JPH0364783B2 - - Google Patents

Info

Publication number
JPH0364783B2
JPH0364783B2 JP61071506A JP7150686A JPH0364783B2 JP H0364783 B2 JPH0364783 B2 JP H0364783B2 JP 61071506 A JP61071506 A JP 61071506A JP 7150686 A JP7150686 A JP 7150686A JP H0364783 B2 JPH0364783 B2 JP H0364783B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
separator
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61071506A
Other languages
Japanese (ja)
Other versions
JPS62228845A (en
Inventor
Shigeo Suzuki
Juji Yoshida
Kazuo Nakatani
Juji Mukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7150686A priority Critical patent/JPS62228845A/en
Publication of JPS62228845A publication Critical patent/JPS62228845A/en
Publication of JPH0364783B2 publication Critical patent/JPH0364783B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、熱ポンプ装置、特に暖冷房装置にお
いて、非共沸混合冷媒を用い、主回路を流れる冷
媒濃度を可変する事により、常に負荷に適応した
冷暖房能力を発生させるヒートポンプ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention uses a non-azeotropic mixed refrigerant in a heat pump device, particularly in a heating and cooling device, to constantly adapt to the load by varying the concentration of the refrigerant flowing through the main circuit. The present invention relates to a heat pump device that generates heating and cooling capacity.

従来の技術 従来、熱ポンプ装置の能力を可変する方法とし
て、冷媒に非共沸混合冷媒を用い、分離器によつ
て高沸点冷媒と低沸点冷媒とに分離し、それによ
つて主回路の冷媒組成を変え能力を可変するもの
が提案されており、この時冷媒組成を変えてその
吸込み比容積を変え循環量を変えるものであり、
圧縮機回転数を変える方式にこのような分離方式
を付加する事も考えられており、分離の方法とし
ては精留方式を利用したものが提案されている。
Conventional technology Conventionally, as a method of varying the capacity of a heat pump device, a non-azeotropic mixed refrigerant is used as the refrigerant, and a separator separates the refrigerant into a high boiling point refrigerant and a low boiling point refrigerant, thereby reducing the refrigerant in the main circuit. A system has been proposed in which the capacity can be varied by changing the composition, and at this time, the refrigerant composition is changed to change its suction specific volume and the circulation amount.
It is also being considered to add such a separation method to the method of changing the compressor rotation speed, and a method using a rectification method has been proposed as a separation method.

我々の先行発明として第2図に示す如きものが
ある。第2図において1は圧縮機、2は四方弁、
3は負荷側熱交換器、4は主絞り装置、6は熱源
側熱交換器、7は分離器、8は塔頂冷却熱交換
器、9は塔底加熱熱交換器であり、暖房時には凝
縮器となる負荷側熱交換器3より分離器7に主回
路と並列に冷媒を供給し、分離器7において、精
留方式によりサイクルに封入された非共沸混合冷
媒を高沸点成分と低沸点成分とに分離し、塔底あ
るいは塔頂の貯留器10,11より高沸点成分冷
媒あるいは低沸点成分冷媒を主サイクルに注入す
る事によつて主サイクルの冷媒組成を変えて能力
制御を行なうものであり、この時、暖房および冷
房時両者共精留分離を行なわせるために、塔底加
熱熱交換器9にては圧縮機1と四方弁2の間の吐
出ガスを加熱源とし、また塔頂冷却熱交換器8に
ては四方弁2とアキユムレータ12の間の吸入ガ
スを冷却源としている。このような構成とする事
によつて冷房時、暖房時で主サイクルの冷媒流れ
方向が逆転しても精溜分離に対して必要な加熱、
冷却がなされるものである。
Our prior invention is as shown in FIG. 2. In Fig. 2, 1 is a compressor, 2 is a four-way valve,
3 is a load side heat exchanger, 4 is a main throttling device, 6 is a heat source side heat exchanger, 7 is a separator, 8 is a top cooling heat exchanger, and 9 is a bottom heating heat exchanger, which condenses during heating. The refrigerant is supplied from the load-side heat exchanger 3, which acts as a heat exchanger, to the separator 7 in parallel with the main circuit, and in the separator 7, the non-azeotropic mixed refrigerant sealed in the cycle is separated into high-boiling point components and low-boiling point components by a rectification method. Capacity control is performed by changing the refrigerant composition of the main cycle by separating the refrigerant into components and injecting high-boiling point component refrigerant or low-boiling point component refrigerant into the main cycle from reservoirs 10 and 11 at the bottom or top of the tower. At this time, in order to carry out rectification separation during both heating and cooling, the bottom heating heat exchanger 9 uses the discharge gas between the compressor 1 and the four-way valve 2 as a heating source, and the tower In the top cooling heat exchanger 8, the suction gas between the four-way valve 2 and the accumulator 12 is used as a cooling source. With this configuration, even if the flow direction of the refrigerant in the main cycle is reversed during cooling or heating, the heating required for rectification and separation can be maintained.
Cooling is performed.

発明が解決しようとする問題点 以上述べた先行発明の熱ポンプ装置において
は、基本的に冷媒の組成制御が可能であり、かつ
それが冷房時、暖房時共必要な場合に適してい
る。
Problems to be Solved by the Invention In the heat pump device of the prior invention described above, it is basically possible to control the composition of the refrigerant, and it is suitable when this is necessary for both cooling and heating.

しかるに実際にこのような組成分離サイクルを
用いて冷暖房時共能力を制御する場合、暖房時に
は全体的に低沸点成分を主サイクル内に多くして
能力を稼ぎ、逆に冷房時には低沸点成分リツチで
は高圧が上昇するので、高沸点成分リツチな主サ
イクルとして効率を上げる運転方法が望まれる場
合もあり、このような場合には、冷房時のみ精留
分離を行なつて主サイクルを高沸点に富んだ組成
で運転し、暖房時には低沸点に富む封入冷媒組成
そのままで運転し、精留分離を行なわないのが望
ましいものである。
However, when actually controlling the capacity during cooling and heating using such a compositional separation cycle, during heating the low-boiling point components are generally increased in the main cycle to gain capacity, while during cooling the low-boiling point components are not rich. As the high pressure increases, it may be desirable to operate the main cycle rich in high boiling point components to increase efficiency. During heating, it is desirable to operate with the same composition as the enclosed refrigerant, which is rich in low boiling points, and to not perform rectification separation.

また、先行発明の構成によれば、冷房時、暖房
時共また主サイクルの濃度可変の有無にかかわら
ず精留分離用の加熱、冷却が作用しており、吐出
ガスで加熱し、吸入ガスで冷却すると、凝縮器入
口温度が低下する事により特に暖房始に能力損失
の発生があるものであつた。また塔頂冷却熱交換
器では吸入ガスが用いているために、熱伝達率が
低く熱交換器として大きくなるものであつた。そ
こで本発明では、暖房時には精留分離なしとし、
冷房時には精留分離によつて高効率運転をし、更
に暖房時の効率をも上げる熱ポンプ装置を得よう
とするものであり、更に塔頂熱交換器を小型化し
ようとするものである。
In addition, according to the configuration of the prior invention, heating and cooling for rectification separation are active during both cooling and heating, regardless of whether or not the concentration is varied in the main cycle. When cooled, the temperature at the condenser inlet decreased, resulting in loss of capacity, especially at the start of heating. Furthermore, since the overhead cooling heat exchanger uses suction gas, the heat transfer coefficient is low and the heat exchanger becomes large. Therefore, in the present invention, there is no rectification separation during heating,
The aim is to obtain a heat pump device that operates with high efficiency through rectification separation during cooling and also increases efficiency during heating, and furthermore aims to downsize the tower top heat exchanger.

問題点を解決するための手段 分離器の塔底と、冷暖房時の凝縮器出口とを接
続する導入部と、分離器の塔底と冷暖房時の蒸発
器入口とを接続する導出部とで分離器と主サイク
ルを接続し、四方弁より熱源側熱交換器の間の冷
媒配管を分離器塔底加熱源として位置させ、絞り
装置より負荷側熱交換器の間の冷媒配管を分離器
塔頂冷却源として位置させる構成とするものであ
る。
Measures to solve the problem Separation is performed using an introduction section that connects the bottom of the separator and the condenser outlet for heating/cooling, and an outlet that connects the bottom of the separator and the inlet of the evaporator for heating/cooling. The refrigerant piping between the four-way valve and the heat exchanger on the heat source side is located at the bottom of the separator column as a heating source, and the refrigerant piping between the expansion device and the load side heat exchanger is placed at the top of the separator tower. It is configured to be positioned as a cooling source.

作 用 上記構成になる本発明によれば、分離器は低沸
点貯留方式で主サイクルと接続され、冷房時には
四方弁より熱源側熱交換器の間は高温冷媒となる
ので分離器塔底を加熱でき、絞り装置より負荷側
熱交換器の間は低温冷媒となり分離器塔頂を冷却
できる。これにより冷房時には精留分離がなさ
れ、低沸点貯留方式であるので主サイクルを高沸
点に富んだ冷媒組成とする事ができる。一方暖房
時には分離器での精留を働かせる加熱、冷却作用
がなく精留分離がなされず、封入冷媒組成の低沸
点に富んだ冷媒組成で運転できるとともに、精留
分離の加熱、冷却がないので熱損失のない運転が
できるものである。
Effects According to the present invention having the above configuration, the separator is connected to the main cycle in a low boiling point storage method, and during cooling, high temperature refrigerant flows between the four-way valve and the heat source side heat exchanger, which heats the bottom of the separator column. Between the throttle device and the load-side heat exchanger, the refrigerant becomes a low-temperature refrigerant and can cool the top of the separator tower. As a result, rectification separation is performed during cooling, and since it is a low boiling point storage method, the main cycle can have a refrigerant composition rich in high boiling points. On the other hand, during heating, there is no heating or cooling effect that activates rectification in the separator, so no rectification separation is performed, and operation can be performed with a refrigerant composition rich in low boiling points of the enclosed refrigerant composition, and there is no heating or cooling for rectification separation. It is possible to operate without heat loss.

実施例 本発明による熱ポンプ装置を冷暖房装置に適用
した第1図をもつて以下に説明する。
Embodiment A heat pump device according to the present invention will be described below with reference to FIG. 1, in which the heat pump device is applied to an air-conditioning device.

図において1〜4,6は先行発明と同一の構成
要素であり、負荷側熱交換器3と絞り装置4の間
より分離器13に接続する配管14と、絞り装置
4と熱源側熱交換器6の間より分離器13に接続
する配管15が設けられており、主サイクル運転
時、冷媒は主に絞り装置4を通るものと、前記の
配管14,15を通つて分離器13を経由して主
サイクルと並列に流れるものとに分かれる。この
時分離器13の上部には配管16が設けられて分
離器13より発生するガスを塔頂熱交換器17の
部分で冷却液化し、貯留器18に貯留し、液を貯
留器18より塔頂に還流するための配管19が設
けられている。
In the figure, 1 to 4 and 6 are the same components as in the previous invention, including a pipe 14 connecting to the separator 13 from between the load side heat exchanger 3 and the expansion device 4, and a connection between the expansion device 4 and the heat source side heat exchanger. A pipe 15 is provided which connects to the separator 13 between 6 and 6. During main cycle operation, the refrigerant mainly passes through the throttling device 4 and the separator 13 via the pipes 14 and 15. It is divided into a main cycle and a parallel cycle. At this time, a pipe 16 is provided above the separator 13, and the gas generated from the separator 13 is cooled and liquefied at the top heat exchanger 17, stored in the reservoir 18, and the liquid is sent from the reservoir 18 to the tower. A pipe 19 for reflux is provided at the top.

この時塔頂冷却器17に導かれる冷媒は負荷側
熱交換器3より絞り装置4までの間の冷媒であ
り、また配管15を通る冷媒を加熱する塔底熱交
換器20に導かれる冷媒は熱源側熱交換器6と四
方弁2との間の冷媒であるように構成している。
更に配管14,15には絞り21,22と並列に
逆止弁23,24が設けられている。かかる構成
による熱ポンプ装置において、冷暖房時の動作に
ついて説明する。
At this time, the refrigerant led to the tower top cooler 17 is the refrigerant from the load-side heat exchanger 3 to the expansion device 4, and the refrigerant led to the tower bottom heat exchanger 20, which heats the refrigerant passing through the pipe 15, is It is configured to be a refrigerant between the heat source side heat exchanger 6 and the four-way valve 2.
Furthermore, check valves 23 and 24 are provided in the pipes 14 and 15 in parallel with the throttles 21 and 22. In the heat pump device having such a configuration, the operation during cooling and heating will be explained.

