記第1熱交換器とは別個の複数の熱交換器
とを設け、該複数の熱交換器それぞれにおいて別個の冷
却源となる流体と第4伝熱媒体との間で熱交換し得るよ
うにしたことを特徴とする冷却システム。
1. A refrigerant gas serving as a first heat transfer medium is adiabatically compressed by a compressor, and a high-temperature and high-pressure gas is led to a first heat exchanger to be interposed between the first heat exchanger and a second heat transfer medium serving as a cooling source. After the heat exchange, the liquid is guided to the expansion valve and adiabatically expanded freely, a cold gas-liquid two-phase state is obtained, the liquid is guided to the second heat exchanger, and the liquid to be cooled is cooled by the latent heat of vaporization of the liquid phase, and the gas is cooled. And a fourth heat transfer in place of the second heat transfer medium serving as a cooling medium for the first heat exchanger. A fourth heat transfer medium circulation path that is a medium circulation path; and a plurality of heat exchangers that are separate from the first heat exchanger provided in the fourth heat transfer medium circulation path. In which heat exchange can be performed between a fluid serving as a separate cooling source and the fourth heat transfer medium. Cooling system to be.
JP31480898A 1998-11-05 1998-11-05 Aircraft cooling system Expired - Fee Related JP4265008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31480898A JP4265008B2 (en) 1998-11-05 1998-11-05 Aircraft cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31480898A JP4265008B2 (en) 1998-11-05 1998-11-05 Aircraft cooling system

Publications (2)

Publication Number Publication Date
JP2000146357A true JP2000146357A (en) 2000-05-26
JP4265008B2 JP4265008B2 (en) 2009-05-20

Family

ID=18057858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31480898A Expired - Fee Related JP4265008B2 (en) 1998-11-05 1998-11-05 Aircraft cooling system

Country Status (1)

Country Link
JP (1) JP4265008B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501404A (en) * 2006-08-28 2010-01-21 エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system for cooling a heat load in an aircraft and method for operating such a cooling system
FR2936224A1 (en) * 2008-09-25 2010-03-26 Airbus France SYSTEM FOR MANAGING THE THERMAL FLOW OF AN AIRCRAFT.
CN102381479A (en) * 2011-09-14 2012-03-21 中国航空工业集团公司西安飞机设计研究所 Comprehensive environmental control/liquid cold and heat energy management system for non-stamping air inlet duct
CN102390537A (en) * 2011-09-14 2012-03-28 中国航空工业集团公司西安飞机设计研究所 Comprehensive heat energy management system for environmental control system and liquid cooling system
CN107917558A (en) * 2017-11-13 2018-04-17 北京航空航天大学 A kind of compressor rotary speed and expansion valve control method of varying load sweat cooling system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501404A (en) * 2006-08-28 2010-01-21 エアバス ドイチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング Cooling system for cooling a heat load in an aircraft and method for operating such a cooling system
FR2936224A1 (en) * 2008-09-25 2010-03-26 Airbus France SYSTEM FOR MANAGING THE THERMAL FLOW OF AN AIRCRAFT.
US8516792B2 (en) 2008-09-25 2013-08-27 Airbus Operations Sas System for managing the heat fluxes of an aircraft
CN102381479A (en) * 2011-09-14 2012-03-21 中国航空工业集团公司西安飞机设计研究所 Comprehensive environmental control/liquid cold and heat energy management system for non-stamping air inlet duct
CN102390537A (en) * 2011-09-14 2012-03-28 中国航空工业集团公司西安飞机设计研究所 Comprehensive heat energy management system for environmental control system and liquid cooling system
CN107917558A (en) * 2017-11-13 2018-04-17 北京航空航天大学 A kind of compressor rotary speed and expansion valve control method of varying load sweat cooling system
CN107917558B (en) * 2017-11-13 2019-12-03 北京航空航天大学 A kind of compressor rotary speed and expansion valve control method of varying load sweat cooling system

Also Published As

Publication number Publication date
JP4265008B2 (en) 2009-05-20

Similar Documents

Publication Publication Date Title
US5598718A (en) Refrigeration system and method utilizing combined economizer and engine coolant heat exchanger
US9156333B2 (en) System for the heating, ventilation, and/or air conditioning of a vehicle, comprising at least one heat exchanger through which a heat-transfer fluid flows
KR940020058A (en) Regenerative air conditioning system and defrosting method
CN108700347A (en) System and method for controlling refrigeration system
US4932221A (en) Air-cooled cooling apparatus
US4510762A (en) Heat recovery method
KR102108241B1 (en) Double helium compressor
CN108116183A (en) A kind of control method of heat management system
JP4265008B2 (en) Aircraft cooling system
US3848664A (en) Heating/cooling apparatus
JPH0651756U (en) Cooling system
JP2003130428A (en) Connection type cold/hot water device
KR100258235B1 (en) Surging-proof device of turbo refrigerator
JP4023002B2 (en) Aircraft cooling system
JP3360362B2 (en) Refrigeration equipment
JP2531507Y2 (en) Super cooling water production equipment
JPH11182948A (en) Air conditioner
JP2887976B2 (en) Cooling system
US4420941A (en) Cooling system
JP2000088360A (en) Cooling system
EP1260776B1 (en) A heat exchanger for an air conditioning system
CN215930185U (en) Double-cold-source temperature and humidity control system
CN214420170U (en) Air conditioning system and automobile
US11800692B2 (en) System and method for data center cooling with carbon dioxide
JPH06272993A (en) Engine-driven cooler/heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees