JPS636347A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPS636347A
JPS636347A JP15088086A JP15088086A JPS636347A JP S636347 A JPS636347 A JP S636347A JP 15088086 A JP15088086 A JP 15088086A JP 15088086 A JP15088086 A JP 15088086A JP S636347 A JPS636347 A JP S636347A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant circuit
pressure reducing
piping
reducing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15088086A
Other languages
Japanese (ja)
Inventor
誠 遠藤
笠原 文彦
直樹 田中
正毅 池内
等 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15088086A priority Critical patent/JPS636347A/en
Publication of JPS636347A publication Critical patent/JPS636347A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、ヒートポンプ装置などに用いる冷凍サイク
ルに関し、とくに負荷側の温度に対応して冷媒の組成を
調整して容量制御を行う冷凍サイクルに関するものであ
る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a refrigeration cycle used in a heat pump device, etc., and particularly relates to a refrigeration cycle in which capacity is controlled by adjusting the composition of refrigerant in accordance with the temperature on the load side. It is something.

〔従来の技術〕[Conventional technology]

第5図は米国特許第2938362号明細書に示された
上述のような冷凍サイクルの冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram of a refrigeration cycle as described above and shown in US Pat. No. 2,938,362.

第5図において、1は圧縮機、2aは主凝縮器、3は気
液分離器、4は減圧装置、5は蒸発器であり、これらが
順次環状に接続されて主冷媒回路が構成されている。6
は精溜装置であり、精溜装置6は上部の積層塔6aと下
部のレシーバ6bとが一体に形成され、積層塔6aは上
部が気液分離器3に配管7で接続され、レシーバ6bは
、内部に電気ヒータ8が設けられ、下部が配管12によ
って気液分離器3と減圧装置4を結ぶ配管10a。
In Fig. 5, 1 is a compressor, 2a is a main condenser, 3 is a gas-liquid separator, 4 is a pressure reducing device, and 5 is an evaporator, which are connected in order in a ring to form the main refrigerant circuit. There is. 6
is a rectification device, and the rectification device 6 is formed integrally with an upper stacked column 6a and a lower receiver 6b. , a pipe 10a in which an electric heater 8 is provided, and a pipe 12 connecting the gas-liquid separator 3 and the pressure reducing device 4 at the bottom thereof.

10bの間に設けた三方切換弁9を介して配管10bに
接続され、積層塔6aの頂部が副凝縮器2bを有する配
管11で気液分離器3と接続されている。なお、主、副
凝縮器2a、2bで凝縮器2が構成されている。そして
、この冷凍サイクル内には混合冷媒が充填され、混合冷
媒は、低沸点冷媒としてフロン22、高沸点冷媒として
R114など沸点が異なる非共沸性の混合物である。
The top of the stacked column 6a is connected to the gas-liquid separator 3 through a pipe 11 having a sub-condenser 2b. Note that the condenser 2 is composed of the main and sub-condensers 2a and 2b. The refrigeration cycle is filled with a mixed refrigerant, which is a non-azeotropic mixture having different boiling points, such as Freon 22 as a low boiling point refrigerant and R114 as a high boiling point refrigerant.

次に、この冷凍サイクルの動作について説明する。圧縮
機1の運転によって、圧縮機1から吐出された高温高圧
となった冷媒ガスは主凝縮器2aで放熱して周囲を加熱
する。これによって冷媒ガスは液化して気液分離器3に
導かれ、ここで冷媒液は気液分離器3の下部から切換弁
9を通り減圧装置4に導かれ、ここで低圧低温になって
蒸発器5に導かれる。蒸発器5で冷媒液が周囲から加熱
されてガス化し、冷媒ガスは圧縮機1に吸入され、上述
した動作を繰り返す。以上が主冷媒回路の動作である。
Next, the operation of this refrigeration cycle will be explained. As the compressor 1 operates, the high temperature and high pressure refrigerant gas discharged from the compressor 1 radiates heat in the main condenser 2a and heats the surroundings. As a result, the refrigerant gas is liquefied and guided to the gas-liquid separator 3, where the refrigerant liquid is led from the lower part of the gas-liquid separator 3 through the switching valve 9 to the pressure reducing device 4, where it becomes low pressure and low temperature and evaporates. Guided to vessel 5. In the evaporator 5, the refrigerant liquid is heated from the surroundings and gasified, and the refrigerant gas is sucked into the compressor 1, and the above-described operation is repeated. The above is the operation of the main refrigerant circuit.

この冷凍サイクルは、非共沸性の沸点が異なる混合冷媒
が充填されているが、−船釣な性質として低沸点冷媒の
濃度が高いと主凝縮器2aでの加熱能力が大きく、高沸
点冷媒の濃度が高いと主凝縮器2aでの加熱能力は小さ
い。この性質を利用すると混合冷媒の組成を調整するこ
とで、加熱能力を可変とし、容量制御が可能となる。精
溜装置6は容量制御をするために設けられ、切換弁9と
電気ヒータ8とによって操作される。すなわち、容量低
下時に、主冷媒回路中に高沸点冷媒が必要になった場合
には、上記切換弁9を切換えて配管10aと10bの接
続から配管12と配管10bの接続にすることで、積層
装置6下部のレシーバ6bに溜った高沸点冷媒が富んで
いる冷媒液が減圧装置4に導かれる。この結果、主冷媒
回路中の高沸点冷媒の濃度が高くなり、加熱能力が低く
なる。なお、この場合に、主冷媒回路にレシーバ6bか
ら冷媒を導入することで主冷媒回路の冷媒が過剰になる
が、この過剰冷媒は、気液分離器3の液面を上昇させ、
気液分離器3から溢出し、配管7を通って精溜装置6に
戻される。この精溜装置6に戻った冷媒は、精溜装置6
にあった冷媒より低沸点冷媒が冨んでいる。必要量の高
沸点冷媒が主冷媒回路に導入された時、切換弁9を切換
前の状態に戻し、レシーバ6bから配管12を通じての
冷媒の主冷媒回路への導入を停止する。また、容量上昇
時に、主冷媒回路中に低沸点冷媒が必要になった場合に
は、電気ヒータ8に入力を加えることで、精溜装置6の
レシーバ6b内の冷媒液を加熱して蒸発させる。蒸発し
た冷媒は、低沸点冷媒が比較的冨んでおり、積属装置6
上部の積層塔6a頂部から副凝縮器2bに導入され、こ
こで凝縮液化して気液分離器3に流入し、気液分離器3
の下部から流出する。このため、主冷媒回路の冷媒が過
剰になるが、この過剰の冷媒は、上述した場合と同様に
気液分離器3から配管7を通って精溜装置6の積層塔6
a上部に戻される。積層塔6a内では、上部から戻され
て下降する冷媒液と、レシーバ6bから蒸発して上昇す
る冷媒ガスとの間で積層作用が生じ、上昇する冷媒ガス
は上方はど低沸点冷媒が富み、下降する冷媒液は下方は
ど高沸煮冷、が富む。この結果、精溜装置6のレシーバ
6bには高沸点冷媒が溜り、主冷媒回路は低沸点冷媒が
供給されて、低沸点冷媒の濃度が高(なり、加熱能力が
高くなる。必要な加熱能力になった時、電気ヒータ8に
よる加熱を停止する。
This refrigeration cycle is filled with a mixture of non-azeotropic refrigerants with different boiling points, but due to the nature of boat fishing, when the concentration of the low boiling point refrigerant is high, the heating capacity in the main condenser 2a is large, and the high boiling point refrigerant When the concentration of is high, the heating capacity in the main condenser 2a is small. Utilizing this property, by adjusting the composition of the mixed refrigerant, the heating capacity can be varied and the capacity can be controlled. The rectifying device 6 is provided for capacity control and is operated by a switching valve 9 and an electric heater 8. That is, when a high boiling point refrigerant is required in the main refrigerant circuit when the capacity decreases, the switching valve 9 is switched from connecting the pipes 10a and 10b to connecting the pipes 12 and 10b. The refrigerant liquid rich in high boiling point refrigerant accumulated in the receiver 6b at the bottom of the device 6 is led to the pressure reducing device 4. As a result, the concentration of the high boiling point refrigerant in the main refrigerant circuit increases, and the heating capacity decreases. In this case, the refrigerant in the main refrigerant circuit becomes excessive by introducing the refrigerant from the receiver 6b into the main refrigerant circuit, but this excess refrigerant raises the liquid level of the gas-liquid separator 3,
It overflows from the gas-liquid separator 3 and is returned to the rectifier 6 through the pipe 7. The refrigerant returned to the rectifying device 6 is
It is rich in lower boiling point refrigerants than the refrigerants found in When the required amount of high boiling point refrigerant is introduced into the main refrigerant circuit, the switching valve 9 is returned to the state before switching, and the introduction of refrigerant from the receiver 6b to the main refrigerant circuit through the pipe 12 is stopped. In addition, when a low boiling point refrigerant is required in the main refrigerant circuit when the capacity increases, input is applied to the electric heater 8 to heat and evaporate the refrigerant liquid in the receiver 6b of the rectifier 6. . The evaporated refrigerant is relatively rich in low boiling point refrigerant and is stored in the loading device 6.
It is introduced into the sub-condenser 2b from the top of the upper laminated column 6a, where it is condensed and liquefied and flows into the gas-liquid separator 3.
It flows out from the bottom of. As a result, there is an excess of refrigerant in the main refrigerant circuit, but this excess refrigerant passes from the gas-liquid separator 3 through the pipe 7 to the laminated column 6 of the rectifier 6, as in the case described above.
a Return to the top. In the stacked tower 6a, a stacking action occurs between the refrigerant liquid returned from the top and descending, and the refrigerant gas evaporated and rising from the receiver 6b, and the rising refrigerant gas is rich in low boiling point refrigerant in the upper part. The descending refrigerant liquid is rich in high-boiling, cold liquid at the bottom. As a result, the high boiling point refrigerant accumulates in the receiver 6b of the rectifying device 6, and the low boiling point refrigerant is supplied to the main refrigerant circuit, so that the concentration of the low boiling point refrigerant becomes high (and the heating capacity increases.The required heating capacity When this happens, heating by the electric heater 8 is stopped.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の冷凍サイクルは、以上のように構成されているの
で、副凝縮器を気液分離器の上方に設けなければならず
、また凝縮器を精溜装置から離れた位置に設けると接続
配管の数が多く長さが長くなり部品配置が制約されると
ともに、コストが貰くなり、さらに、精溜装置のレシー
バ内に設けた電気ヒータへの通電を止めると、高沸点冷
媒が冨む精溜装置の圧力が低下し、主冷媒回路から冷媒
が精溜装置に流れ込み、主冷媒回路の冷媒が不足するた
め、電気ヒータに常に通電しておく必要があり、エネル
ギがむだになるという問題点があった。
Since the conventional refrigeration cycle is configured as described above, the sub-condenser must be installed above the gas-liquid separator, and if the condenser is installed away from the rectifier, the connection piping will be damaged. The number of parts is large and the length is long, which restricts the arrangement of parts and increases costs.Furthermore, if the electricity is turned off to the electric heater installed in the receiver of the rectifier, the rectifier, which is rich in high boiling point refrigerant, will When the pressure in the device decreases, refrigerant flows from the main refrigerant circuit into the rectification device, causing a shortage of refrigerant in the main refrigerant circuit, which requires the electric heater to be constantly energized, which results in wasted energy. there were.

この発明は、上記のような問題点を解決するためになさ
れたもので、副凝縮器をなくし、部品配置の自由度を大
きくするとともに、積層装置、圧縮機および凝縮器を接
続する配管の数を少なく配管の長さを短くしてコストダ
ウンを図り、さらに電気ヒータによるエネルギのむだを
なくし、省エネルギ化ができる冷凍サイクルを提供する
ことを目的としている。
This invention was made to solve the above-mentioned problems. It eliminates the sub-condenser, increases the degree of freedom in component arrangement, and reduces the number of pipes connecting the stacking device, compressor, and condenser. The purpose of the present invention is to provide a refrigeration cycle that can reduce costs by reducing the amount of water and shorten the length of piping, and can also save energy by eliminating wasted energy due to electric heaters.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る冷凍サイクルは、精溜装置の下部に凝縮
器で凝縮し、た高圧冷媒が流れる熱交換器を設け、精溜
装置の上部と主冷媒回路の蒸発器入口側または出口側の
配管を開閉弁を有する配管で接続したものである。
The refrigeration cycle according to the present invention is provided with a heat exchanger in the lower part of the rectifier through which the high-pressure refrigerant condensed in the condenser flows, and piping between the upper part of the rectifier and the evaporator inlet side or outlet side of the main refrigerant circuit. These are connected by piping with on-off valves.

〔作用〕[Effect]

この発明における冷凍サイクルは、精溜装置の下部内に
設けた熱交換器に主冷媒回路の凝縮器で凝縮した高圧冷
媒を流して、精溜装置の下部内に溜った冷媒液を加熱す
るようにしたので、従来の電気ヒータをなくし、これに
よるエネルギのロスをなくすことができ、また精溜装置
の上部と主冷媒回路の蒸発器入口側または出口側の配管
とを、開閉弁を有する配管で接続したので、従来の副凝
縮器をなくし、配管の自由度を大きくでき、配管の数を
少なくでき、さらに配管の長さも短くできる。
The refrigeration cycle in this invention heats the refrigerant liquid accumulated in the lower part of the rectifier by flowing high-pressure refrigerant condensed in the condenser of the main refrigerant circuit through a heat exchanger provided in the lower part of the rectifier. As a result, the conventional electric heater can be eliminated and the energy loss caused by it can be eliminated, and the upper part of the rectifier and the piping on the evaporator inlet side or outlet side of the main refrigerant circuit can be connected to piping with an on-off valve. Since the conventional sub-condenser is eliminated, the degree of freedom in piping can be increased, the number of piping can be reduced, and the length of the piping can also be shortened.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図ないし第4図につい
て説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第1図において、1は圧縮機、2は従来の主凝縮器と同
様な凝縮器、3は気液分離器、4は減圧装置(以下第1
減圧装置という)、5は蒸発器であり、これらが順次環
状に接続されて主冷媒回路が形成されている。第2減圧
装置13を有する配管7の一端が気液分離器3に接続さ
れ、配管7の他端が精溜装置6の積層塔6a上部に接続
され、精溜装置6のレシーバ6bに一端が接続された配
管12に開閉可能な第3減圧装置14が設けられ配管1
2の他端が第1減圧装置4の出口側配管15に接続され
て、並列冷媒回路が構成されている。
In Fig. 1, 1 is a compressor, 2 is a condenser similar to a conventional main condenser, 3 is a gas-liquid separator, and 4 is a pressure reducing device (hereinafter referred to as the first
(referred to as a pressure reducing device), and 5 an evaporator, which are sequentially connected in an annular manner to form a main refrigerant circuit. One end of the pipe 7 having the second pressure reducing device 13 is connected to the gas-liquid separator 3, the other end of the pipe 7 is connected to the upper part of the stacking column 6a of the rectifier 6, and one end is connected to the receiver 6b of the rectifier 6. A third pressure reducing device 14 that can be opened and closed is provided to the connected piping 12.
The other end of the refrigerant refrigerant 2 is connected to the outlet side pipe 15 of the first pressure reducing device 4, thereby forming a parallel refrigerant circuit.

上記精溜装置6のレシーバ6b内には熱交換器16が設
けられ、熱交換器16は主冷媒回路の気液分離器3と第
1減圧装置4の間の配管17と18に上端と下端がそれ
ぞれ接続されている。また、積層塔6aの頂部に一端が
接続された配管20に開閉弁19が設けられ配管20の
他端が配管12の第3減圧装置14より主冷媒回路側の
部分と併合されて第1減圧装置4出口側に接続されてい
る。
A heat exchanger 16 is provided in the receiver 6b of the rectifying device 6, and the heat exchanger 16 is connected to pipes 17 and 18 between the gas-liquid separator 3 and the first pressure reducing device 4 in the main refrigerant circuit at upper and lower ends. are connected to each other. In addition, an on-off valve 19 is provided in a pipe 20 whose one end is connected to the top of the stacked tower 6a, and the other end of the pipe 20 is merged with a portion of the pipe 12 closer to the main refrigerant circuit than the third pressure reducing device 14, and is connected to the first pressure reducing part. Connected to the device 4 outlet side.

そして、この実施例のヒートポンプ装置内には、従来の
ものと同様な低沸点、高沸点冷媒の非共沸性の混合物が
充填されている。
The heat pump device of this embodiment is filled with a non-azeotropic mixture of low boiling point and high boiling point refrigerants similar to the conventional heat pump device.

次に、このヒートポンプ装置の動作ついて説明する。第
2図に示すように、圧縮機1の運転により、圧縮機lか
ら吐出された高温高圧の冷媒ガスは凝縮器2で放熱し周
囲を加熱する。この加熱によって液化した冷媒は気液分
離器3に導かれ、これの下部から、配管17を経てレシ
ーバ6b内に挿入された熱交換器16に導かれ、導かれ
た冷媒液はレシーバ6b内に溜っている冷媒液よりも高
温であるため、この冷媒液を加熱すると共に、熱交換器
16を流れる冷媒液が冷却され、この冷媒液が配管18
を経て第1減圧装置4に導かれ、ここで低圧低温となっ
て蒸発器5に導かれ、ここで冷媒が周囲から加熱されて
ガス化し、圧縮機1に吸入され、上述した動作を繰り返
す。以上の主冷媒回路の動作では、第2.第3減圧装置
13.14および開閉弁19が閉じ、第1減圧装置4が
開き、精溜装置6が設けられた並列冷媒回路は主冷媒回
路と分離している。そして、主冷媒回路内の高沸点冷媒
の濃度が低く、低沸点冷媒の濃度が高い運転である。
Next, the operation of this heat pump device will be explained. As shown in FIG. 2, when the compressor 1 is operated, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 radiates heat in the condenser 2 and heats the surroundings. The refrigerant liquefied by this heating is led to the gas-liquid separator 3, and from the lower part of this, it is led to the heat exchanger 16 inserted into the receiver 6b via piping 17, and the led refrigerant liquid is led into the receiver 6b. Since the temperature is higher than that of the accumulated refrigerant liquid, this refrigerant liquid is heated and the refrigerant liquid flowing through the heat exchanger 16 is cooled, and this refrigerant liquid is passed through the piping 18.
The refrigerant is guided to the first pressure reducing device 4, where it becomes low pressure and low temperature, and is led to the evaporator 5, where the refrigerant is heated from the surroundings and gasified, and is sucked into the compressor 1, and the above-mentioned operation is repeated. In the above operation of the main refrigerant circuit, the second. The third pressure reducing device 13,14 and the on-off valve 19 are closed, the first pressure reducing device 4 is open, and the parallel refrigerant circuit in which the rectification device 6 is provided is separated from the main refrigerant circuit. This is an operation in which the concentration of high boiling point refrigerant in the main refrigerant circuit is low and the concentration of low boiling point refrigerant is high.

この実施例の冷凍サイクルも、従来のものと同様に、低
沸点冷媒の濃度が高いと凝縮器での加熱能力が大きく、
高沸点冷媒の濃度が低いと凝縮器の加熱能力が小さい。
In the refrigeration cycle of this embodiment, as in the conventional one, the higher the concentration of the low boiling point refrigerant, the greater the heating capacity in the condenser.
When the concentration of high boiling point refrigerant is low, the heating capacity of the condenser is small.

この性質を利用して混合冷媒の組成を調整し、加熱能力
を可変とし、容量制御が可能となる。容量制御を行うた
めの精溜装置6は第2.第3減圧装置13.14および
開閉弁19によって操作される。すなわち、容量低下時
に主冷媒回路中に高沸点冷媒が必要になった場合には、
第3図に示すように第2.第3減圧装置13゜14を開
き、第1:/JIi、圧装置4を閉じると、精溜装置6
のレシーバ6b下部に溜った高沸点冷媒が冨んでいる冷
媒液が配管12から第3減圧装置14を通って蒸発器5
の入口に導かれる。この自果、主冷媒回路中の高沸点冷
媒の濃度が高くなり、加熱能力が低くなる。なお、この
場合に、レシーバ6aから冷媒を主冷媒回路に導入する
ことで、主冷媒回路の冷媒が過剰となり、気液分離器3
の液面が上昇し、冷媒液が溢出し、配管7を通って精溜
装置6の清潔塔6a内に導入され、下方の成用配管6d
からレシーバ6bに戻される。戻された冷媒は低沸点冷
媒が冨んでいる。必要量の高沸点冷媒が主冷媒回路に導
入された時、第2図に示すように第2.第3減圧装置1
3,14、開閉弁19を閉じ、レシーバ6bからの冷媒
の主冷媒回路への導入を停止すると共に、第1減圧装置
4を開く。
Utilizing this property, the composition of the mixed refrigerant can be adjusted, the heating capacity can be made variable, and the capacity can be controlled. The rectifying device 6 for controlling the capacity is the second one. It is operated by a third pressure reducing device 13,14 and an on-off valve 19. In other words, if high boiling point refrigerant is required in the main refrigerant circuit when capacity decreases,
As shown in FIG. When the third pressure reducing device 13°14 is opened and the first pressure reducing device 4 is closed, the rectifying device 6
The refrigerant liquid enriched with high boiling point refrigerant accumulated in the lower part of the receiver 6b passes from the pipe 12 through the third pressure reducing device 14 to the evaporator 5.
will lead you to the entrance. In this case, the concentration of high boiling point refrigerant in the main refrigerant circuit becomes high, and the heating capacity becomes low. In this case, by introducing the refrigerant into the main refrigerant circuit from the receiver 6a, the refrigerant in the main refrigerant circuit becomes excessive, and the gas-liquid separator 3
The liquid level rises, the refrigerant liquid overflows, is introduced into the clean tower 6a of the rectifier 6 through the pipe 7, and is introduced into the lower production pipe 6d.
from there to the receiver 6b. The returned refrigerant is enriched with low boiling point refrigerants. When the required amount of high boiling point refrigerant is introduced into the main refrigerant circuit, the second. Third pressure reducing device 1
3, 14, close the on-off valve 19, stop introducing the refrigerant from the receiver 6b into the main refrigerant circuit, and open the first pressure reducing device 4.

また、容量上昇時に、主冷媒回路中に、低沸点冷媒が必
要になった場合には、第4図に示すように第2減圧装置
13.開閉弁19および第1減圧装置4を開き、第3減
圧装置14を閉じる。レシーバ6bの冷媒液が熱交換器
16による加熱によって蒸発し、清潔塔6aに導入され
る。この冷媒は低沸点冷媒が比較的富んでおり、清潔塔
6aの頂部から開閉弁19を通り配管20によって主冷
媒回路に導かれる。このため、主冷媒回路の冷媒が過剰
になり、気液分離器3の配管7を通って清潔塔6a上部
に戻される。清潔塔6a内では、上部から戻されて下降
する冷媒液と、レシーバ6bから蒸発して上昇する冷媒
ガスとの間で、清潔作用が生じ、上昇する冷媒ガスは上
方はど低沸点冷媒が富み、下降する冷媒液は下方はど高
沸点冷媒が冨む。この結果、レシーバ6bには高沸点冷
媒が溜り、主冷媒回路は低沸点冷媒が供給されて低沸点
冷媒の濃度が高くなり、加熱能力も高くなる。
In addition, if a low boiling point refrigerant is required in the main refrigerant circuit when the capacity is increased, the second pressure reducing device 13. The on-off valve 19 and the first pressure reducing device 4 are opened, and the third pressure reducing device 14 is closed. The refrigerant liquid in the receiver 6b is evaporated by heating by the heat exchanger 16 and introduced into the clean tower 6a. This refrigerant is relatively rich in low boiling point refrigerant, and is led from the top of the clean tower 6a through the on-off valve 19 to the main refrigerant circuit via a pipe 20. Therefore, the refrigerant in the main refrigerant circuit becomes excessive and is returned to the upper part of the clean tower 6a through the pipe 7 of the gas-liquid separator 3. In the clean tower 6a, a cleansing effect occurs between the refrigerant liquid returned from the top and descending, and the refrigerant gas evaporated and rising from the receiver 6b, and the rising refrigerant gas is rich in low boiling point refrigerant in the upper part. The descending refrigerant liquid is enriched with high boiling point refrigerant at the bottom. As a result, the high boiling point refrigerant accumulates in the receiver 6b, and the low boiling point refrigerant is supplied to the main refrigerant circuit, increasing the concentration of the low boiling point refrigerant and increasing the heating capacity.

さらに、第2図に示すように第2.第3:$i圧装置1
3.14および開閉弁19を閉じ、第1減圧装置4を開
くことで、再び主冷媒回路中の高沸点冷媒の濃度が低沸
点冷媒の濃度が高い運転ができる。
Furthermore, as shown in FIG. 3rd: $i pressure device 1
By closing 3.14 and the on-off valve 19 and opening the first pressure reducing device 4, operation can again be performed in which the concentration of high boiling point refrigerant in the main refrigerant circuit is higher than that of low boiling point refrigerant.

この発明において、上記実施例では、開閉弁19を有す
る配管20を第1減圧装置4の出口側配管15に接続し
たが、開閉弁を有する配管は、蒸発器の出口側配管など
、第1減圧装置の出口から圧縮機の吸込口までの間の主
冷媒回路の適所に接続すればよい。
In this invention, in the above embodiment, the piping 20 having the on-off valve 19 was connected to the outlet side piping 15 of the first pressure reducing device 4, but the piping having the on-off valve may be connected to the outlet side piping of the evaporator, etc. It is sufficient to connect it to an appropriate point in the main refrigerant circuit between the outlet of the device and the suction port of the compressor.

また、この発明において、気液分離槽をなくし、凝縮器
2と熱交換器16の間の配管に第2減圧装置13を有す
る配管7を接続してもよい。
Further, in the present invention, the gas-liquid separation tank may be omitted, and the pipe 7 having the second pressure reducing device 13 may be connected to the pipe between the condenser 2 and the heat exchanger 16.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、精溜装置の下
部内に設けた熱交換器に主冷媒回路の凝縮器で凝縮した
高圧冷媒を流し、精溜装置の下部内に溜った冷媒液を加
熱するようにして、従来の電気ヒータをなくしたので、
これによるエネルギのロスをなくし、省エネルギ化を図
ることができ、また精溜装置の上部と主冷媒回路の蒸発
器入口側または出口側の配管とを開閉弁を有する配管で
接続し、従来の副凝縮器をなくしたので、配管の自由度
が大きくまた配管の数を少くでき、さらに配管の長さも
短(することができコストダウンができるという効果が
得られる。
As explained above, according to the present invention, the high-pressure refrigerant condensed in the condenser of the main refrigerant circuit is caused to flow through the heat exchanger provided in the lower part of the rectifier, and the refrigerant liquid accumulated in the lower part of the rectifier is The conventional electric heater was eliminated, so
The energy loss caused by this can be eliminated and energy saving can be achieved.In addition, the upper part of the rectifier and the piping on the evaporator inlet side or outlet side of the main refrigerant circuit are connected by piping with an on-off valve, making it possible to Since the sub-condenser is eliminated, there is a greater degree of freedom in piping, the number of piping can be reduced, and the length of the piping can also be shortened, resulting in cost reduction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による冷凍サイクルを示す
冷媒回路図、第2図ないし第4図は第1図の冷凍サイク
ルの互いに異なった運転状態を示す冷媒回路、第5図は
従来の冷凍サイクルを示す冷媒回路図である。 1は圧縮機、2は凝縮器、3は気液分離器、4は減圧装
置、5は蒸発器、6は精溜装置、6aは清潔塔、6bは
レシーバ、?、12.15.1?。 18.20は配管、13.14は第2.第3減圧装置、
16は熱交換器、19は開閉弁。 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle according to an embodiment of the present invention, FIGS. 2 to 4 are refrigerant circuit diagrams showing different operating states of the refrigeration cycle of FIG. 1, and FIG. 5 is a refrigerant circuit diagram of a conventional refrigeration cycle. It is a refrigerant circuit diagram showing a refrigeration cycle. 1 is a compressor, 2 is a condenser, 3 is a gas-liquid separator, 4 is a pressure reduction device, 5 is an evaporator, 6 is a rectification device, 6a is a clean tower, 6b is a receiver, ? , 12.15.1? . 18.20 is the piping, 13.14 is the second. a third pressure reducing device;
16 is a heat exchanger, 19 is an on-off valve. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (3)

【特許請求の範囲】[Claims] (1)圧縮機、凝縮器、減圧装置、および蒸発器を順次
環状に接続した主冷媒回路と、上部が主冷媒回路の凝縮
器と減圧装置の間に接続され下部が主冷媒回路の減圧装
置の入口側または出口側配管に接続された精溜装置を有
する並列冷媒回路とを備え、内部に沸点が異なる冷媒の
非共沸性混合冷媒を充填した冷凍サイクルにおいて、上
記精溜装置の下部内に上記凝縮器で凝縮した高圧冷媒が
流れる熱交換器を設け、精溜装置の上部と主冷媒回路の
蒸発器入口側または出口側の配管とを開閉弁を有する配
管で接続したことを特徴とする冷凍サイクル。
(1) A main refrigerant circuit in which a compressor, a condenser, a pressure reducing device, and an evaporator are sequentially connected in a ring, and a pressure reducing device in which the upper part is connected between the condenser and the pressure reducing device in the main refrigerant circuit and the lower part is in the main refrigerant circuit. In a refrigeration cycle which is equipped with a parallel refrigerant circuit having a rectification device connected to the inlet side or outlet side piping of the refrigerant, and is filled with a non-azeotropic mixed refrigerant of refrigerants having different boiling points, the refrigerant circuit in the lower part of the rectification device A heat exchanger is provided in which the high-pressure refrigerant condensed in the condenser flows, and the upper part of the rectifier is connected to the piping on the evaporator inlet side or outlet side of the main refrigerant circuit by piping having an on-off valve. refrigeration cycle.
(2)並列冷媒回路は、精溜装置の上部と接続する配管
と精溜装置の下部と接続する配管の少なくとも一方に減
圧装置を設けた特許請求の範囲第1項記載の冷凍サイク
ル。
(2) The refrigeration cycle according to claim 1, wherein the parallel refrigerant circuit is provided with a pressure reducing device in at least one of the piping connected to the upper part of the rectification apparatus and the piping connected to the lower part of the rectification apparatus.
(3)並列回路は、精溜装置の上部と主冷媒回路とを凝
縮器および減圧装置の間に設けた気液分離器を介して接
続する配管に第2の減圧装置を設け、精溜装置の下部と
主冷媒回路の減圧装置出口側配管とを接続する配管に第
3の減圧装置を設けた特許請求の範囲第1項記載の冷凍
サイクル。
(3) In the parallel circuit, a second pressure reduction device is installed in the piping that connects the upper part of the rectification device and the main refrigerant circuit via a gas-liquid separator provided between the condenser and the pressure reduction device. 2. The refrigeration cycle according to claim 1, wherein a third pressure reducing device is provided in the pipe connecting the lower part of the main refrigerant circuit to the pressure reducing device outlet side pipe of the main refrigerant circuit.
JP15088086A 1986-06-27 1986-06-27 Refrigeration cycle Pending JPS636347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15088086A JPS636347A (en) 1986-06-27 1986-06-27 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15088086A JPS636347A (en) 1986-06-27 1986-06-27 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JPS636347A true JPS636347A (en) 1988-01-12

Family

ID=15506400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15088086A Pending JPS636347A (en) 1986-06-27 1986-06-27 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS636347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224250U (en) * 1988-07-29 1990-02-16
JPH02238261A (en) * 1989-03-10 1990-09-20 Matsushita Electric Ind Co Ltd Heat pump apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0224250U (en) * 1988-07-29 1990-02-16
JPH02238261A (en) * 1989-03-10 1990-09-20 Matsushita Electric Ind Co Ltd Heat pump apparatus

Similar Documents

Publication Publication Date Title
US4840042A (en) Heat pump system
KR890004867B1 (en) Haet pump with a reservoir storing higher pressure refrigerante of non-azeotropic mixture
CN111947302A (en) Concentration-variable directly-heated heat pump water heater with flash evaporator and working method thereof
JPS636347A (en) Refrigeration cycle
CN213119316U (en) Air conditioning unit adopting throttle valve
CN105972864A (en) Non-azeotropic mixed working medium heat pump air-conditioning system with concentration adjustable
JPS62261861A (en) Heat pump device
JPS62261864A (en) Heat pump device
JPH0264364A (en) Heat pump device
JPS636346A (en) Refrigeration cycle
JPH04263742A (en) Refrigerator
JPS58104475A (en) Heat pump device
JPH0440622B2 (en)
JPS61276664A (en) Heat pump device
JPH0833254B2 (en) Heat pump system
JPH0264369A (en) Heat pump device
JPS62261863A (en) Heat pump device
JPS63153367A (en) Heat pump device
JPS58120061A (en) Heat pump type refrigerator
JPH0364783B2 (en)
JPH0460352A (en) Heat pump device
JPH0371622B2 (en)
JPS58102052A (en) Heat pump type water heating equipment
JPS636348A (en) Refrigeration cycle
JPH0264370A (en) Heat pump device