JPH0460352A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH0460352A
JPH0460352A JP17061390A JP17061390A JPH0460352A JP H0460352 A JPH0460352 A JP H0460352A JP 17061390 A JP17061390 A JP 17061390A JP 17061390 A JP17061390 A JP 17061390A JP H0460352 A JPH0460352 A JP H0460352A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
way valve
boiling point
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17061390A
Other languages
Japanese (ja)
Other versions
JP2861296B2 (en
Inventor
Shozo Funakura
正三 船倉
Minoru Tagashira
実 田頭
Kazuo Nakatani
和生 中谷
Yuji Yoshida
雄二 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17061390A priority Critical patent/JP2861296B2/en
Publication of JPH0460352A publication Critical patent/JPH0460352A/en
Application granted granted Critical
Publication of JP2861296B2 publication Critical patent/JP2861296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To make a pump run safely in a wide variety of temperature conditions, by charging the circulation of refrigerant in the first and, second refrigerating cycle according to running temperature conditions using the first and second four way type value to run the rectification separator. CONSTITUTION:The top end of rectification separator is connected with first supplementary throttle devices 32, 33 and first and second four way type valves 34, 35 by bypassing first main throttle device 24 of first refrigerating cycle C. The lower end of the rectification separator is connected with second supplementary throttle devices 36, 37 and the first and second four way type valve 34, 35 by bypassing second main throttle 29 of second refrigerating cycle D. when utilized heat exchanger 23 is used for heating circulating nonazeotropic mixed refrigerant of concentrated low boiling point refrigerant R22 in the second refrigerating cycle D and circulating nonazeotropic mixed refrigerant of concentrated high boiling point refrigerant R12 in the first refrigerating cycle C, make the temperature of heat exchanger 23 higher efficiently.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は 冷暖房や給湯または超低温装置などへ より
高温またはより低温を得るための熱ポンプ装置の改良に
関すム 従来の技術 非共沸混合冷媒を用1.X、組成分離により冷凍サイク
ル内の冷媒組成を可変する熱ポンプ装置として、第2図
に示すような装置が提案されていも第2図(よ 第1圧
縮機l、凝縮器2、第1主絞り装置3、蒸発器4等を接
続して第1冷凍サイクルAを構成L−第2圧縮機5、四
方弁6、四方弁6の切換によって凝縮器または蒸発器と
して作用する水側熱交換器7、第2主絞り装置8、四方
弁6の切換によって蒸発器または凝縮器として作用する
空気側熱交換器9等を接続して第2冷凍サイクルBを構
成している。必要に応じて第1冷凍サイクルAの蒸発器
4と第2冷凍サイクルBの水側熱交換器7を熱交換させ
ることによりいわゆる2元冷凍サイクルとして運転する
ことが可能であり、また第1冷凍サイクルのみを運転す
ることも可能であも さらに凝縮器2の出口に第1補助
絞り装置10を介して精留分離器11の底部を接続し精
留分離器11の底部を第2補助絞り装置12、蒸発器4
を介して第1圧縮機lの吸入側に接続すると共へ 水側
熱交換器7の出口に第3補助絞り装置13を介して前記
精留分離器11の頂部と接続し 前記精留分離器11の
頂部を第4補助絞り装置14、空気側熱交換器9を介し
て四方弁6に接続し 組成分離回路を構成している。
[Detailed Description of the Invention] Industrial Field of Application The present invention relates to improvements in heat pump devices for obtaining higher or lower temperatures for air conditioning, hot water supply, or ultra-low temperature equipment. 1. X. As a heat pump device that changes the refrigerant composition in the refrigeration cycle by composition separation, a device as shown in Fig. 2 has been proposed. A first refrigeration cycle A is constructed by connecting a throttling device 3, an evaporator 4, etc.L-A water side heat exchanger that acts as a condenser or an evaporator by switching the second compressor 5, four-way valve 6, and four-way valve 6 7. A second refrigeration cycle B is constructed by connecting a second main throttling device 8, an air-side heat exchanger 9 that acts as an evaporator or a condenser by switching the four-way valve 6, etc. By exchanging heat between the evaporator 4 of the first refrigeration cycle A and the water side heat exchanger 7 of the second refrigeration cycle B, it is possible to operate as a so-called two-way refrigeration cycle, and only the first refrigeration cycle can be operated. It is also possible to connect the bottom of the rectification separator 11 to the outlet of the condenser 2 via the first auxiliary throttle device 10, and connect the bottom of the rectification separator 11 to the second auxiliary throttle device 12 and the evaporator 4.
is connected to the suction side of the first compressor 1 through the water side heat exchanger 7, and connected to the top of the rectification separator 11 through a third auxiliary throttling device 13 to the outlet of the water side heat exchanger 7. 11 is connected to the four-way valve 6 via a fourth auxiliary throttle device 14 and an air-side heat exchanger 9 to form a composition separation circuit.

かかる熱ポンプ装置の第1冷凍サイクルAと第2冷凍サ
イクルBを両方とも運転する場合には第1冷凍サイクル
Aと第2冷凍サイクルBとは精留分離器11を介して接
続されているため精留作用が起こり、精留分離器11の
底部と接続された第1冷凍サイクルAには高沸点冷媒が
濃縮して循環し 精留分離器11の頂部と接続された第
2冷凍サイクルBには低沸点冷媒が濃縮して循環し第1
冷凍サイクルの蒸発器4と第2冷凍サイクルの水側熱交
換器7は熱交換するた敷 第1冷凍サイクルの凝縮器2
ではより高温を、第2冷凍サイクルの空気側熱交換器9
ではより低温を得ることが可能となム 発明が解決しようとする課題 上記従来例1よ 組成分離を行なった場合、第1冷凍サ
イクルAでは常に高沸点冷媒が濃縮され第2冷凍サイク
ルBでは常に低沸点冷媒が濃縮されも このたべ 第1
冷凍サイクルAは加熱用には適している力丈 冷却に用
いると冷媒の比容積が増大し 装置の大型(L  効率
の低下は不可避であ4 また第2冷凍サイクルB側は冷
却用には適している力丈 加熱に用いると冷媒凝縮圧力
が高くなり、装置の大型化が不可避であり、また安全性
の面からも問題となも 課題を解決するための手段 本発明の熱ポンプ装置(表 第1圧縮阪 第1凝縮器 
第1主絞り装置 第1蒸発器等からなる第1冷凍サイク
ルと、第2圧縮親 第2凝縮器 第2主絞り装置 第2
蒸発器等からなる第2冷凍サイクルと、−精留分離器を
主たる構成要素とし 前記精留分離器の上端を第1四方
弁、第2四方弁を介して前記第1冷凍サイクルの前記第
1主絞り装置をバイパスして接続し 前記精留分離器の
下端を前記第1四方弁、前記第2四方弁を介して前記第
2冷凍サイクルの前記第2主絞り装置をバイパスして接
続服 低沸点冷媒と高沸点冷媒からなる非共沸混合冷媒
を封入したことを特徴とするものであム 作用 本発明は上記した構成により、運転する温度条件に応じ
て、it冷凍サイクルおよび第2冷凍サイクルに混合冷
媒を、もしくは第1四方弁および第2四方弁を切り換え
て精留分離器を運転させることにより、第1冷凍サイク
ルには高沸点冷媒が濃縮された非共沸混合冷風 第2冷
凍サイクルには低沸点冷媒が濃縮された非共沸混合冷媒
を、あるいは 第1冷凍サイクルには低沸点冷媒が濃縮
された非共沸混合冷風 第2冷凍サイクルには高沸点冷
媒が濃縮された非共沸混合冷媒を循環させ、幅広い運転
条件下において成績係数の向上が図れるものであム 実施例 以下、本発明の一実施例を添付図面に基づいて説明すも 第1図CL  本発明の熱ポンプ装置の一実施例を示す
ものであム 21は第1圧縮4a 22は第1主四方弁
、 23は利用側熱交換器 24は第1主絞り装置 2
5は第1熱交換器であり、これらを順次配管接続するこ
とにより、第1冷凍サイクルCを構成していも 26は第2圧縮[27は第2主四方弁、 28は第2熱
交換器 29は第2主絞り装置 30は空気側熱交換器
であり、これらを順次配管接続することにより、第2冷
凍サイクルDを構成していも 31は精留分離器であり、その上端は第1冷凍サイクル
Cの第1主絞り装置24をバイパスして第1補助絞り装
置32.33と第1副四方弁34、第2副四方弁35を
介して接続され 下端は第2冷凍サイクルDの第2主絞
り装置29をバイパスして第2補助絞り装置36.37
と第1副四方弁34、第2副四方弁35を介して接続さ
れもこのような熱ポンプ装置において、高沸点冷媒とし
て例えばR12、低沸点冷媒として例えばR22を混合
した非共沸混合冷媒を封入して運転する場合の動作につ
いて説明すも まず、第1冷凍サイクルCのみを運転する場合に(よ 
低沸点冷媒と高沸点冷媒の混合冷媒が循環し 単に高沸
点冷媒のみを循環させる場合と比べて冷却および加熱能
力が増大L 第2冷凍サイクルDは混合冷媒の余剰冷媒
の貯留作用をなす。
When operating both the first refrigeration cycle A and the second refrigeration cycle B of such a heat pump device, the first refrigeration cycle A and the second refrigeration cycle B are connected via the rectification separator 11. A rectification action occurs, and the high boiling point refrigerant is concentrated and circulated in the first refrigeration cycle A connected to the bottom of the rectification separator 11, and then circulated to the second refrigeration cycle B connected to the top of the rectification separator 11. The low boiling point refrigerant is concentrated and circulated.
The evaporator 4 of the refrigeration cycle and the water side heat exchanger 7 of the second refrigeration cycle are used for heat exchange.The condenser 2 of the first refrigeration cycle
Then, the higher temperature is transferred to the air side heat exchanger 9 of the second refrigeration cycle.
Therefore, it is possible to obtain a lower temperature.Problems to be Solved by the Invention As in Conventional Example 1 above, when composition separation is performed, the high boiling point refrigerant is always concentrated in the first refrigeration cycle A, and the high boiling point refrigerant is always concentrated in the second refrigeration cycle B. Even if the low boiling point refrigerant is concentrated, Konotabe Part 1
The refrigeration cycle A is suitable for heating, but when used for cooling, the specific volume of the refrigerant increases, resulting in a large device (L), which inevitably reduces efficiency. When used for heating, the refrigerant condensation pressure increases, making it unavoidable to increase the size of the device, and it also poses a problem from a safety standpoint. 1st compressor 1st condenser
First main throttling device A first refrigeration cycle consisting of a first evaporator, etc., a second compressor, a second condenser, a second main throttling device, a second
a second refrigeration cycle consisting of an evaporator, etc., and a rectification separator as main components; The lower end of the rectification separator is connected by bypassing the main throttling device of the second refrigeration cycle through the first four-way valve and the second four-way valve. The present invention is characterized by enclosing a non-azeotropic mixed refrigerant consisting of a boiling point refrigerant and a high boiling point refrigerant. By operating the rectification separator by switching the mixed refrigerant to the first refrigeration cycle or by switching the first four-way valve and the second four-way valve, the first refrigeration cycle is supplied with non-azeotropic mixed cold air enriched with high-boiling refrigerant.The second refrigeration cycle A non-azeotropic mixed refrigerant with a concentrated low-boiling refrigerant is used in the first refrigeration cycle, or a non-azeotropic mixed cold air with a concentrated low-boiling refrigerant is used in the second refrigeration cycle. The heat pump of the present invention circulates a boiling mixed refrigerant and improves the coefficient of performance under a wide range of operating conditions.Example: Hereinafter, an example of the present invention will be explained based on the accompanying drawings. 21 is a first compression 4a, 22 is a first main four-way valve, 23 is a user-side heat exchanger, and 24 is a first main throttle device 2.
5 is a first heat exchanger, and by connecting these pipes in sequence, a first refrigeration cycle C is constructed; 26 is a second compression; 27 is a second main four-way valve; and 28 is a second heat exchanger. 29 is a second main throttling device, 30 is an air side heat exchanger, and by connecting these in sequence, a second refrigeration cycle D is constructed. 31 is a rectification separator, the upper end of which is connected to the first The first main throttling device 24 of the refrigeration cycle C is bypassed and the first auxiliary throttling device 32, 33 is connected via the first sub-four-way valve 34 and the second sub-four-way valve 35. Bypassing the second main throttle device 29, the second auxiliary throttle device 36.37
In such a heat pump device, a non-azeotropic refrigerant mixture containing, for example, R12 as a high-boiling point refrigerant and, for example, R22 as a low-boiling point refrigerant, is used. First, we will explain the operation when operating with the refrigeration cycle C sealed.
A mixed refrigerant of a low boiling point refrigerant and a high boiling point refrigerant is circulated, and the cooling and heating capacity is increased compared to the case where only a high boiling point refrigerant is circulated.The second refrigeration cycle D functions to store surplus refrigerant of the mixed refrigerant.

つぎに第1冷凍サイクルCと第2冷凍サイクルDの両方
を運転する場合を、利用側熱交換器23を加熱に用いる
場合と冷却に用いる場合の順に説明すも 利用側熱交換器23を加熱に用いる場合、第1副四方弁
34、第2副四方弁35を切り換えて、精留分離器31
の底部と第1冷凍サイクルCを、また精留分離器31の
頂部と第2冷凍サイクルDを接続すム 第1冷凍サイク
ルCでは第1圧縮機21、第1主四方弁22、利用側熱
交換器23を経た冷媒の一部(よ 第1副四方弁34を
経て、第2補助絞り装置37によっである程度減圧され
て気液二相状態となり、特にガス冷媒は精留分離器31
の底部から上昇すも −人 第2冷凍サイクルDでは第
2圧縮機26、第2主四方弁27、第2熱交換器28を
経た冷媒の一部は 第2副四方弁35を経て、第1補助
絞り装置33によっである程度減圧されて気液二相状態
となり、特に液冷媒は精留分離器31の頂部から下降す
も このとき精留分離器31の内部では 上昇するガス
冷媒と下降する液冷媒との十分な気液接触による精留作
用が起こり、液冷媒は高沸点冷媒であるR12が濃縮さ
れ ガス冷媒は低沸点冷媒であるR22が濃縮されも 
このようにして、R12か濃縮された液冷媒は精留分離
器31の底部において第2補助絞り装置37により供給
される液冷媒と混合されて第2補助絞り装置36、第2
副四方弁35を経て第1熱交換器25側に導かれ R2
2が濃縮されたガス冷媒は精留分離器31の頂部におい
て第1補助絞り装置33により供給されるガス冷媒と混
合されて第1補助絞り装置32、第1副四方弁34を経
て空気側熱交換器30に導かれ4以上のような運転を続
けると、第2冷凍サイクルDには低沸点冷媒であるR2
2が濃縮された非共沸混合冷媒が循環し 第1冷凍サイ
クルCには高沸点冷媒であるR12が濃縮された非共沸
混合冷媒が循環して利用側熱交換器23を効率よくより
高温にすることができも 利用側熱交換器23を冷却に用いる場合、第1副四方弁
34、第2副四方弁35を切り換えて、精留分離器31
の頂部と第1冷凍サイクルCを、また精留分離器31の
底部と第2冷凍サイクルDを接続すム 第1冷凍サイク
ルCでは第1圧縮機21、第1主四方弁22、第1熱交
換器25を経た冷媒の一部(よ 第2副四方弁35を経
て、第1補助絞り装置33によっである程度減圧されて
気液二相状態となり、特に液冷媒は精留分離器31の頂
部から下降す&  −4,第2冷凍サイクルDでは第2
圧縮機26、第2主四方弁27、空気側熱交換器30を
経た冷媒の一部Cヨ  第1副四方弁34を経て、第2
補助絞り装置37によっである程度減圧されて気液二相
状態となり、特にガス冷媒は精留分離器31の底部から
上昇すム このとき精留分離器31の内部で(よ 上昇
するガス冷媒と下降する液冷媒との十分な気液接触によ
る精留作用が起こり、ガス冷媒は低沸点冷媒であるR2
2が濃縮され 液冷媒は高沸点冷媒であるR12が濃縮
されも このようにして、R22が濃縮されたガス冷媒
は精留分離器31の頂部において第1補助絞り装置33
により供給されるガス冷媒と混合されて第1補助絞り装
置32、第1副四方弁34を経て利用側熱交換器23側
に導かh  R12が濃縮された液冷媒は精留分離器3
1の底部において第2補助絞り装置37により供給され
る液冷媒と混合されて第2補助絞り装置36、第2副四
方弁35を経て第2熱交換器28に導かれる。
Next, the case where both the first refrigeration cycle C and the second refrigeration cycle D are operated will be explained in order of the case where the user-side heat exchanger 23 is used for heating and the case where the user-side heat exchanger 23 is used for cooling. When used in the rectification separator 31, the first sub-four-way valve 34 and the second sub-four-way valve 35 are switched.
The bottom of the refrigeration cycle C is connected to the first refrigeration cycle C, and the top of the rectification separator 31 and the second refrigeration cycle D are connected. A part of the refrigerant that has passed through the exchanger 23 (passes through the first sub-four-way valve 34 and is depressurized to some extent by the second auxiliary throttling device 37 to become a gas-liquid two-phase state. In particular, the gas refrigerant passes through the rectification separator 31
In the second refrigeration cycle D, part of the refrigerant that has passed through the second compressor 26, the second main four-way valve 27, and the second heat exchanger 28 passes through the second sub-four-way valve 35, and then passes through the second sub-four-way valve 35. 1 The pressure is reduced to some extent by the auxiliary throttling device 33, resulting in a gas-liquid two-phase state, and in particular, the liquid refrigerant descends from the top of the rectification separator 31.At this time, inside the rectification separator 31, the rising gas refrigerant and the descending gas refrigerant flow. A rectification effect occurs due to sufficient gas-liquid contact with the liquid refrigerant, and the liquid refrigerant is enriched with R12, which is a high boiling point refrigerant, and the gas refrigerant is enriched with R22, which is a low boiling point refrigerant.
In this way, the R12 concentrated liquid refrigerant is mixed with the liquid refrigerant supplied by the second auxiliary throttling device 37 at the bottom of the rectification separator 31, and the liquid refrigerant is mixed with the liquid refrigerant supplied by the second auxiliary throttling device 36,
R2 is guided to the first heat exchanger 25 side through the sub four-way valve 35.
The gas refrigerant in which 2 is concentrated is mixed with the gas refrigerant supplied by the first auxiliary throttle device 33 at the top of the rectification separator 31, passes through the first auxiliary throttle device 32 and the first sub-four-way valve 34, and then heats the air side. If the operation continues as described above through the exchanger 30, R2, which is a low boiling point refrigerant, enters the second refrigeration cycle D.
A non-azeotropic mixed refrigerant enriched with R12, which is a high boiling point refrigerant, circulates in the first refrigeration cycle C, and the non-azeotropic mixed refrigerant enriched with R12, which is a high boiling point refrigerant, circulates to efficiently drive the user-side heat exchanger 23 to a higher temperature. However, when the user-side heat exchanger 23 is used for cooling, the first sub-four-way valve 34 and the second sub-four-way valve 35 are switched, and the rectification separator 31
The top of the refrigeration cycle C is connected to the first refrigeration cycle C, and the bottom of the rectification separator 31 is connected to the second refrigeration cycle D. A part of the refrigerant that has passed through the exchanger 25 (passes through the second auxiliary four-way valve 35 and is reduced in pressure to some extent by the first auxiliary throttling device 33 and becomes a gas-liquid two-phase state. Descending from the top & -4, in the second refrigeration cycle D, the second
A portion of the refrigerant that passes through the compressor 26, the second main four-way valve 27, and the air side heat exchanger 30 passes through the first sub-four-way valve 34, and then passes through the second
The pressure is reduced to some extent by the auxiliary throttling device 37, resulting in a gas-liquid two-phase state, and in particular, the gas refrigerant rises from the bottom of the rectification separator 31. A rectification effect occurs due to sufficient gas-liquid contact with the descending liquid refrigerant, and the gas refrigerant becomes R2, a low boiling point refrigerant.
In this way, the gas refrigerant enriched with R22 is transferred to the first auxiliary throttling device 33 at the top of the rectification separator 31.
The liquid refrigerant enriched with R12 is mixed with the gas refrigerant supplied by the auxiliary throttle device 32 and the first auxiliary four-way valve 34 and guided to the user-side heat exchanger 23.
The liquid refrigerant is mixed with the liquid refrigerant supplied by the second auxiliary throttling device 37 at the bottom of the refrigerant 1, and is led to the second heat exchanger 28 via the second auxiliary throttling device 36 and the second sub-four-way valve 35.

以上のような運転を続けると、第2冷凍サイクルDには
高沸点冷媒であるR12が濃縮された非共沸混合冷媒が
循環し 第1冷凍サイクルCには低沸点冷媒であるR2
2が濃縮された非共沸混合冷媒が循環して利用側熱交換
器23を効率よくより低温にすることができる。
If the above operation continues, a non-azeotropic mixed refrigerant in which R12, a high boiling point refrigerant, is concentrated circulates in the second refrigeration cycle D, and R2, a low boiling point refrigerant, circulates in the first refrigeration cycle C.
The non-azeotropic mixed refrigerant in which the refrigerant 2 is concentrated is circulated, and the user-side heat exchanger 23 can be efficiently brought to a lower temperature.

発明の効果 以上のようζζ 本発明の熱ポンプ装置は 精留分離器
に接続された四方弁を切り換えることにより、加熱用冷
凍サイクルには第1冷凍サイクルに高沸点冷媒を循環さ
せて凝縮器内の圧力を低下させ、また 冷却用冷凍サイ
クルには第1冷凍サイクルに低沸点冷媒を循環させて蒸
発器内の圧力を上昇させ、幅広い温度条件下で効率よく
、しかも安全に運転を行なうことができる。
Effects of the Invention As described above, the heat pump device of the present invention circulates high boiling point refrigerant in the first refrigeration cycle to the heating refrigeration cycle by switching the four-way valve connected to the rectification separator. In addition, in the cooling refrigeration cycle, a low boiling point refrigerant is circulated through the first refrigeration cycle to increase the pressure inside the evaporator, making it possible to operate efficiently and safely under a wide range of temperature conditions. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の熱ポンプ装置の構成図 第
2図は従来例の熱ポンプ装置の構成図であム 21・・・第1圧縮@  22・・・第1主四方弁、 
23・・・利用側熱交換像 24・・・第1主絞り装置
25・・・第1熱交換器 26・・・第2圧縮a 27
・・・第2主四方弁、28・・・第2熱交換銖 29・
・・第2主絞り装W1.30・・・空気側熱交換@ 3
1・・・精留分離器32.33・・・第1補助絞り装置
 34・・・第1副四方弁、35・・・第2副四方弁、
 36、37・・・第2補助絞り装置 C・・・第1冷
凍サイクル、D・・・第2冷凍サイクツ民
Fig. 1 is a block diagram of a heat pump device according to an embodiment of the present invention. Fig. 2 is a block diagram of a conventional heat pump device. ,
23... User-side heat exchange image 24... First main expansion device 25... First heat exchanger 26... Second compression a 27
...Second main four-way valve, 28...Second heat exchange bolt 29.
...Second main restrictor W1.30...Air side heat exchange @ 3
1... Rectification separator 32. 33... First auxiliary throttling device 34... First sub four-way valve, 35... Second sub four-way valve,
36, 37...Second auxiliary throttling device C...First refrigeration cycle, D...Second refrigeration cycler

Claims (1)

【特許請求の範囲】[Claims] 第1圧縮機、第1凝縮器、第1主絞り装置、第1蒸発器
等からなる第1冷凍サイクルと、第2圧縮機、第2凝縮
器、第2主絞り装置、第2蒸発器等からなる第2冷凍サ
イクルと、精留分離器を主たる構成要素とし、前記精留
分離器の上端を第1四方弁、第2四方弁を介して前記第
1冷凍サイクルの前記第1主絞り装置をバイパスして接
続し、前記精留分離器の下端を前記第1四方弁、前記第
2四方弁を介して前記第2冷凍サイクルの前記第2主絞
り装置をバイパスして接続し、低沸点冷媒と高沸点冷媒
からなる非共沸混合冷媒を封入したことを特徴とする熱
ポンプ装置。
A first refrigeration cycle consisting of a first compressor, a first condenser, a first main throttle device, a first evaporator, etc., a second compressor, a second condenser, a second main throttle device, a second evaporator, etc. and a rectification separator as main components, the upper end of the rectification separator is connected to the first main throttling device of the first refrigeration cycle through a first four-way valve and a second four-way valve. The lower end of the rectification separator is connected by bypassing the second main throttling device of the second refrigeration cycle through the first four-way valve and the second four-way valve, and A heat pump device characterized by enclosing a non-azeotropic mixed refrigerant consisting of a refrigerant and a high boiling point refrigerant.
JP17061390A 1990-06-28 1990-06-28 Heat pump equipment Expired - Fee Related JP2861296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17061390A JP2861296B2 (en) 1990-06-28 1990-06-28 Heat pump equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17061390A JP2861296B2 (en) 1990-06-28 1990-06-28 Heat pump equipment

Publications (2)

Publication Number Publication Date
JPH0460352A true JPH0460352A (en) 1992-02-26
JP2861296B2 JP2861296B2 (en) 1999-02-24

Family

ID=15908110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17061390A Expired - Fee Related JP2861296B2 (en) 1990-06-28 1990-06-28 Heat pump equipment

Country Status (1)

Country Link
JP (1) JP2861296B2 (en)

Also Published As

Publication number Publication date
JP2861296B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
US4423603A (en) Heat pump type refrigeration system
KR890004867B1 (en) Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
KR930004384B1 (en) Heat-pump apparatus
JPH0460352A (en) Heat pump device
JPH02272265A (en) Two stage compression refrigeration cycle and heat-pump type air conditioner
JPH10160190A (en) Air conditioner
JP2574545B2 (en) Refrigeration cycle device
JPH1068560A (en) Refrigeration cycle device
CN111964188B (en) Thermosiphon-vapor compression composite refrigeration system
JPH02213652A (en) Two-stage compression and freezing cycle type air conditioner
JPH0833254B2 (en) Heat pump system
JP2615491B2 (en) Cooling / heating hot water supply system
JPH04103966A (en) Freezing cycle device
JPH086206Y2 (en) Heat pump equipment
JPS62261861A (en) Heat pump device
JPS6058380B2 (en) heat pump equipment
JPH0244156A (en) Heat pump device
JP2532754B2 (en) Refrigeration cycle equipment
JPS636347A (en) Refrigeration cycle
JPS5825232Y2 (en) Heat pump air conditioner
JPH01312365A (en) Cooling and heating device
JPH0371622B2 (en)
JPH0212344B2 (en)
JPH0246864B2 (en) NETSUHONPUSOCHI
JPS634103B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees