KR100258235B1 - Surging-proof device of turbo refrigerator - Google Patents

Surging-proof device of turbo refrigerator Download PDF

Info

Publication number
KR100258235B1
KR100258235B1 KR1019970049942A KR19970049942A KR100258235B1 KR 100258235 B1 KR100258235 B1 KR 100258235B1 KR 1019970049942 A KR1019970049942 A KR 1019970049942A KR 19970049942 A KR19970049942 A KR 19970049942A KR 100258235 B1 KR100258235 B1 KR 100258235B1
Authority
KR
South Korea
Prior art keywords
cold water
heat exchanger
temperature control
water line
line
Prior art date
Application number
KR1019970049942A
Other languages
Korean (ko)
Other versions
KR19990027477A (en
Inventor
이창익
Original Assignee
황한규
만도공조주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황한규, 만도공조주식회사 filed Critical 황한규
Priority to KR1019970049942A priority Critical patent/KR100258235B1/en
Publication of KR19990027477A publication Critical patent/KR19990027477A/en
Application granted granted Critical
Publication of KR100258235B1 publication Critical patent/KR100258235B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

PURPOSE: A surging prevention system for turbo refrigerator is provided to achieve an increased operational stability and reliability of the turbo refrigerator by suitably decreasing the cooling capacity in accordance with the required cooling load without decreasing refrigerant flow amount. CONSTITUTION: A system comprises a compressor(P), a condenser(C), a flow control orifice(F) and an evaporator(E) connected in sequential through a refrigerant line(L1), a cooling tower connected to the condenser through a coolant water line(L2), an air control unit(A) connected to the evaporator through a cold water line(L5), a temperature control heat exchanger(H) for selectively heat exchanging the coolant water being supplied to the condenser and the cold water being supplied to the air control unit, an auxiliary coolant water line(L7) for connecting the coolant water line and the temperature control heat exchanger such that a portion of the coolant water is branched off to the temperature control heat exchanger, an auxiliary cold water line(L8) for connecting the cold water line and the temperature control heat exchanger such that a portion of the a portion of the cold water is branched off to the temperature control heat exchanger, and a cold water amount control valve(S) mounted at the inlet side of the auxiliary cold water line or auxiliary water coolant line, and which controls cold water flow with respect to the temperature control heat exchanger.

Description

터보냉동기의 서징 방지장치Surging device of turbo chiller

본 발명은 냉각탑(cooling tower)을 이용하는 대용량의 터보냉동기(turbo chiller)에 관한 것으로, 더 상세하게는 냉동부하의 감소에 따른 압축기(compressor)의 서징(surging)현상을 방지하는 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a large capacity turbo chiller using a cooling tower, and more particularly, to an apparatus for preventing surging of a compressor due to a decrease in refrigeration load.

주지하다시피 터보냉동기는 통상의 냉동사이클(cooling cycle)을 이용하는 대용량의 공기조절장치로, 냉매(冷媒)의 상태변화에 따른 기화열(氣化熱)에 의해 냉각작용을 수행하게 된다. 이에 따라 터보냉동기는 특히 대형건물등의 중앙냉방장치에주로 사용되고 있다.As is well known, a turbo chiller is a large-capacity air conditioner using a conventional cooling cycle, and performs a cooling operation by heat of vaporization due to a change in state of a refrigerant. Accordingly, turbo chillers are mainly used for central cooling devices such as large buildings.

도 1에는 이러한 터보냉동기의 종래의 구성을 개략적으로 도시하였다. 이것은 원심식 압축기(P)에서 고온 고압으로 압축된 냉매가스가 냉매라인(line:L1)을 따라 응축기(condenser:C)의 쉘(shell)로 유입되고, 그 쉘내의 냉각수코일과 냉각탑(T) 사이에서 냉각수라인(L2,L3)을 따라 순환하는 냉각수와의 열교환에 의해 액화된다. 액화된 냉매는 유량 조절 오리피스(flow control orifice:F)를 통해 증발기(evaporator:E)의 쉘로 유입되고, 그 쉘내의 냉수코일과 공기조절유닛(air handling unit:A) 사이에서 냉수라인(L4,L5)을 따라 순환하는 냉수와의 열교환으로 기화됨으로써 냉각된 뒤 압축기(P)로 유입된다. 이에 따라 차가워진 냉수가 공기조절유닛(A)에서 공기와의 열교환에 의해 공기를 냉각시키고, 이 냉기를 덕트(duct:도시하지 않음)를 통해 각 룸(room)으로 공급함으로써 건물을 냉방하게 된다.Figure 1 schematically shows a conventional configuration of such a turbo chiller. This is the refrigerant gas compressed by the high temperature and high pressure in the centrifugal compressor (P) flows into the shell of the condenser (C) along the refrigerant line (L1), the cooling water coil and the cooling tower (T) in the shell. The liquid is liquefied by heat exchange with the cooling water circulating along the cooling water lines L2 and L3. The liquefied refrigerant flows into the shell of the evaporator (E) through a flow control orifice (F) and between the cold water coil and the air handling unit (A) in the shell, L4, It is cooled by being evaporated by heat exchange with cold water circulating along L5) and then flowed into the compressor P. Accordingly, the cold cold water cools the air by heat exchange with the air in the air conditioning unit A, and cools the building by supplying the cool air to each room through a duct (not shown). .

한편 이러한 터보냉동기를 봄이나 가을 등 그 전체성능이 필요치 않을때에 운전할 경우에는 외부온도가 그다지 높지 않기 때문에 냉방성능을 적절히 감소시켜 운전하게 된다. 이를 위해 종래에는 설정온도에 따라 압축기(P)의 베인(vane) 개도를 축소시켜 압축기(P)에 대한 냉매유입량을 적절히 감소시킴으로써 그 냉방능력을 감소 운전하고 있다.On the other hand, when the turbo cooler is operated when its overall performance is not necessary, such as spring or autumn, the external temperature is not so high, so the cooling performance is appropriately reduced. To this end, in the related art, the vane opening of the compressor P is reduced according to the set temperature to appropriately reduce the amount of refrigerant flowing into the compressor P, thereby reducing its cooling capacity.

그런데 이 경우 압축기(P)에서는 냉매의 유량감소에 의해 그 계(係)가 자려진동(自勵振動)을 일으켜 특유의 일정한 주기로 토출압력 및 토출량이 변동하는 이른 바 서징(surging)현상이 발생하게 된다. 이로 인해 압축기(P)내에서 냉매의 역류가 일어나 그 입,출구측의 압력차가 크게 변하고, 소음진동이 발생할 뿐만 아니라 압축기(P)로 흡입되는 냉매유량이 큰 폭으로 증감되어 모터(motor)의 전류치가 크게 변동하는 등 시스템이 상당히 불안정해지게 된다.In this case, however, the compressor P causes the system to vibrate due to the decrease in the flow rate of the refrigerant, so that the so-called surging phenomenon occurs in which the discharge pressure and the discharge amount fluctuate at specific constant periods. do. As a result, a reverse flow of the refrigerant occurs in the compressor P, so that the pressure difference between the inlet and the outlet side is greatly changed, the noise vibration is generated, and the flow rate of the refrigerant sucked into the compressor P is greatly increased and decreased. The system may become very unstable, such as large fluctuations in current values.

이에 따라 종래에는 응축기(C)와 증발기(E)를 별도의 바이패스라인(L6)으로 직접 연결하고, 이 바이패스라인(L6)에 압축기(P)의 베인과 링크(link)로 연결되는 바이패스 밸브(V)를 구비하여, 베인의 개도 감소에 따라 바이패스 밸브(V)가 동시에 열려 고압의 가스냉매 일부를 증발기(E)로 바이패스 시킴으로써 냉매량 감소에 따른 압축기(P)의 서징을 방지하고 있다.Accordingly, in the related art, the condenser C and the evaporator E are directly connected by separate bypass lines L6, and the bypass lines L6 are connected by vanes and links of the compressor P to the bypass lines L6. The pass valve (V) is provided, and the bypass valve (V) is opened at the same time as the opening degree of the vane decreases, thereby bypassing a part of the high-pressure gas refrigerant to the evaporator (E) to prevent surging of the compressor (P) by reducing the amount of refrigerant. Doing.

그러나 이러한 바이패스 밸브(V)는 터보냉동기의 제작시 일체로 제작되는 것이므로 터보냉동기의 설치후 추가설치나 삭제가 불가능한 문제가 있었다. 이로 인해 바이패스 밸브(V)를 구비하지 않은 터보냉동기가 실제 설치되어 여름철 운전을 하고난 후 봄, 가을 등의 운전시에 서징을 일으킬 경우 별다른 대책이 없을 뿐 아니라 봄, 가을 운전이 필요치 않을 경우에는 불필요한 장치의 구비로 원가상승을 유발하게 된다. 또한 냉방부하량에 따라 압축기(P)의 베인 개도가 자동으로 조절되도록 구성해야 함과 함께 별도의 바이패스 밸브(V)를 구비해야 하므로 시스템의 구성이 상당히 어렵고 복잡해지게 된다.However, since the bypass valve (V) is manufactured integrally at the time of manufacturing the turbo chiller, there is a problem that it cannot be added or deleted after the turbo chiller is installed. As a result, if a turbo chiller without a bypass valve (V) is actually installed and causes surging during operation during spring and autumn after summer operation, there is no special countermeasure. There is an unnecessary device in the cost rises. In addition, the vane opening of the compressor (P) should be configured to be automatically adjusted according to the cooling load, and a separate bypass valve (V) should be provided, which makes the configuration of the system quite difficult and complicated.

한편 별도로 도시하지는 않았으나 압축기(P)에 그 회전수를 조절하는 인버터(inverter)를 구비하여, 냉방능력의 감소시 유량감소에 따라 압축기(P)의 회전수를 낮춤으로써 서징을 방지하고 있기도 하나, 이 역시 냉방부하량에 따라 압축기(P)의 베인 개도가 조절되도록 구성해야 함은 물론 고가의 인버터 장치가 소요되므로 터보냉동기의 구성이 복잡해지고 원가가 크게 상승하는 문제가 있었다.Although not shown separately, an inverter (Inverter) is provided in the compressor (P) to control the rotational speed, so that the surging is prevented by lowering the rotational speed of the compressor (P) in accordance with the flow rate decrease when the cooling capacity is reduced, This also has to be configured to adjust the vane opening of the compressor (P) in accordance with the cooling load, as well as the expensive inverter device is complicated configuration of the turbo-cooler has a problem that the cost is greatly increased.

본 발명의 목적은 상술한 종래의 문제들을 감안하여 냉매의 유량을 감소시키지 않고서도 요구되는 냉방부하에 따라 냉방능력을 적절히 감소시킬 수 있으며, 필요에 따라 자유롭게 설치 및 제거할 수 있는 터보냉동기의 서징 방지장치를 제공하는 것이다.The object of the present invention is to reduce the cooling capacity according to the required cooling load without reducing the flow rate of the refrigerant in consideration of the above-mentioned conventional problems, the surging of the turbo-cooler that can be freely installed and removed as needed It is to provide a prevention device.

이와 같은 목적을 달성하기 위해 본 발명에 의한 터보냉동기의 서징 방지장치는, 냉매라인을 통해 상호 순차적으로 연결되어 냉매를 순환시키는 압축기, 응축기, 유량 조절 오리피스 및 증발기와, 응축기의 냉각수코일과 냉각수라인을 통해 연결되는 냉각탑과, 증발기의 냉수코일과 냉수라인을 통해 연결되는 공기조절유닛을 구비하는 터보냉동기에 있어서, 응축기로 공급되는 냉각수와 공기조절유닛으로 공급되는 냉수의 일부를 선택적으로 열교환시키는 온도 조절 열교환기(heat exchanger)와, 냉각수라인과 온도 조절 열교환기를 상호 연결하여 온도 조절 열교환기로 냉각수의 일부를 분기시키는 보조 냉각수라인과, 냉수라인과 온도 조절 열교환기를 상호 연결하여 온도 조절 열교환기로 냉수의 일부를 분기시키는 보조 냉수라인과, 보조 냉수라인의 입구측에 설치되어 온도 조절 열교환기에 대한 냉수의 흐름을 제어하는 냉수량 제어 밸브를 구비하여 구성되는 것을 특징으로 한다.In order to achieve the above object, the surging device for a turbocooler according to the present invention includes a compressor, a condenser, a flow control orifice and an evaporator connected to each other sequentially through a refrigerant line to circulate the refrigerant, and a cooling water coil and a cooling water line of the condenser. In the turbo chiller having a cooling tower connected through the air, the cold water coil of the evaporator and the air control unit connected through the cold water line, the temperature for selectively heat-exchanging a portion of the cold water supplied to the condenser and the air control unit A control heat exchanger, an auxiliary cooling water line interconnecting the cooling water line and a temperature control heat exchanger and branching a part of the cooling water to the temperature control heat exchanger, and a cold water line and the temperature control heat exchanger are interconnected to Of the secondary cold water line and the secondary cold water line Installed on the port side and being configured by comprising a cold-quantity control valve for controlling the flow of cold water for temperature control heat exchanger groups.

이러한 본 발명의 한 바람직한 특징에 의하면, 냉수량 제어 밸브가 증발기로부터 유출되는 냉수의 출구온도에 연동하여 작동되는 솔레노이드 밸브(solenoid valve)로 구성된다.According to one preferred feature of this invention, the cold water amount control valve is composed of a solenoid valve operated in conjunction with the outlet temperature of the cold water flowing out of the evaporator.

본 발명의 다른 바람직한 특징에 의하면, 온도 조절 열교환기가 판형 열교환기(plate heat exchanger)로 구성된다.According to another preferred feature of the invention, the temperature controlled heat exchanger consists of a plate heat exchanger.

본 발명의 또다른 바람직한 특징에 의하면, 온도 조절 열교환기가 냉각수라인 및 냉수라인에 대해 착탈 가능하게 결합되어 필요에 따라 선택적으로 설치된다.According to another preferred feature of the invention, the temperature control heat exchanger is detachably coupled to the cooling water line and the cold water line is selectively installed as needed.

이에 따라 본 발명은, 봄이나 가을 등에 압축기로 유입되는 냉매량을 감소시키지 않고서도 요구되는 냉방부하에 따라 터보냉동기의 냉방능력을 적절히 감소시킬 수 있어 냉매량 감소에 따른 압축기의 서징을 근본적으로 방지할 수 있게 됨은 물론 필요에 따라 추가설치 및 삭제할 수 있게 되므로 터보냉동기의 안정성과 신뢰성 및 사용의 편의성 향상 등에 큰 효과를 발휘하게 된다.Accordingly, the present invention can appropriately reduce the cooling capacity of the turbocooler according to the required cooling load without reducing the amount of refrigerant flowing into the compressor, such as spring or autumn, thereby fundamentally preventing surging of the compressor due to the decrease in the amount of refrigerant. Of course, since it can be added and removed as needed, it will have a great effect on improving the stability, reliability and ease of use of the turbo chiller.

도 1은 종래 서징 방지장치를 보인 터보냉동기의 개략적인 시스템도,1 is a schematic system diagram of a turbocooler showing a conventional surging device;

도 2는 본 발명에 의한 서징 방지장치를 구비한 터보냉동기의 개략적인 시스템도,2 is a schematic system diagram of a turbo chiller having a surging device according to the present invention;

도 3은 본 발명의 작동을 보인 요부 발췌도들이다.3 is an excerpt of the main portion showing the operation of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

P : 압축기(compressor) C : 응축기(condenser)P: Compressor C: Condenser

E : 증발기(evaporator)E: evaporator

F : 유량 조절 오리피스(flow control orifice)F: flow control orifice

L2 : 냉각수 라인(line) L5 : 냉수 라인L2: Cooling water line L5: Cold water line

L7 : 보조 냉각수 라인 L8 : 보조 냉수 라인L7: Auxiliary Cooling Water Line L8: Auxiliary Cooling Water Line

H : 온도 조절 열교환기 S : 냉수량 제어 밸브H: temperature control heat exchanger S: cold water control valve

이와 같은 본 발명의 구체적 특징과 다른 이점들은 첨부된 도면을 참조한 이하의 바람직한 실시예의 설명으로 더욱 명확해 질 것이다.Such specific features and other advantages of the present invention will become more apparent from the following description of the preferred embodiments with reference to the accompanying drawings.

도 2에서, 본 발명에 의한 터보냉동기는 냉매를 고온 고압으로 압축시키는 원심식 압축기(P)와, 압축된 냉매를 액화시키는 쉘 & 튜브(tube)형 응축기(C)와, 액상 냉매를 저온 저압의 액체로 변화시키는 유량 조절 오리피스(F) 및 이 저압의 액상 냉매를 기화시키는 쉘 & 튜브형 증발기(E)가 냉매라인(L1)에 의해 순차적으로 연결된다.In FIG. 2, the turbocooler according to the present invention is a centrifugal compressor (P) for compressing a refrigerant at high temperature and high pressure, a shell & tube type condenser (C) for liquefying the compressed refrigerant, and a liquid refrigerant at low temperature and low pressure. The flow rate adjusting orifice (F) for changing into a liquid of the liquid and the shell & tube type evaporator (E) for vaporizing the low pressure liquid refrigerant are sequentially connected by the refrigerant line (L1).

응축기(C)에는 냉매가스와 열교환하는 냉각수를 외기와의 열교환으로 냉각시키는 냉각탑(T)이 냉각수라인(L2,L3)을 통해 그 쉘내의 냉각수코일과 연결되고, 증발기(E)에는 저압의 액냉매와 열교환하는 냉수를 내기와 열교환시켜 냉기를 발생시키는 공기조절유닛(A)이 냉수라인(L4,L5)을 통해 그 쉘내의 냉수코일과 연결된다.In the condenser (C), a cooling tower (T) for cooling the coolant heat exchanged with the refrigerant gas through heat exchange with the outside air is connected to the cooling water coil in the shell through the cooling water lines (L2, L3), and the liquid of low pressure is supplied to the evaporator (E). An air conditioning unit (A) for generating cold air by exchanging cold water for heat exchange with a refrigerant is connected to the cold water coil in the shell through cold water lines (L4, L5).

한편 본 발명의 특징에 따라 터보냉동기의 소정위치에는 요구되는 냉방부하량의 감소에 따라 냉각수와 냉수의 일부를 선택적으로 열교환시킴으로써 공기조절유닛(A)으로 공급되는 냉수의 온도를 적절히 감소시키는 온도 조절 열교환기(H)가 구비된다. 이를 위해 본 발명 온도 조절 열교환기(H)는 냉각탑(T)으로부터 응축기(C)로 냉각수를 공급하는 냉각수라인(L2)에서 분기된 보조 냉각수라인(L7) 및 증발기(E)로부터 공기조절유닛(A)으로 냉수를 공급하는 냉수라인(L5)에서 분기된 보조 냉수라인(L8)을 통해 냉각수와 냉수의 일부를 각각 공급받는다.On the other hand, according to the characteristics of the present invention, the temperature control heat exchanger appropriately reduces the temperature of the cold water supplied to the air conditioning unit (A) by selectively heat-exchanging a portion of the cooling water and the cold water in accordance with a decrease in the required cooling load at a predetermined position of the turbocooler. The group H is provided. To this end, the temperature control heat exchanger (H) of the present invention is an air conditioning unit (L) from the auxiliary cooling water line (L7) and the evaporator (E) branched from the cooling water line (L2) to supply the cooling water from the cooling tower (T) to the condenser (C). Receive a portion of the cooling water and the cold water through the auxiliary cold water line (L8) branched from the cold water line (L5) for supplying cold water to A).

이러한 온도 조절 열교환기(H)는 요구되는 냉방부하량의 감소시에만 작동하게 되는 바, 예를들어 보조 냉수라인(L8)의 입구측에는 온도 조절 열교환기(H)에 대한 냉수의 흐름을 제어하는 냉수량 제어 밸브(S)가 구비된다. 경주에 따라서는 보조 냉각수 라인의 입구측에도 설치가능한 이 냉수량 제어 밸브(S)는 바람직하기로 증발기(E)에서 배출되는 냉수의 출구온도에 연동하여 작동되는 솔레노이드 밸브로 구성될 수 있다.The temperature control heat exchanger (H) is operated only when the required cooling load is reduced, for example, cold water for controlling the flow of cold water for the temperature control heat exchanger (H) at the inlet side of the auxiliary cold water line (L8). Quantity control valve S is provided. According to the race, this cold water amount control valve (S), which can be installed at the inlet side of the auxiliary cooling water line, may preferably be composed of a solenoid valve operated in conjunction with the outlet temperature of the cold water discharged from the evaporator (E).

한편 온도 조절 열교환기(H)는 여러 가지 형태로 구성될 수 있는데, 예를들어 쉘형으로 구성되어 냉각수 및 냉수를 직접 혼합에 의해 열교환시킬 수 있으나, 이 경우 우수한 열교환효율을 보장할 수 있는데 반해 양자의 수질이 동일해야 하므로 사실상 불가능하게 된다. 또한 쉘 & 튜브형으로 구성할 수 있으나, 이 경우 장치의 크기가 클 뿐 아니라 열교환효율이 낮아지게 된다. 이에 따라 본 발명 온도 조절 열교환기(H)는 크기가 작고, 열손실이 적으면서도 열교환효율이 상대적으로 우수한 판형 열교환기로 구성되는 것이 바람직할 것이다.On the other hand, the temperature control heat exchanger (H) may be configured in a variety of forms, for example, it is configured in a shell form can be used for heat exchange of the cooling water and cold water by direct mixing, in this case it can ensure excellent heat exchange efficiency, while both Since the water quality must be the same, it is virtually impossible. In addition, the shell & tube type can be configured, but in this case, not only the size of the device is large but also the heat exchange efficiency is lowered. Accordingly, the temperature control heat exchanger (H) of the present invention may be preferably configured as a plate heat exchanger having a small size and a relatively high heat exchange efficiency while having low heat loss.

이와 같은 본 발명 온도 조절 열교환기(H)는 예컨대, 봄이나 가을등 터보냉동기의 전체용량이 필요치 않을 경우에만 사용하는 것인 바, 바람직하기로 냉각수라인(L2) 및 냉수라인(L5)에 대해 착탈 가능하게 결합되어 필요시에만 선택적으로 장착하여 사용할 수 있도록 구성된다. 이는 반대로 불필요할 경우 터보냉동기로부터 제거할 수도 있다는 의미이기도 하다.Such a temperature control heat exchanger (H) of the present invention is to be used only when the full capacity of, for example, a spring or autumn turbo chiller is not necessary, preferably for the cooling water line (L2) and cold water line (L5) It is detachably coupled and configured to be selectively mounted and used only when necessary. This also means that it can be removed from the turbocooler if it is not needed.

이와 같이 구성된 본 발명에 의한 터보냉동기의 작동을 도 3을 병행하여 설명하기로 한다.The operation of the turbocooler according to the present invention configured as described above will be described in parallel with FIG. 3.

도 2 및 도 3에서, 먼저 여름철등 터보냉동기가 정상부하 상태로 운전될 경우에는 압축기(P)에서 압축된 냉매가스는 냉매라인(L1)을 통해 응축기(C)의 쉘로 유입되고, 냉각수라인(L2,L3)을 통해 그 냉각수코일과 냉각탑(T) 사이에서 순환되는 냉각수와 열교환하여 액화된다. 이때 도 3a에 도시한 바와 같이 냉각수의 일부는 보조 냉각수라인(L7)을 통해 온도 조절 열교환기(H)를 경유하여 응축기(C)의 쉘로 유입된다. 이어서 고압의 액냉매는 유량 조절 오리피스(F)를 통해 저압의 액냉매로 변한 뒤 증발기(E)의 쉘로 유입되고, 냉수라인(L4,L5)을 통해 그 냉수코일과 공기조절유닛(A) 사이에서 순환하는 냉수와 열교환하여 기화된 뒤 압축기(P)로 유입된다. 이때 보조 냉수라인(L8)의 입구측에 설치된 냉수량 제어 밸브(S)는 닫힌상태로 있게 되어 온도 조절 열교환기(H)에는 냉수가 흐르지 않게 된다. 이에 따라 증발기(E)에서 냉각된 냉수가 온도 변화없이 그대로 공기조절유닛(A)으로 공급되어 공기와 열교환함으로써 이를 냉각시키고, 냉각된 공기가 덕트(도시하지 않음)를 통해 냉방할 장소로 토출됨으로써 정상적인 냉방을 수행하게 된다.In FIGS. 2 and 3, when the turbo cooler is operated at a normal load state during the summer season, the refrigerant gas compressed by the compressor P is introduced into the shell of the condenser C through the refrigerant line L1, and the cooling water line ( L2 and L3 are liquefied by exchanging heat with the cooling water circulated between the cooling water coil and the cooling tower (T). In this case, as shown in FIG. 3A, a part of the cooling water is introduced into the shell of the condenser C through the temperature control heat exchanger H through the auxiliary cooling water line L7. Subsequently, the high pressure liquid refrigerant is converted into the low pressure liquid refrigerant through the flow control orifice (F), and then flows into the shell of the evaporator (E), and between the cold water coil (L4 and L5) between the cold water coil and the air control unit (A). Heat exchanged with cold water circulating in the vaporized and then introduced into the compressor (P). At this time, the cold water amount control valve (S) installed at the inlet side of the auxiliary cold water line (L8) is in a closed state so that cold water does not flow in the temperature control heat exchanger (H). Accordingly, the cold water cooled in the evaporator (E) is supplied to the air conditioning unit (A) as it is without temperature change and cooled by heat exchange with air, and the cooled air is discharged to a place to cool through a duct (not shown). Normal cooling is performed.

한편 봄이나 가을등 요구되는 냉방부하가 감소되어 터보냉동기의 전체성능이 필요치 않을 경우에도 종래와 달리 정상부하 상태와 마찬가지로 동일한 냉매량이 압축기(C)로 유입되어 운전된다. 이때 본 발명은 제어부가 설정온도 대비 증발기(E)로부터 배출되는 냉수의 출구온도에 따라 보조 냉수라인(L8)의 냉수량 제어 밸브(S)를 적절히 개방시키게 된다. 그러면 도 3b에 도시한 바와 같이, 증발기(E)로부터 배출된 냉수의 일부가 보조 냉수라인(L8)을 통해 본 발명 온도 조절 열교환기(H)를 경유하게 되고, 이에 따라 냉수의 일부가 온도 조절 열교환기(H)에서 보조 냉각수라인(L7)을 통해 유입되는 냉각수의 일부와 열교환하게 됨으로써 그 온도가 출구온도에 비해 상대적으로 낮아지게 된다. 따라서 공기조절유닛(A)으로 공급된 냉수와 열교환하여 냉각된 공기의 온도 역시 적절히 낮아져 요구되는 부하량에 따라 냉방능력이 감소하게 된다.On the other hand, when the required cooling load such as spring or autumn is reduced and the overall performance of the turbocooler is not necessary, the same amount of refrigerant flows into the compressor C as in the normal load state unlike the conventional art. At this time, the control unit is to properly open the cold water amount control valve (S) of the auxiliary cold water line (L8) according to the outlet temperature of the cold water discharged from the evaporator (E) compared to the set temperature. Then, as shown in Figure 3b, a part of the cold water discharged from the evaporator (E) is via the present invention temperature control heat exchanger (H) through the auxiliary cold water line (L8), so that part of the cold water is temperature controlled Since the heat exchanger H exchanges heat with a part of the cooling water introduced through the auxiliary cooling water line L7, the temperature thereof is relatively lower than the outlet temperature. Therefore, the temperature of the air cooled by heat exchange with the cold water supplied to the air conditioning unit (A) is also appropriately lowered to reduce the cooling capacity according to the required load.

이때 본 발명의 터보냉동기는 냉매량이 감소되지 않으므로 냉방부하 감소에도 불구하고 종래와 같은 압축기(P)의 서징현상이 전혀 발생되지 않는다.At this time, since the refrigerant amount of the present invention does not reduce the amount of refrigerant, the surging phenomenon of the compressor (P) does not occur at all despite the reduction of the cooling load.

이상에서 본 발명 온도 조절 열교환기(H)가 터보냉동기에 장착된 상태로 설명하였으나, 이는 단순한 예시의 목적일 뿐이며, 그 운전조건에 따라 간단히 착탈하여 사용할 수도 있음은 물론이다.Although the present invention has been described in the state where the temperature control heat exchanger (H) is mounted on the turbocooler, this is merely for the purpose of illustration, and of course, it can also be easily removed and used according to its operating conditions.

이상에서 살펴본 바와 같이 본 발명에 의하면, 요구되는 냉방부하량에 관계없이 동일한 냉매량에 의해 정상적으로 운전하면서도 그 냉방능력을 적절히 변화시킬 수 있게 되므로, 종래와 같이 냉방부하 감소에 따른 냉매량 감소로 발생되는 압축기의 서징현상을 근본적으로 방지할 수 있게 된다. 또한 터보냉동기와 별도로 필요에 따라 자유롭게 착탈할 수 있어 터보냉동기의 제작성을 향상시킨다. 따라서 본 발명은 터보냉동기의 안정성과 신뢰성 등을 크게 향상시킬 수 있음은 물론 원가절감에도 기여하는 우수한 효과가 있다.As described above, according to the present invention, it is possible to properly change the cooling capacity while operating normally with the same amount of refrigerant regardless of the required amount of cooling load. Surging phenomenon can be fundamentally prevented. In addition, it can be freely detached as needed separately from the turbo chiller, improving the manufacturability of the turbo chiller. Therefore, the present invention can greatly improve the stability and reliability of the turbocooler, etc., and also has an excellent effect of contributing to cost reduction.

Claims (5)

냉매라인을 통해 상호 순차적으로 연결되어 냉매를 순환시키는 압축기, 응축기, 유량 조절 오리피스 및 증발기와, 상기 응축기의 냉각수코일과 냉각수라인을 통해 연결되는 냉각탑과, 상기 증발기의 냉수코일과 냉수라인을 통해 연결되는 공기조절유닛을 구비하는 터보냉동기에 있어서,A compressor, a condenser, a flow control orifice and an evaporator, which are sequentially connected to each other through a refrigerant line to circulate the refrigerant, a cooling tower connected through a cooling water coil and a cooling water line of the condenser, and a cold water coil and a cold water line of the evaporator. In the turbo chiller having an air conditioning unit, 상기 응축기(C)로 공급되는 냉각수와 상기 공기조절유닛(A)으로 공급되는 냉수의 일부를 선택적으로 열교환시키는 온도 조절 열교환기(H)와,A temperature controlled heat exchanger (H) for selectively heat-exchanging a portion of the cooling water supplied to the condenser (C) and the cold water supplied to the air conditioning unit (A); 상기 냉각수라인(L2)과 상기 온도 조절 열교환기(H)를 상호 연결하여 상기 온도 조절 열교환기(H)로 냉각수의 일부를 분기시키는 보조 냉각수라인(L7)과,An auxiliary cooling water line (L7) for connecting a portion of the cooling water to the temperature control heat exchanger (H) by interconnecting the cooling water line (L2) and the temperature control heat exchanger (H), 상기 냉수라인(L5)과 상기 온도 조절 열교환기(H)를 상호 연결하여 상기 온도 조절 열교환기(H)로 냉수의 일부를 분기시키는 보조 냉수라인(L8)과,An auxiliary cold water line (L8) for branching a portion of the cold water to the temperature control heat exchanger (H) by interconnecting the cold water line (L5) and the temperature control heat exchanger (H), 상기 보조 냉수라인(L8) 또는 보조 냉각수라인(L7)의 입구측에 설치되어 상기 온도 조절 열교환기(H)에 대한 냉수의 흐름을 제어하는 냉수량 제어 밸브(S)를 구비하여 구성되는 것을 특징으로 하는 터보냉동기의 서징 방지장치.It is installed on the inlet side of the auxiliary cold water line (L8) or the auxiliary cooling water line (L7) is characterized by comprising a cold water amount control valve (S) for controlling the flow of cold water for the temperature control heat exchanger (H). Surgery prevention device for turbo chillers. 제 1 항에 있어서,The method of claim 1, 상기 냉수량 제어 밸브(S)가 상기 증발기(E)로부터 유출되는 냉수의 출구온도에 연동하여 작동되는 것을 특징으로 하는 터보냉동기의 서징 방지장치.Surging device of the turbo-cooler, characterized in that the cold water amount control valve (S) is operated in conjunction with the outlet temperature of the cold water flowing out from the evaporator (E). 제 2 항에 있어서,The method of claim 2, 상기 냉수량 제어 밸브(S)가 솔레노이드 밸브로 구성되는 것을 특징으로 하는 터보냉동기의 서징 방지장치.Surging device of a turbo chiller, characterized in that the cold water control valve (S) is composed of a solenoid valve. 제 1 항에 있어서,The method of claim 1, 상기 온도 조절 열교환기(H)가 판형 열교환기로 구성되는 것을 특징으로 하는 터보냉동기의 서징 방지장치.Surging prevention device of a turbo-cooler, characterized in that the temperature control heat exchanger (H) is composed of a plate heat exchanger. 제 1 항 또는 제 4 항에 있어서,The method according to claim 1 or 4, 상기 온도 조절 열교환기(H)가 상기 냉각수라인(L7) 및 냉수라인(L8)에 대해 착탈 가능하게 결합되는 것을 특징으로 하는 터보냉동기의 서징 방지장치.Surging prevention device of a turbo-cooler, characterized in that the temperature control heat exchanger (H) is detachably coupled to the cooling water line (L7) and cold water line (L8).
KR1019970049942A 1997-09-30 1997-09-30 Surging-proof device of turbo refrigerator KR100258235B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970049942A KR100258235B1 (en) 1997-09-30 1997-09-30 Surging-proof device of turbo refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970049942A KR100258235B1 (en) 1997-09-30 1997-09-30 Surging-proof device of turbo refrigerator

Publications (2)

Publication Number Publication Date
KR19990027477A KR19990027477A (en) 1999-04-15
KR100258235B1 true KR100258235B1 (en) 2000-06-01

Family

ID=19521957

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970049942A KR100258235B1 (en) 1997-09-30 1997-09-30 Surging-proof device of turbo refrigerator

Country Status (1)

Country Link
KR (1) KR100258235B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680241B1 (en) * 2005-10-26 2007-02-07 한국전력공사 Apparatus and method for temperature control of turbo chiller
US10003361B2 (en) 2014-09-23 2018-06-19 Hyundai Motor Company Method and apparatus for controlling antennas in vehicle communication system
CN108317758A (en) * 2017-01-16 2018-07-24 松下知识产权经营株式会社 Refrigerating circulatory device
CN113959131A (en) * 2021-10-08 2022-01-21 青岛海尔空调电子有限公司 Method and device for controlling water chilling unit and water chilling unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959130B (en) * 2021-10-08 2023-06-16 青岛海尔空调电子有限公司 Method and device for controlling water chilling unit and water chilling unit
KR102467889B1 (en) 2021-10-29 2022-11-16 김후배 Anti-surging cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100680241B1 (en) * 2005-10-26 2007-02-07 한국전력공사 Apparatus and method for temperature control of turbo chiller
US10003361B2 (en) 2014-09-23 2018-06-19 Hyundai Motor Company Method and apparatus for controlling antennas in vehicle communication system
CN108317758A (en) * 2017-01-16 2018-07-24 松下知识产权经营株式会社 Refrigerating circulatory device
CN113959131A (en) * 2021-10-08 2022-01-21 青岛海尔空调电子有限公司 Method and device for controlling water chilling unit and water chilling unit

Also Published As

Publication number Publication date
KR19990027477A (en) 1999-04-15

Similar Documents

Publication Publication Date Title
US6185946B1 (en) System for sequencing chillers in a loop cooling plant and other systems that employ all variable-speed units
EP2232230B1 (en) Refrigeration system comprising a test chamber with temperature and humidity control
EP1498668B1 (en) Heat source unit of air conditioner and air conditioner
KR950003791B1 (en) Automatic chiller plant balancing
KR102507362B1 (en) Data center local cooling system with pre-cooling chiller
KR100258235B1 (en) Surging-proof device of turbo refrigerator
CN220601671U (en) Water-cooling integrated water chilling unit with natural cooling function
CN217685941U (en) Double-working-condition water chilling unit
CN210861760U (en) Natural cooling refrigerating system
CN109110098B (en) Closed mast internal air conditioning system for ship
US20200309433A1 (en) Methods and systems for controlling working fluid in hvacr systems
CN115143658A (en) Double-working-condition water chilling unit and control method thereof
KR100528292B1 (en) Heat-pump type air conditioner
JP3356386B2 (en) Environmental test equipment using refrigerant switching type refrigerator
CN213778222U (en) Air conditioning system
CN114198872B (en) Machine room air conditioner, operation control method and device of machine room air conditioner
JP4200533B2 (en) Air conditioner
JP2018173191A (en) Air conditioner
JPH01314840A (en) Water-cooling type air conditioner
JP2878240B2 (en) Heat supply equipment
JP2004144411A (en) Air conditioning equipment
CN220842121U (en) Battery thermal management system capable of balancing heat distribution
CN220911734U (en) Cooling system
KR100403017B1 (en) An inverter cooling device and process of heat pump
CN114183941B (en) Refrigerating system, control method and refrigerating equipment

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120217

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130222

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee