JPS634103B2 - - Google Patents

Info

Publication number
JPS634103B2
JPS634103B2 JP16083181A JP16083181A JPS634103B2 JP S634103 B2 JPS634103 B2 JP S634103B2 JP 16083181 A JP16083181 A JP 16083181A JP 16083181 A JP16083181 A JP 16083181A JP S634103 B2 JPS634103 B2 JP S634103B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
boiling point
indoor heat
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16083181A
Other languages
Japanese (ja)
Other versions
JPS5862464A (en
Inventor
Takeshi Imaida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16083181A priority Critical patent/JPS5862464A/en
Publication of JPS5862464A publication Critical patent/JPS5862464A/en
Publication of JPS634103B2 publication Critical patent/JPS634103B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、高沸点冷媒と低沸点冷媒との非共沸
混合冷媒を用いたヒートポンプ式冷凍装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump type refrigeration system using a non-azeotropic refrigerant mixture of a high boiling point refrigerant and a low boiling point refrigerant.

第1図に従来のヒートポンプ式冷凍装置を示
す。
Figure 1 shows a conventional heat pump type refrigeration system.

101は圧縮機、102は四方切換弁、103
は室内側熱交換器、104は締り装置、105は
室外側熱交換器、106は低圧側の受液器であ
り、冷房時の冷媒の流れは実線矢印、暖房時の冷
媒の流れは破線矢印で示されている通りである。
101 is a compressor, 102 is a four-way switching valve, 103
104 is the indoor heat exchanger, 104 is the tightening device, 105 is the outdoor heat exchanger, and 106 is the low-pressure receiver. The flow of refrigerant during cooling is indicated by solid arrows, and the flow of refrigerant during heating is indicated by broken arrows. As shown in

上記のようなヒートポンプ式冷凍装置において
は、暖房時に室外熱交換器103内の冷媒が沸
騰、蒸発するために外気温度が低下するにつれて
蒸発器温度が低下し、圧縮機の吸込圧力が低下す
る。
In the heat pump type refrigeration system as described above, the refrigerant in the outdoor heat exchanger 103 boils and evaporates during heating, so as the outside air temperature decreases, the evaporator temperature decreases and the suction pressure of the compressor decreases.

この時、吸込圧力の低下により冷媒ガスの比容
積が増大するため、圧縮機から吐出される冷媒循
環量(重量流量)が減少し、暖房能力の低下を起
こしている。
At this time, the specific volume of the refrigerant gas increases due to a decrease in suction pressure, so the circulating amount (weight flow rate) of refrigerant discharged from the compressor decreases, causing a decrease in heating capacity.

また、このような低外気温時には建物の熱負荷
は増大するため装置の容量と建物の熱負荷の平衡
点温度以下の外気温では、不足する熱量を効率の
悪い電気ヒータ等で補なう必要があつた。
In addition, the heat load on the building increases at such low outside temperatures, so when the outside temperature is below the equilibrium point temperature between the capacity of the equipment and the heat load on the building, it is necessary to compensate for the lack of heat with inefficient electric heaters, etc. It was hot.

これらの関係を示したものが第2図である。 FIG. 2 shows these relationships.

一方、夏期の冷房時には、冬期に比較して高い
蒸発温度で冷媒が蒸発するため吸入圧力も高く、
圧縮機へ吸込まれる冷媒ガスの比容積は暖房時よ
り小さい。
On the other hand, during summer cooling, the refrigerant evaporates at a higher evaporation temperature than in winter, so the suction pressure is also higher.
The specific volume of the refrigerant gas sucked into the compressor is smaller than during heating.

このため暖房を考慮して選定された圧縮機で
は、冷房時に必要以上の冷媒循環量(重量流量)
が得られ、圧縮機の動力が増大するだけでなく、
圧縮機が建物の熱負荷と見合うようにサーモスタ
ツト等により始動および運転停止の過渡状態を繰
返すため、効率低下を来たしていた。
For this reason, compressors selected with heating in mind may have a higher refrigerant circulation volume (weight flow rate) than is necessary for cooling.
is obtained, which not only increases the power of the compressor, but also
Compressors had to repeat transient states of starting and stopping due to thermostats, etc. in order to match the heat load of the building, resulting in a decrease in efficiency.

本発明は、上記した点に鑑み提案されたもので
その目的とするところは、暖房時の低外気温時、
蒸発器温度が低い時に容量を大きくし、暖房時の
外気温が前記した平衡点温度より高い時、又は冷
房時などの蒸発器温度が高い時に容量を小さくで
きる改良されたヒートポンプ式冷凍装置を提供す
ることにある。
The present invention has been proposed in view of the above-mentioned points, and its purpose is to
To provide an improved heat pump type refrigeration system that can increase the capacity when the evaporator temperature is low and reduce the capacity when the outside temperature is higher than the above-mentioned equilibrium point temperature during heating or when the evaporator temperature is high during cooling. It's about doing.

本発明は、高沸点冷媒と低沸点冷媒との非共沸
混合冷媒を用いたヒートポンプ式冷凍装置におい
て、室内側熱交換器中の冷媒回路と、室内側熱交
換器と絞り装置を結ぶ冷媒回路との間に冷媒回収
容器と開閉弁を備えた冷媒回路を接続したことを
特徴とするもので、非共沸混合冷媒の特性を利用
して高沸点冷媒を暖房の熱負荷の大きな時に、開
閉弁を閉じて冷媒回収容器に回収し、冷媒回路中
を循環する冷媒の組成を低沸点冷媒が多くなるよ
うにすることにより、圧縮機に吸込まれる冷媒の
密度が大きくなり(比容積は減少)冷媒循環量が
増大するため容量が大きくなつて暖房能力が向上
する。
The present invention provides a heat pump type refrigeration system using a non-azeotropic mixed refrigerant of a high-boiling point refrigerant and a low-boiling point refrigerant. A refrigerant circuit equipped with a refrigerant recovery container and an on-off valve is connected between the By closing the valve and collecting the refrigerant in the refrigerant recovery container, the composition of the refrigerant circulating in the refrigerant circuit is made to include more low-boiling point refrigerant, which increases the density of the refrigerant sucked into the compressor (the specific volume decreases). ) Since the amount of refrigerant circulation increases, the capacity increases and heating capacity improves.

一方、開閉弁を開いておけば冷媒回収容器中に
ほとんど冷媒が溜ることがなく、冷房時などの蒸
発器温度が高い時、初期に設定した高沸点冷媒と
低沸点冷媒の混合冷媒が循環し、圧縮機に吸込ま
れる冷媒の比容積は増大して冷媒循環量(重量流
量)は減少するため容量は小さくなる。
On the other hand, if the on-off valve is open, almost no refrigerant will accumulate in the refrigerant recovery container, and when the evaporator temperature is high during cooling, the initially set refrigerant mixture of high boiling point refrigerant and low boiling point refrigerant will circulate. , the specific volume of the refrigerant sucked into the compressor increases and the refrigerant circulation amount (weight flow rate) decreases, so the capacity becomes smaller.

従つて冷暖房能力比の大きなヒートポンプ式冷
凍装置が得られる。
Therefore, a heat pump type refrigeration system with a large heating/cooling capacity ratio can be obtained.

以下、本発明を実施例に基いて説明する。 The present invention will be explained below based on examples.