まず暖房時には図の実線で示す冷媒流の如く冷
媒が流れ、配管14より分離器13に入る冷媒は
液冷媒のままで入り、分離器13内でガスの発生
がないので精留作用がなされず、主サイクルの冷
媒組成は封入時の低沸点に富む冷媒組成のままで
あり、高暖房能力を維持する運転ができる。この
時、塔頂熱交換器17においては分離器13内の
冷媒とほとんど同じ温度であるので熱交換器とし
て作用しないが、塔底熱交換器20においては、
分離器13より配管15を通つて流出する液冷媒
を冷却する事になる。このように暖房時には完全
に精留作用を停止する事ができ、更に分離器13
側で冷媒を加熱する事による熱損失がなく効率の
高い運転ができるものである。また分離器13よ
り流出する液冷媒を熱源側熱交換器6を出た低温
冷媒により更に過冷却する事になり、冷凍能力が
増加し、効率の高い運転ができるものである。
First, during heating, the refrigerant flows as shown by the solid line in the figure, and the refrigerant enters the separator 13 from the piping 14 as a liquid refrigerant, and since no gas is generated in the separator 13, no rectifying action is performed. The refrigerant composition of the main cycle remains the same as the refrigerant composition rich in low boiling points at the time of sealing, allowing operation to maintain high heating capacity. At this time, the top heat exchanger 17 has almost the same temperature as the refrigerant in the separator 13, so it does not act as a heat exchanger, but in the bottom heat exchanger 20,
The liquid refrigerant flowing out from the separator 13 through the pipe 15 is cooled. In this way, the rectifying action can be completely stopped during heating, and the separator 13
There is no heat loss caused by heating the refrigerant on the side, allowing for highly efficient operation. Furthermore, the liquid refrigerant flowing out from the separator 13 is further supercooled by the low temperature refrigerant exiting the heat source side heat exchanger 6, increasing the refrigerating capacity and enabling highly efficient operation.

次に冷房運転時についてその動作を説明する。
冷房時には図の破線に示す冷媒流の如く冷媒が流
れ、配管15より分離器13に入る液冷媒は塔底
熱交換器20において、高温のガス冷媒により加
熱されてガス成分を発生して分離器13に流入す
る。分離器13に流入したガス成分は分離器13
内を上昇し、配管16を通り塔頂熱交換器17に
おいて低温冷媒で冷却されて液化し、貯留器18
に貯留され配管19より塔頂部に還流されて、こ
の液と上昇してくるガスとが分離器13内で気液
接触して精留作用を行ない貯留器18には低沸点
冷媒が貯留され、主サイクルは高沸点に富んだサ
イクル組成となり、冷房時に低沸点冷媒で運転さ
れた場合の高圧上昇がなく、かつ高効率で運転が
できるものである。
Next, the operation during cooling operation will be explained.
During cooling, the refrigerant flows as shown by the broken line in the figure, and the liquid refrigerant that enters the separator 13 from the pipe 15 is heated by the high-temperature gas refrigerant in the tower bottom heat exchanger 20 to generate gas components, which are then transferred to the separator. 13. The gas components that flowed into the separator 13 are
The liquid rises through the pipe 16 and is cooled by a low-temperature refrigerant in the tower top heat exchanger 17, where it is liquefied and transferred to the reservoir 18.
The refrigerant is stored in the refrigerant and refluxed to the top of the tower via piping 19, and this liquid and the rising gas come into gas-liquid contact in the separator 13 to perform a rectifying action, and the low boiling point refrigerant is stored in the reservoir 18. The main cycle has a cycle composition rich in high boiling points, and can be operated with high efficiency without the high pressure rise that occurs when operating with a low boiling point refrigerant during cooling.

この時、冷却源として絞り装置4より負荷側熱
交換器3の間の気液二相冷媒を用いているために
熱伝導率を大きくとれ、それ故塔頂熱交換器17
構成としてコンパクトにできるものである。
At this time, since a gas-liquid two-phase refrigerant is used between the expansion device 4 and the load-side heat exchanger 3 as a cooling source, a high thermal conductivity can be achieved, and therefore the top heat exchanger 17
The structure can be made compact.

また、例えば冷房時に分離器13への導入部と
なる配管15に絞りを設けて中間圧とした状態で
分離器13にガス成分を発生させて導入する事に
より、塔底熱交換器20での加熱量を小さくし、
分離時に発生する熱損失を小さくする事も可能で
ある。また基本的には暖房時分離がかからない
が、冷房時に分離をかける場合とかけない場合と
を併用する方法としては、バイパスを用いたりし
て加熱を止めたり、分離器13へ流入する冷媒量
を多くしたり、貯留器18から低圧配管へ冷媒を
戻す等によつて可能である。本実施例では塔底熱
交換器20を配管15に付設したが、配管14に
付設してもよく、また両方の配管にまたがる如く
構成しても良い。
In addition, for example, during cooling, by providing a throttle in the piping 15 that serves as the inlet to the separator 13 to generate and introduce gas components into the separator 13 at an intermediate pressure, the gas components in the bottom heat exchanger 20 can be Reduce the amount of heating,
It is also possible to reduce the heat loss that occurs during separation. Basically, separation is not applied during heating, but as a method of using both separation during cooling and cases where separation is not applied, it is possible to stop heating by using a bypass, or to reduce the amount of refrigerant flowing into the separator 13. This is possible by increasing the amount of refrigerant, or by returning the refrigerant from the reservoir 18 to the low-pressure piping. In this embodiment, the bottom heat exchanger 20 is attached to the pipe 15, but it may be attached to the pipe 14, or may be configured to span both pipes.

発明の効果 以上説明したように本発明になる熱ポンプ装置
においては、非共沸混合冷媒を冷房時、暖房時に
適した冷媒組成で運転し、冷房時には高沸点成分
に富んだ冷媒組成で運転して効率を上げるように
精留分離を行ない、暖房時には封入組成そのまま
の低沸点成分に富んだ冷媒組成で運転して高能力
を発揮するものであり、この時冷房時の精留分離
用加熱源として熱源側熱交換器と四方弁の間の高
温冷媒を用い、冷却源として絞り装置より負荷側
熱交換器の間の低温冷媒を用いているので、暖房
時には逆にこの加熱源が過冷却源として作用して
作用してサイクルの効率を高め、冷房分離時の冷
却源での冷媒は気液二相状態であるので熱交換器
としてコンパクトにできるものである。
Effects of the Invention As explained above, in the heat pump device according to the present invention, the non-azeotropic mixed refrigerant is operated with a refrigerant composition suitable for cooling and heating, and is operated with a refrigerant composition rich in high boiling point components during cooling. It performs rectification separation to increase efficiency, and during heating, it operates with a refrigerant composition rich in low boiling point components, which is the same as the sealed composition, to achieve high performance. At this time, the heating source for rectification separation during cooling The high-temperature refrigerant between the heat source side heat exchanger and the four-way valve is used as the cooling source, and the low-temperature refrigerant between the load side heat exchanger is used rather than the throttling device as the cooling source, so during heating, this heating source becomes a supercooling source. The refrigerant in the cooling source during cooling separation is in a gas-liquid two-phase state, so it can be made compact as a heat exchanger.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の熱ポンプ装置の構
成図、第2図は本発明に関する先行発明の一実施
例を示すサイクル構成図である。 1……圧縮機、3……負荷側熱交換器、2……
四方弁、4……絞り装置、6……熱源側熱交換
器、13……分離器、17……塔頂熱交換器、2
0……塔底熱交換器。
FIG. 1 is a block diagram of a heat pump device according to an embodiment of the present invention, and FIG. 2 is a cycle block diagram showing an embodiment of a prior invention related to the present invention. 1...Compressor, 3...Load side heat exchanger, 2...
Four-way valve, 4... Throttle device, 6... Heat source side heat exchanger, 13... Separator, 17... Tower top heat exchanger, 2
0... Bottom heat exchanger.

Claims (1)

【特許請求の範囲】 1 非共沸混合冷媒を封入し、圧縮機、四方弁、
負荷側熱交換器、絞り装置、熱源側熱交換器を環
状に接続して主サイクルを構成し、前記主サイク
ル中の非共沸混合冷媒を分離する精溜分離器と、
前記精溜分離器の塔底部に接続し前記絞り装置を
バイパスした副絞り装置を設けた配管と、精溜分
離器塔頂部に帰還する回路中に設けられた塔頂貯
留器と、前記精溜分離器の塔底部への接続配管と
前記熱源側熱交換器から四方弁間の主サイクル冷
媒配管とを熱交換可能とし、更に前記精溜分離器
塔頂部に設けられた帰還回路の上部配管と前記負
荷側熱交換器から前記絞り装置間の前記主サイク
ル冷媒配管とを熱交換可能としたことを特徴とす
る熱ポンプ装置。 2 分離器を中間圧としたことを特徴とする特許
請求の範囲第1項記載の熱ポンプ装置。
[Claims] 1. A non-azeotropic mixed refrigerant is enclosed, a compressor, a four-way valve,
a rectification separator that configures a main cycle by connecting a load side heat exchanger, a throttle device, and a heat source side heat exchanger in an annular manner, and separates a non-azeotropic mixed refrigerant in the main cycle;
A pipe provided with an auxiliary throttling device that connects to the bottom of the rectification separator and bypasses the throttling device, an overhead reservoir provided in a circuit that returns to the top of the rectification separator, and Heat exchange is possible between the connecting piping to the bottom of the separator column and the main cycle refrigerant piping between the heat source side heat exchanger and the four-way valve, and further with the upper piping of the return circuit provided at the top of the rectification separator column. A heat pump device characterized in that heat exchange is possible between the load side heat exchanger and the main cycle refrigerant pipe between the expansion devices. 2. The heat pump device according to claim 1, wherein the separator has an intermediate pressure.
JP7150686A 1986-03-28 1986-03-28 Heat pump device Granted JPS62228845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7150686A JPS62228845A (en) 1986-03-28 1986-03-28 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7150686A JPS62228845A (en) 1986-03-28 1986-03-28 Heat pump device

Publications (2)

Publication Number Publication Date
JPS62228845A JPS62228845A (en) 1987-10-07
JPH0364783B2 true JPH0364783B2 (en) 1991-10-08

Family

ID=13462640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7150686A Granted JPS62228845A (en) 1986-03-28 1986-03-28 Heat pump device

Country Status (1)

Country Link
JP (1) JPS62228845A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245965A (en) * 1984-05-18 1985-12-05 松下電器産業株式会社 Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245965A (en) * 1984-05-18 1985-12-05 松下電器産業株式会社 Air conditioner

Also Published As

Publication number Publication date
JPS62228845A (en) 1987-10-07

Similar Documents

Publication Publication Date Title
KR890004867B1 (en) Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
US4840042A (en) Heat pump system
KR930004384B1 (en) Heat-pump apparatus
JPH0364783B2 (en)
JPS636347A (en) Refrigeration cycle
JPH0247668B2 (en) NETSUHONPUSOCHI
JPS62261861A (en) Heat pump device
JPH0481708B2 (en)
JPS62245055A (en) Heat pump device
JP2512127B2 (en) Heat pump device
JPS6166054A (en) Heat pump device
JPS6199062A (en) Heat pump device
JPH0371622B2 (en)
JPS62116860A (en) Refrigeration cycle
JPH0460352A (en) Heat pump device
JPH0328675B2 (en)
JPS62293045A (en) Heat pump device
JPH02242051A (en) Refrigerator
JPH01252871A (en) Device of heat pump
JPH0461260B2 (en)
JPH01107061A (en) Heat pump device
CN107238237A (en) A kind of multicomponent mixture work medium single-stage separating, throttling circulates cryogenic refrigeration system
JPH0440622B2 (en)
JPH01252870A (en) Device of heat pump
JPH0743176B2 (en) Heat pump device