第3図において201は圧縮機、202は四方
切換弁、203aは第1室内側熱交換器、203
bは第2室内側熱交換器、204は絞り装置、2
05は室外側熱交換器、206は低圧側受液器、
207は三方の出口を有する接手管、208は冷
媒回収容器、209は電磁開閉弁、210乃至2
15は冷媒配管を示し、第1室内側熱交換器20
3aと第2室内側熱交換器203bの間に接手管
207を設けて、配管215との間に冷媒回収容
器208と電磁開閉弁209を備えた冷媒配管と
接続している。
In FIG. 3, 201 is a compressor, 202 is a four-way switching valve, 203a is a first indoor heat exchanger, 203
b is a second indoor heat exchanger, 204 is a throttle device, 2
05 is an outdoor heat exchanger, 206 is a low pressure side liquid receiver,
207 is a joint pipe with outlets on three sides, 208 is a refrigerant recovery container, 209 is an electromagnetic shut-off valve, 210 to 2
15 indicates a refrigerant pipe, and the first indoor heat exchanger 20
A joint pipe 207 is provided between the second indoor heat exchanger 3a and the second indoor heat exchanger 203b, and is connected to a refrigerant pipe provided with a refrigerant recovery container 208 and an electromagnetic shut-off valve 209 between the pipe 215 and the second indoor heat exchanger 203b.

そして、上記構成の冷凍サイクル中に高沸点冷
媒と低沸点冷媒との非共沸混合冷媒が封入されて
いる。
A non-azeotropic mixed refrigerant of a high boiling point refrigerant and a low boiling point refrigerant is sealed in the refrigeration cycle having the above configuration.

つぎに作用を説明する。 Next, the effect will be explained.

暖房運転時の冷媒の流れを破線矢印で示す。比
較的外気温が高い場合、電磁開閉弁209は開い
ている。
The flow of refrigerant during heating operation is shown by dashed arrows. When the outside temperature is relatively high, the electromagnetic on-off valve 209 is open.

高沸点冷媒と低沸点冷媒とからなる非共沸混合
冷媒は、圧縮機201で圧縮されて、高温、高圧
の冷媒となり、四方切換弁202を経て室内側熱
交換器に到る。
A non-azeotropic mixed refrigerant consisting of a high boiling point refrigerant and a low boiling point refrigerant is compressed by a compressor 201 to become a high temperature, high pressure refrigerant, and reaches the indoor heat exchanger via a four-way switching valve 202.

非共沸混合冷媒の特性上、同一圧力条件のもと
では、凝縮液化の過程は、高沸点冷媒が相対的に
高い温度でも凝縮するが、低沸点冷媒は相対的に
低い温度まで冷却されないと凝縮しにくい。
Due to the characteristics of non-azeotropic mixed refrigerants, under the same pressure conditions, the high boiling point refrigerant condenses even at a relatively high temperature, but the low boiling point refrigerant must be cooled to a relatively low temperature. Difficult to condense.

したがつて凝縮の前期過程を担う第1室内側熱
交換器203aでは高沸点冷媒の成分を多く含ん
だ冷媒が液化し、凝縮の後期過程を担う第2室内
側熱交換器203bでは、低沸点冷媒の成分を多
く含んだ冷媒が液化する。
Therefore, in the first indoor heat exchanger 203a, which is responsible for the early stage of condensation, the refrigerant containing a large amount of high-boiling point refrigerant is liquefied, and in the second indoor heat exchanger 203b, which is responsible for the latter stage of condensation, it is liquefied. Refrigerant containing a large amount of refrigerant components liquefies.

この場合、第1室内側熱交換器203aで凝縮
した液冷媒は、接手管207の下部に接続した配
管212を介して冷媒回収容器208に入り、配
管213、電磁開閉弁209、配管214を経て
絞り装置204に到る。
In this case, the liquid refrigerant condensed in the first indoor heat exchanger 203a enters the refrigerant recovery container 208 via the pipe 212 connected to the lower part of the joint pipe 207, passes through the pipe 213, the electromagnetic shut-off valve 209, and the pipe 214. The aperture device 204 is reached.

また、第1室内側熱交換器203aで未凝縮の
冷媒は、接手管207より、配管211を経て第
2室内側熱交換器203bに入り、ここで凝縮液
化し配管215を経て絞り装置204に到る。
In addition, the refrigerant that has not been condensed in the first indoor heat exchanger 203a enters the second indoor heat exchanger 203b from the joint pipe 207 through the pipe 211, where it is condensed and liquefied, and is sent to the expansion device 204 via the pipe 215. Arrive.

配管214と配管215の両者からの冷媒は絞
り装置204の前で混合し、さらに絞りにより減
圧されて、低温低圧の冷媒となる。これらは室外
側熱交換器205で蒸発気化して周囲の外気より
吸熱作用をすると共に、四方切換弁202を経
て、低圧側受液器206から圧縮機201に吸込
まれる。
The refrigerants from both piping 214 and piping 215 are mixed in front of the expansion device 204, and the pressure is further reduced by the restriction, resulting in a low-temperature, low-pressure refrigerant. These are evaporated and vaporized in the outdoor heat exchanger 205 to absorb heat from the surrounding outside air, and are sucked into the compressor 201 from the low-pressure receiver 206 via the four-way switching valve 202.

低外気温になり、暖房負荷が増大すると電磁開
閉弁209は閉じられる。
When the outside temperature becomes low and the heating load increases, the electromagnetic on-off valve 209 is closed.

この場合に、冷媒回収容器208中には、第1
室内側熱交換器203aで凝縮した高沸点冷媒の
成分を多く含んだ冷媒が回収される。
In this case, in the refrigerant recovery container 208, the first
The refrigerant containing a large amount of high boiling point refrigerant components condensed in the indoor heat exchanger 203a is recovered.

このため冷媒回路中には低沸点冷媒の成分が多
くなり、圧縮機の吸入圧力が増大し、圧縮機に吸
込まれる冷媒ガスの比容積が減少するため圧縮機
から吐出される冷媒循環量(重量流量)が増大
し、装置の容量を変え、暖房能力が増大される。
As a result, the amount of low-boiling refrigerant increases in the refrigerant circuit, the suction pressure of the compressor increases, and the specific volume of the refrigerant gas sucked into the compressor decreases, resulting in the circulating amount of refrigerant discharged from the compressor ( weight flow rate) is increased, changing the capacity of the device and increasing the heating capacity.

一方、冷房運転時の冷媒の流れを実線矢印で示
す。
On the other hand, the flow of refrigerant during cooling operation is shown by solid arrows.

冷房運転時電磁開閉弁209は閉じている。 During cooling operation, the electromagnetic on-off valve 209 is closed.

高沸点冷媒と低沸点冷媒とからなる非共沸混合
冷媒は、圧縮機201で圧縮されて、高温、高圧
の冷媒となり、四方切換弁202を経て室外側熱
交換器205に到る。
A non-azeotropic mixed refrigerant consisting of a high-boiling point refrigerant and a low-boiling point refrigerant is compressed by a compressor 201 to become a high-temperature, high-pressure refrigerant, and reaches the outdoor heat exchanger 205 via a four-way switching valve 202.

ここで凝縮液化した冷媒は、絞り装置204に
より減圧されて低温低圧の冷媒となる。
The condensed and liquefied refrigerant is depressurized by the expansion device 204 and becomes a low-temperature, low-pressure refrigerant.

さらに冷媒は、第2室内側熱交換器203bで
一部が蒸発気化し、配管211、接手管207、
配管210を経て、第1室内側熱交換器203a
で残りが蒸発気化する。
Further, a part of the refrigerant is evaporated in the second indoor heat exchanger 203b, and the refrigerant is evaporated and vaporized in the second indoor heat exchanger 203b, and the pipe 211, the joint pipe 207,
Via the piping 210, the first indoor heat exchanger 203a
The remainder evaporates.

この場合に冷媒回収容器208内の冷媒は低圧
状態のため、冷媒の露点温度は、冷媒回収容器周
囲の温度に比較して十分低いので、冷媒回収容器
内で冷媒が液化することはなくガス状で存在す
る。
In this case, since the refrigerant in the refrigerant recovery container 208 is in a low pressure state, the dew point temperature of the refrigerant is sufficiently low compared to the temperature around the refrigerant recovery container, so the refrigerant does not liquefy in the refrigerant recovery container and remains in a gaseous state. exists in

このため実質的に冷媒回収容器に冷媒がほとん
ど溜ることがなく、冷媒回路中を初期に設定した
高沸点冷媒と低沸点冷媒の混合冷媒が循環、し、
圧縮機に吸込まれる冷媒ガスの比容積は増大し、
冷媒循環量(重量流量)は減少する。
Therefore, virtually no refrigerant accumulates in the refrigerant recovery container, and the initially set refrigerant mixture of high boiling point refrigerant and low boiling point refrigerant circulates in the refrigerant circuit.
The specific volume of refrigerant gas sucked into the compressor increases,
The refrigerant circulation amount (weight flow rate) decreases.

以上のように、暖房の低外気温時には、室内側
熱交換器の途中から冷媒回収容器に高沸点冷媒の
成分を多く含んだ冷媒が回収されるため、冷媒回
路中を循環する冷媒は低沸点成分が多くなり、圧
縮機に吸込まれる冷媒の密度が大きくなり(比容
積は減少)冷媒循環量が増大するため、容量を大
きくしたヒートポンプとなり、暖房能力が従来の
ものより大きくなる。
As mentioned above, when the outside temperature is low during heating, refrigerant containing a large amount of high-boiling point refrigerant components is collected from the indoor heat exchanger into the refrigerant recovery container, so the refrigerant circulating in the refrigerant circuit has a low boiling point. As the number of components increases, the density of the refrigerant sucked into the compressor increases (the specific volume decreases), and the amount of refrigerant circulated increases, resulting in a heat pump with a larger capacity and greater heating capacity than conventional ones.

また、暖房時の建物の熱負荷と装置の容量の釣
合う平衡点温度より外気温が高い時に、第1室内
側熱交換器で凝縮液化した冷媒は第2室内側熱交
換器203bを通らずに冷媒回収容器208、電
磁開閉弁209を通つて直接絞り装置204に到
る。このため第2室内側熱交換器には、未凝縮の
ガスのみが送られるので、熱交換効率が向上す
る。
In addition, when the outside temperature is higher than the equilibrium point temperature where the heat load of the building and the capacity of the device are balanced during heating, the refrigerant condensed and liquefied in the first indoor heat exchanger does not pass through the second indoor heat exchanger 203b. The refrigerant then passes through the refrigerant recovery container 208 and the electromagnetic on-off valve 209 to reach the expansion device 204 directly. For this reason, only uncondensed gas is sent to the second indoor heat exchanger, improving heat exchange efficiency.

これは凝縮過程で、先に液化した冷媒が熱抵抗
となつて、未凝縮のガスの液化を妨げることがな
くなるためである。
This is because during the condensation process, the refrigerant that is liquefied first acts as a thermal resistance and no longer hinders the liquefaction of the uncondensed gas.

特に非共沸混合冷媒を用いた場合、凝縮器出口
部分で低沸点冷媒が凝縮するため、未凝縮ガス液
化を妨げる傾向が強かつたが、上記の通りこの点
の不具合を解消することが出来、暖房時の高圧上
昇を防止して暖房時の運転範囲の拡大に寄与する
ことができる。
In particular, when a non-azeotropic mixed refrigerant is used, the low boiling point refrigerant condenses at the condenser outlet, which tends to hinder the liquefaction of uncondensed gas, but as mentioned above, this problem can be resolved. , it is possible to prevent a high pressure rise during heating and contribute to expanding the operating range during heating.

さらに冷房時の蒸発器温度の高い時には、容量
を小さくしたヒートポンプとなり、従来機よりも
冷暖房能力比の大きなヒートポンプが得られる。
Furthermore, when the evaporator temperature is high during cooling, a heat pump with a smaller capacity is used, resulting in a heat pump with a larger heating and cooling capacity ratio than conventional models.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のものを示す構成図、第2図は従
来のものにおける暖房時の蒸発器温度と相対的な
熱量の関係を示す図、第3図は本発明の一実施例
を示す構成図である。 201:圧縮機、202:四方切換弁、203
a:第1室内側熱交換器、203b:第2室内側
熱交換器、204:絞り装置、205:室外側熱
交換器、206:低圧側受液器、207:接手
管、208:冷媒回収容器、209:電磁開閉
弁、210乃至215:配管。
Fig. 1 is a configuration diagram showing a conventional system, Fig. 2 is a diagram showing the relationship between evaporator temperature and relative amount of heat during heating in the conventional system, and Fig. 3 is a configuration diagram showing an embodiment of the present invention. It is a diagram. 201: Compressor, 202: Four-way switching valve, 203
a: First indoor heat exchanger, 203b: Second indoor heat exchanger, 204: Throttle device, 205: Outdoor heat exchanger, 206: Low pressure receiver, 207: Joint pipe, 208: Refrigerant recovery Container, 209: Electromagnetic on-off valve, 210 to 215: Piping.

Claims (1)

【特許請求の範囲】[Claims] 1 高沸点冷媒と低沸点冷媒との非共沸混合冷媒
を用いたヒートポンプ式冷凍装置において、室内
側熱交換器中の冷媒回路と、室内側熱交換器と絞
り装置を結ぶ冷媒回路との間に冷媒回収容器と開
閉弁を備えた冷媒回路を接続したことを特徴とす
るヒートポンプ式冷凍装置。
1 In a heat pump type refrigeration system using a non-azeotropic mixed refrigerant of a high boiling point refrigerant and a low boiling point refrigerant, between the refrigerant circuit in the indoor heat exchanger and the refrigerant circuit connecting the indoor heat exchanger and the expansion device. A heat pump type refrigeration system characterized in that a refrigerant circuit equipped with a refrigerant recovery container and an on-off valve is connected to the refrigerant recovery container.
JP16083181A 1981-10-08 1981-10-08 Heat pump type refrigerator Granted JPS5862464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16083181A JPS5862464A (en) 1981-10-08 1981-10-08 Heat pump type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16083181A JPS5862464A (en) 1981-10-08 1981-10-08 Heat pump type refrigerator

Publications (2)

Publication Number Publication Date
JPS5862464A JPS5862464A (en) 1983-04-13
JPS634103B2 true JPS634103B2 (en) 1988-01-27

Family

ID=15723347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16083181A Granted JPS5862464A (en) 1981-10-08 1981-10-08 Heat pump type refrigerator

Country Status (1)

Country Link
JP (1) JPS5862464A (en)

Also Published As

Publication number Publication date
JPS5862464A (en) 1983-04-13

Similar Documents

Publication Publication Date Title
US4918942A (en) Refrigeration system with dual evaporators and suction line heating
Lazzarin et al. Ammonia-water absorption machines for refrigeration: theoretical and real performances
CN107356007A (en) A kind of three warm varying capacity of Auto-cascade cycle exports refrigeration system
US4528823A (en) Heat pump apparatus
JPH03125863A (en) Refrigerating cycle unit with two stage compression
JPS634103B2 (en)
US2750762A (en) Refrigeration system for air conditioning apparatus
JP2814697B2 (en) Refrigeration cycle device
JPH02272265A (en) Two stage compression refrigeration cycle and heat-pump type air conditioner
KR100609168B1 (en) Cascade refrigerating cycle
KR100225502B1 (en) Airconditioner
JPH02213652A (en) Two-stage compression and freezing cycle type air conditioner
JP4000509B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
JPH0861799A (en) Air conditioner
JPH04268165A (en) Double-stage compression and freezing cycle device
JP3978660B2 (en) Refrigeration cycle equipment using non-azeotropic refrigerant mixture
KR200253501Y1 (en) two stage compression system of heating and cooling apparatus without outdoor equipment
JPH0113969Y2 (en)
JP2574545B2 (en) Refrigeration cycle device
JP2532754B2 (en) Refrigeration cycle equipment
JPH0351644A (en) Multiroom cooling heating device
JP2004150774A (en) Refrigerating cycle system using non-azeotropic mixture refrigerant
JPS58129164A (en) Hot-water supply device for heat pump
KR19990017819A (en) Heat pump
JPH0248823B2 (en) HIITOHONPU