JPH0351673A - Heat pump type cooling or heating device - Google Patents

Heat pump type cooling or heating device

Info

Publication number
JPH0351673A
JPH0351673A JP18656689A JP18656689A JPH0351673A JP H0351673 A JPH0351673 A JP H0351673A JP 18656689 A JP18656689 A JP 18656689A JP 18656689 A JP18656689 A JP 18656689A JP H0351673 A JPH0351673 A JP H0351673A
Authority
JP
Japan
Prior art keywords
refrigerant
capillary tube
heat exchanger
solenoid valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18656689A
Other languages
Japanese (ja)
Inventor
Katsuyuki Aoki
克之 青木
Hideaki Nagatomo
秀明 永友
Seiji Kubo
久保 精二
Hiroyuki Umemura
博之 梅村
Toshihiro Tanaka
俊弘 田中
Kazuaki Isono
磯野 一明
Hideaki Ishioka
石岡 秀哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP18656689A priority Critical patent/JPH0351673A/en
Publication of JPH0351673A publication Critical patent/JPH0351673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To simplify a piping work in a pressure reducing mechanism by a method wherein the first and second capillary tubes are connected in series, the first and second check valves are connected in parallel with the capillary tubes in an opposite direction and a solenoid valve is arranged in a bypassing pipe for use in connecting between the first and second capillary tubes and between the first and second check valves. CONSTITUTION:In case of heating operation, a solenoid valve 25 is released, gaseous refrigerant of high pressure discharged from a compressor 1 is liquified with an indoor heat exchanger 3 through a four-way valve 2 and flowed to a pressure reducing mechanism 4. At this pressure reducing mechanism 4, the refrigerant passes from the first check valve 13 through a solenoid valve 25 and its pressure is reduced by the first capillary tube 21. The refrigerant of which pressure is reduced is gasified with an outdoor heat exchanger 5, the refrigerant passes through the four-way valve 2 and is returned to the compressor 1. At this time, the first capillary tube 21 is adjusted in such a way as a flow rate of the refrigerant becomes the most suitable value. Then, in case of a low operating frequency, the solenoid valve 23 is closed to flow the refrigerant from the second capillary tube 22 to the capillary tube 21 and a sufficient pressure reduction is carried out.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は冷暖房装置に関するものであり、特に、冷媒
の循環量を制御できるヒートポンプ式の冷暖房装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an air conditioning system, and more particularly to a heat pump type air conditioning system that can control the amount of refrigerant circulated.

[従来の技術] 従来より、冷暖房装置の冷凍サイクルでは冷媒の循環量
を適正に制御する必要があった。しかし、減圧機構とし
てキャピラリチューブを用いると、その冷媒流量の調整
幅が小さいために、諸条件の変動に対して適正に制御が
できないことがあった。
[Prior Art] Conventionally, it has been necessary to appropriately control the amount of refrigerant circulated in the refrigeration cycle of an air-conditioning device. However, when a capillary tube is used as a pressure reducing mechanism, the range of adjustment of the refrigerant flow rate is small, so that it may not be possible to properly control fluctuations in various conditions.

そこで、この解決策として電磁弁を用いてキャピラリチ
ューブの絞り量を調整する冷暖房装置が提案されている
Therefore, as a solution to this problem, a heating and cooling device has been proposed that uses a solenoid valve to adjust the amount of restriction of the capillary tube.

例えば、第2図は実開昭61−195265号公報に示
された従来のヒートポンプ式冷暖房装置の冷媒配管を示
す系統図である。
For example, FIG. 2 is a system diagram showing the refrigerant piping of a conventional heat pump air-conditioning device disclosed in Japanese Utility Model Application Publication No. 195265/1983.

図において、(1)は冷媒を圧縮する圧縮機、(2)は
冷媒の循環経路を切換える四方弁、(3)は室内に配設
した室外熱交換器、(4)は冷媒の圧力を減圧する減圧
機構、(5)は室外に各々配設した室外熱交換器、(6
)は気液分離器として機能するアキュムレータである。
In the figure, (1) is a compressor that compresses the refrigerant, (2) is a four-way valve that switches the refrigerant circulation path, (3) is an outdoor heat exchanger installed indoors, and (4) is a compressor that reduces the pressure of the refrigerant. (5) is an outdoor heat exchanger installed outdoors, (6)
) is an accumulator that functions as a gas-liquid separator.

このヒートポンプ式冷暖房装置では、減圧機構(4)を
室内熱交換器(3)と室外熱交換器(5)との間に配し
、圧縮機(1)、室内熱交換器(3)、減圧機構(4)
、及び室外熱交換器(5)を連接して冷凍サイクルを構
成している。
In this heat pump air conditioning system, a pressure reduction mechanism (4) is arranged between an indoor heat exchanger (3) and an outdoor heat exchanger (5), and a compressor (1), an indoor heat exchanger (3), a pressure reduction Mechanism (4)
, and an outdoor heat exchanger (5) are connected to form a refrigeration cycle.

ここで、このヒートポンプ式冷暖房装置の減圧機構(4
)の構成について説明をする。(11)は第1の主キャ
ピラリチューブ、(12)は第2の主キャピラリチュー
ブであり、(13)は第1の主キャピラリチューブ(1
1)に直列に接続した第1の逆止弁、(14)は第2の
主キャピラリチューブに直列に接続した第2の逆止弁で
あり、これらによりブリッジを形成し減圧機構(4)の
基本配管を構成している。(15)は第1の電磁弁、(
16)は第1の補助キャピラリチューブ(16)であり
、これらを直列に接続して前記の第1の主キャピラリチ
ューブ(11)に並列の配置にしている。(17)は第
2の電磁弁、(18)は第2の補助キャピラリチューブ
であり、これらを直列に接続して前記の第2の主キャピ
ラリチューブ(12)に並列の配置にしている。
Here, the pressure reduction mechanism (4
) will be explained below. (11) is the first main capillary tube, (12) is the second main capillary tube, and (13) is the first main capillary tube (1
(1) is a first check valve connected in series to the second main capillary tube, and (14) is a second check valve connected in series to the second main capillary tube, which form a bridge and control the pressure reducing mechanism (4). It constitutes the basic piping. (15) is the first solenoid valve, (
Reference numeral 16) denotes first auxiliary capillary tubes (16), which are connected in series and arranged in parallel to the first main capillary tube (11). (17) is a second electromagnetic valve, and (18) is a second auxiliary capillary tube, which are connected in series and arranged in parallel to the second main capillary tube (12).

なお、図中、実線の矢印は暖房サイクルのときの、そし
て、破線の矢印は冷房サイクルのときの冷媒の流れ方向
を各々示している。
In the figure, solid arrows indicate the flow direction of the refrigerant during the heating cycle, and dashed arrows indicate the flow direction of the refrigerant during the cooling cycle.

上記のような構成のヒートポンプ式冷暖房装置は、次の
ように動作をする。
The heat pump air conditioning system configured as described above operates as follows.

まず、暖房運転について説明をする。暖房サイクルの始
動時においては、圧縮機(1)で高圧に圧縮された冷媒
は四方弁(2)を経て室内熱交換器(3)に送られる。
First, I will explain heating operation. At the start of the heating cycle, the refrigerant compressed to high pressure by the compressor (1) is sent to the indoor heat exchanger (3) via the four-way valve (2).

この室内熱交換器(3)は凝縮器として作用し、ここで
冷媒は凝縮して液化する。このときに熱を室内に発散す
ることにより室内を暖房する。続いて、冷媒は減圧機構
(4)に流入する。減圧機構(4)では第2の逆止弁(
14)は閉鎖状態となっているので、冷媒は第1の主キ
ャピラリチューブ(11)及び第1の補助キャピラリチ
ューブ(16)を流れ、第1の逆止弁(13)を経て減
圧機構(4)を出る。この後、冷媒は蒸発器として作用
する室外熱交換器(5)で気化し、四方弁(2)を経て
アキュムレータ(6)に至り、再び圧縮機(1)に戻る
ことで、冷凍サイクルを閉じている。しかし、この暖房
運転時間がある程度経過すると室内の空気も暖まり、こ
れに伴って室内熱交換器(3)の温度も上昇するために
、冷媒の流量が過大となり、圧縮機(1)に液戻りが起
こる。そこで、第1の電磁弁(15)を閉じて冷媒が第
1の補助キャピラリチューブ(16)を流れなくして、
冷媒の流量を減少させている。
This indoor heat exchanger (3) acts as a condenser, where the refrigerant is condensed and liquefied. At this time, the room is heated by dissipating heat into the room. Subsequently, the refrigerant flows into the pressure reducing mechanism (4). The pressure reducing mechanism (4) has a second check valve (
14) is in a closed state, the refrigerant flows through the first main capillary tube (11) and the first auxiliary capillary tube (16), passes through the first check valve (13), and enters the pressure reducing mechanism (4). ). After this, the refrigerant is vaporized in the outdoor heat exchanger (5) that acts as an evaporator, passes through the four-way valve (2), reaches the accumulator (6), and returns to the compressor (1) again, closing the refrigeration cycle. ing. However, after a certain amount of heating operation time has elapsed, the indoor air also warms up, and the temperature of the indoor heat exchanger (3) also rises, resulting in an excessive flow rate of refrigerant and liquid returning to the compressor (1). happens. Therefore, the first solenoid valve (15) is closed to prevent the refrigerant from flowing through the first auxiliary capillary tube (16).
Decreasing the flow rate of refrigerant.

一方、冷房運転のときは、冷媒は上記と逆の配管経路を
流れる。すなわち、圧縮機(1)で圧縮された冷媒は、
四方弁(2)を経て室外熱交換器(5)に送られ、外気
により冷却されて凝縮する。
On the other hand, during cooling operation, the refrigerant flows through the piping route opposite to the above. That is, the refrigerant compressed by the compressor (1) is
It is sent to an outdoor heat exchanger (5) via a four-way valve (2), where it is cooled by outside air and condensed.

そして、減圧機構(4)を介して室内熱交換器(3)に
送られる。室内熱交換器(3)では液状の冷媒が蒸発し
、室内から気化熱を奪うことにより室内を冷却する。気
化した冷媒は四方弁(2)を経てアキュムレータ(5)
に至り、気体状の冷媒のみが再び圧縮機(1)で圧縮さ
れる。この冷房運転の際にも、運転開始時は上記と同様
に、第2の電磁弁(17)は解放状態となっている。し
かし、運転時間が経過し室内空気が冷却され、室内熱交
換器(3)の温度が低下すると、冷媒の流量が過大とな
り、圧縮機(1)に液戻りが起こる。
Then, it is sent to the indoor heat exchanger (3) via the pressure reduction mechanism (4). In the indoor heat exchanger (3), the liquid refrigerant evaporates and cools the room by removing heat of vaporization from the room. The vaporized refrigerant passes through the four-way valve (2) to the accumulator (5).
Only the gaseous refrigerant is compressed again by the compressor (1). During this cooling operation, the second solenoid valve (17) is in the open state at the start of the operation, as described above. However, as the operating time passes and the indoor air is cooled and the temperature of the indoor heat exchanger (3) decreases, the flow rate of the refrigerant becomes excessive and liquid returns to the compressor (1).

そこで、第2の電磁弁(17)を閉じて冷媒が第2の補
助キャピラリチューブ(18)を流れなくして、冷媒の
流量を減少させている。
Therefore, the second electromagnetic valve (17) is closed to prevent the refrigerant from flowing through the second auxiliary capillary tube (18), thereby reducing the flow rate of the refrigerant.

上記のように、従来のこの種のヒートポンプ式冷暖房装
置では、第1の電磁弁(15)及び第2の電磁弁(17
)を運転状態に応じて適宜開閉することにより、冷媒の
流量を調整している。そして、この流量制御により、冷
房または暖房運転時の室内の温度を適正に維持し、同時
に圧縮機(1)の保護を図っている。
As mentioned above, in this type of conventional heat pump air conditioning system, the first solenoid valve (15) and the second solenoid valve (17)
) is opened and closed as appropriate depending on the operating conditions to adjust the flow rate of the refrigerant. This flow rate control maintains an appropriate indoor temperature during cooling or heating operation, and at the same time protects the compressor (1).

なお、上記以外に冷媒の流量を調整するヒートポンプ式
冷暖房装置が特公昭6B−43660号公報に示されて
いる。これは、暖房サイクル時と冷房サイクル時とで減
圧機構を流れる冷媒の流量を調整するものである。
In addition to the above, a heat pump type air-conditioning device that adjusts the flow rate of refrigerant is disclosed in Japanese Patent Publication No. 6B-43660. This is to adjust the flow rate of refrigerant flowing through the pressure reducing mechanism during the heating cycle and during the cooling cycle.

また、この種の減圧機構(4)は圧縮機(1)の周波数
を変化させる容量制御型の冷凍サイクルにも利用ができ
る。圧縮機(1)の周波数を変化させる容量制御型の冷
凍サイクルは特公昭6343660号公報にも示されて
いる。
Further, this type of pressure reducing mechanism (4) can also be used in a capacity control type refrigeration cycle that changes the frequency of the compressor (1). A capacity control type refrigeration cycle in which the frequency of the compressor (1) is changed is also disclosed in Japanese Patent Publication No. 6343660.

例えば、高い周波数で圧縮機(1)を運転する暖房時に
は、第1の電磁弁(15)を解放して冷媒の流量を調整
する。しかし、この状態で周波数を低下して圧縮機(1
)を運転すると、減圧が不十分となり圧縮機(1)への
液戻りが起きる。そこで、周波数が低い時には第1の電
磁弁(15)を閉鎖して減圧を大きくする。
For example, during heating when the compressor (1) is operated at a high frequency, the first solenoid valve (15) is opened to adjust the flow rate of the refrigerant. However, in this state, the frequency is lowered and the compressor (1
), the pressure reduction becomes insufficient and liquid returns to the compressor (1). Therefore, when the frequency is low, the first solenoid valve (15) is closed to increase the pressure reduction.

このように、圧縮機(1)の運転周波数に応じて第1の
電磁弁(15)及び第2の電磁弁(17)を適宜開閉す
ることにより冷媒の流量を調整し、上記従来例と同様に
冷房または暖房運転時の室内の温度を適正に維持し、圧
縮機(1)の保護を図ることができる。
In this way, the flow rate of the refrigerant is adjusted by appropriately opening and closing the first solenoid valve (15) and the second solenoid valve (17) according to the operating frequency of the compressor (1), similar to the conventional example described above. The indoor temperature can be properly maintained during cooling or heating operation, and the compressor (1) can be protected.

さらに、上記の他にヒートポンプ式冷暖房装置の冷媒制
御装置が特開昭63−140258号公報に示されてい
る。
Furthermore, in addition to the above, a refrigerant control device for a heat pump type air-conditioning device is disclosed in Japanese Patent Laid-Open No. 140258/1983.

[発明が解決しようとする課題] しかし、上記のような第2図に示した従来のヒートポン
プ式冷暖房装置では、運転状態に応じて冷媒を適正に減
圧するために減圧機構(4)を多数の構成部品により構
成していた。すなわち、キャピラリチューブを4本使用
し、逆止弁及び電磁弁を各々2個必要としていた。この
ため、配管構成が極めて複雑となり、価格も高価になっ
ていた。
[Problems to be Solved by the Invention] However, in the conventional heat pump air conditioning system shown in FIG. It was composed of component parts. That is, four capillary tubes were used, and two check valves and two solenoid valves were required. For this reason, the piping configuration has become extremely complicated and the price has also increased.

しかも、減圧機構(4)のユニット容積が増大し大きな
収納スペースが必要となっていた。したがって、簡易な
構成の減圧機構(4)とすることが望まれていた。
Moreover, the unit volume of the pressure reducing mechanism (4) has increased, necessitating a large storage space. Therefore, it has been desired to provide a pressure reducing mechanism (4) with a simple configuration.

なお、簡易な構成の減圧機構(4)を有する冷暖房装置
は、特開昭63−213764号公報にも開示されてい
るものの、これは除霜に関するものであり、運転状態に
応じて冷媒の減圧を調整できる冷暖房装置ではなかった
Although an air-conditioning device having a pressure reduction mechanism (4) with a simple configuration is also disclosed in JP-A-63-213764, this is related to defrosting, and it is necessary to reduce the pressure of the refrigerant depending on the operating state. The heating and cooling system was not adjustable.

そこで、この発明は減圧機構を部品点数が少ない簡易な
構成とし、しがも、運転状態に応じて冷媒を適正に減圧
できるヒートポンプ式冷暖房装置の提供を課題とするも
のである。
Therefore, it is an object of the present invention to provide a heat pump type air-conditioning device that has a simple structure in which the pressure reduction mechanism has a small number of parts and can appropriately reduce the pressure of the refrigerant depending on the operating state.

[課題を解決するための手段] この発明にかかるヒートポンプ式冷暖房装置は、第1の
キャピラリチューブ(21)と第2のキャピラリチュー
ブ(22)とを直列に接続し、これと並列に第1の逆止
弁(13)と第2の逆止弁(14)とを直列かつ逆方向
に接続し、前記第1のキャピラリチューブ(21)と第
2のキャピラリチューブ(22)との間と第1の逆止弁
(13)と第2の逆止弁(14)との間を接続するバイ
パス配管に電磁弁(23)を配した減圧機構(4)と、
前記減圧機構(4)を室内熱交換器(3)と室外熱交換
器(5)との間に配し、圧縮機(1)、室内熱交換器(
3)、減圧機構(4)、及び室外熱交換器(5)を連接
してなる冷凍サイクルとを具備するものである。
[Means for Solving the Problems] A heat pump type air-conditioning device according to the present invention connects a first capillary tube (21) and a second capillary tube (22) in series, and connects a first capillary tube (22) in parallel with the first capillary tube (21). A check valve (13) and a second check valve (14) are connected in series and in opposite directions, and between the first capillary tube (21) and the second capillary tube (22) and the first a pressure reducing mechanism (4) in which a solenoid valve (23) is arranged in a bypass pipe connecting between the first check valve (13) and the second check valve (14);
The pressure reduction mechanism (4) is arranged between the indoor heat exchanger (3) and the outdoor heat exchanger (5), and the compressor (1) and the indoor heat exchanger (
3), a pressure reducing mechanism (4), and a refrigeration cycle formed by connecting an outdoor heat exchanger (5).

[作用] この発明のヒートポンプ式冷暖房装置においては、室内
熱交換器(3)と室外熱交換器(5)との間に配した減
圧機構(4)を、第1のキャピラリチューブ(21)と
第2のキャピラリチューブ(22)とを直列に接続し、
これと並列に第1の逆止弁(13)と第2の逆止弁(1
4)とを直列かつ逆方向に接続し、前記第1のキャピラ
リチューブ(21)と第2のキャピラリチューブ(22
)との間と第1の逆止弁(13)と第2の逆止弁(14
)との間を接続するバイパス配管に電磁弁(23)を配
して構成したことにより、減圧機構(4)の配管構成が
簡易になり、減圧機構(4)のユニット容積が削減でき
る。しかも、この減圧機構(4)で運転状態に応じて冷
媒の減圧を調整できる。
[Function] In the heat pump type air-conditioning device of the present invention, the pressure reduction mechanism (4) arranged between the indoor heat exchanger (3) and the outdoor heat exchanger (5) is connected to the first capillary tube (21). Connect in series with the second capillary tube (22),
In parallel with this, a first check valve (13) and a second check valve (1
4) in series and in opposite directions, and the first capillary tube (21) and the second capillary tube (22) are connected in series and in opposite directions.
) and between the first check valve (13) and the second check valve (14).
), the solenoid valve (23) is disposed in the bypass piping connecting between the pressure reducing mechanism (4), the piping configuration of the pressure reducing mechanism (4) is simplified, and the unit volume of the pressure reducing mechanism (4) can be reduced. Moreover, the pressure reduction mechanism (4) can adjust the pressure reduction of the refrigerant depending on the operating state.

[実施例] 第1図はこの発明の一実施例であるヒートポンプ式冷暖
房装置の冷媒配管を示す系統図である。
[Embodiment] FIG. 1 is a system diagram showing refrigerant piping of a heat pump type air-conditioning device that is an embodiment of the present invention.

図中、(1)から(6)は上記従来例の構成部分と同一
または相当する構成部分である。そして、図中、実線の
矢印は暖房サイクルのときの、そして、破線の矢印は冷
房サイクルのときの冷媒の流れ方向を各々示している。
In the figure, (1) to (6) are the same or equivalent components of the conventional example. In the figure, solid line arrows indicate the flow direction of the refrigerant during the heating cycle, and broken line arrows indicate the flow direction of the refrigerant during the cooling cycle.

図において、(21)は第1のキャピラリチューブ、(
22)は第2のキャピラリチューブであり、これらは直
列に接続されている。そして、これと並列に第1の逆止
弁(13)と第2の逆止弁(14)とが直列かつ逆方向
に接続されている。
In the figure, (21) is the first capillary tube, (
22) is a second capillary tube, which are connected in series. In parallel with this, a first check valve (13) and a second check valve (14) are connected in series and in opposite directions.

(23)は前記第1のキャピラリチューブ(21)と第
2のキャピラリチューブ(22)との間と第1の逆止弁
(13)と第2の逆止弁(14)との間を接続するバイ
パス配管に配した電磁弁である。
(23) connects between the first capillary tube (21) and the second capillary tube (22) and between the first check valve (13) and the second check valve (14). This is a solenoid valve placed in the bypass piping.

なお、この実施例のヒートポンプ式冷暖房装置では上記
従来例と同様に、圧縮機(1)、室内熱交換器(3)、
減圧機構(4)、及び室外熱交換器(5)を連接して冷
凍サイクルをなしている。
In addition, in the heat pump type air-conditioning system of this example, as in the above-mentioned conventional example, a compressor (1), an indoor heat exchanger (3),
The pressure reduction mechanism (4) and the outdoor heat exchanger (5) are connected to form a refrigeration cycle.

したがって、この構成のヒートポンプ式冷暖房装置の冷
房運転時及び暖房運転時の冷媒の基本的な循環動作は従
来例と路間−である。
Therefore, the basic circulation operation of the refrigerant during the cooling operation and the heating operation of the heat pump type air-conditioning device having this configuration is the same as in the conventional example.

ここで、上記のような構成のヒートポンプ式冷暖房装置
を圧縮機(1)の周波数を変化させる容量制御型の冷凍
サイクルに利用する場合について説明をする。まず、高
周波数で圧縮機(1)を運転する暖房時について述べる
。この場合には、電磁弁(23)は解放状態となってい
る。そして、この運転状態のときには、圧縮機(1)か
ら吐出された高圧のガス状の冷媒は四方弁(2)を介し
て室内熱交換器(3)で液化されて、減圧機構(4)に
流入する。この減圧機構(4)では、冷媒は第1の逆止
弁(13)から電磁弁(23)を経て、第1のキャピラ
リチューブ(21)で減圧される。この減圧機構(4)
で減圧された冷媒は室外熱交換器(5)でガス化されて
四方弁(2)を経て圧縮機(1)に戻る。なお、この高
周波数時に、冷媒の流量が最適となるように第1のキャ
ピラリチューブ(21)は調整されている。しかし、こ
の冷凍サイクルのまま低い運転周波数に移行すると、冷
媒の流量が減少し、第1のキャピラリチューブ(21)
での減圧が不十分となる。このため、蒸発器である室外
熱交換器(5)の温度が冷媒の流量に比べ高くなり、蒸
発しきれずに圧縮機(1)に液戻りが起きる。そこで、
低い運転周波数のときは、電磁弁(23)を閉じて冷媒
を第2のキャピラリチューブ(22)から第1のキャピ
ラリチューブ(21)へと流し、充分な減圧を行なう。
Here, a case will be described in which the heat pump type air-conditioning device configured as described above is used in a capacity control type refrigeration cycle in which the frequency of the compressor (1) is changed. First, the heating operation in which the compressor (1) is operated at high frequency will be described. In this case, the solenoid valve (23) is in an open state. During this operating state, the high-pressure gaseous refrigerant discharged from the compressor (1) is liquefied in the indoor heat exchanger (3) via the four-way valve (2), and then transferred to the pressure reducing mechanism (4). Inflow. In this pressure reduction mechanism (4), the refrigerant passes through the first check valve (13), the electromagnetic valve (23), and is depressurized in the first capillary tube (21). This pressure reduction mechanism (4)
The refrigerant whose pressure is reduced is gasified in the outdoor heat exchanger (5) and returns to the compressor (1) via the four-way valve (2). Note that the first capillary tube (21) is adjusted so that the flow rate of the refrigerant is optimal at this high frequency. However, if the refrigeration cycle is shifted to a lower operating frequency, the flow rate of the refrigerant decreases, and the first capillary tube (21)
depressurization becomes insufficient. Therefore, the temperature of the outdoor heat exchanger (5), which is an evaporator, becomes higher than the flow rate of the refrigerant, and the liquid returns to the compressor (1) without being completely evaporated. Therefore,
When the operating frequency is low, the solenoid valve (23) is closed to allow the refrigerant to flow from the second capillary tube (22) to the first capillary tube (21) to achieve sufficient pressure reduction.

つぎに、冷房運転について述べる。高い運転周波数の時
には上記と同様に電磁弁(23)を解放し、室外熱交換
器(5)から流出した冷媒液を第2の逆止弁(14)か
ら電磁弁(23)を経て、第2のキャピラリチューブ(
22)へと流す。しかし、低い運転周波数の時は電磁弁
(23)を閉じて1、冷媒を第1のキャピラリチューブ
(21)から第2のキャピラリチューブ(22)へと流
し充分な減圧を行なう。
Next, we will discuss cooling operation. When the operating frequency is high, the solenoid valve (23) is opened in the same manner as above, and the refrigerant liquid flowing out from the outdoor heat exchanger (5) is passed through the second check valve (14), the solenoid valve (23), and the solenoid valve (23). 2 capillary tubes (
22). However, when the operating frequency is low, the solenoid valve (23) is closed and the refrigerant flows from the first capillary tube (21) to the second capillary tube (22) to achieve sufficient pressure reduction.

このようにして、この実施例のヒートポンプ式冷暖房装
置では圧縮機(1)への液戻りを排し、圧縮機(1)の
保護を図っている。また、圧縮機(1)の運転周波数に
応じて冷媒の減圧を調整し、冷房または暖房運転時の室
内の温度を適正に維持している。
In this way, the heat pump type air-conditioning system of this embodiment prevents liquid from returning to the compressor (1), thereby protecting the compressor (1). In addition, the pressure reduction of the refrigerant is adjusted according to the operating frequency of the compressor (1) to appropriately maintain the indoor temperature during cooling or heating operation.

また、この構成の減圧機構(4)では電磁弁(23)を
流れる冷媒の流通方向は冷房時及び暖房時共に同一方向
である。したがって、電磁弁(23)が閉鎖状態にある
ときの電磁弁(23)の前後における冷媒の圧力関係が
略一定となり、電磁弁(23)の開閉動作上回の支障も
来たさない。この結果、電磁弁(23)は路間−の状態
で開閉動作を行なうので、冷房または暖房の運転状態の
相違により冷媒の流量調整に影響が出ることもない。
Further, in the pressure reducing mechanism (4) having this configuration, the flow direction of the refrigerant flowing through the solenoid valve (23) is the same during both cooling and heating. Therefore, when the solenoid valve (23) is in the closed state, the pressure relationship of the refrigerant before and after the solenoid valve (23) is approximately constant, and no trouble occurs beyond the opening/closing operation of the solenoid valve (23). As a result, the solenoid valve (23) performs the opening and closing operations in the path-to-road condition, so that the refrigerant flow rate adjustment is not affected by differences in the cooling or heating operating conditions.

上記のように、この実施例のヒートポンプ式冷暖房装置
では、室内熱交換器(3)と室外熱交換器(5)との間
に配した減圧機構(4)を、第1のキャピラリチューブ
(21)と第2のキャピラリチューブ(22)とを直列
に接続し、これと並列に第1の逆止弁(13)と第2の
逆止弁(14)とを直列かつ逆方向に接続し、前記第1
のキャピラリチューブ(21)と第2のキャピラリチュ
ーブ(22)との間と第1の逆止弁(13)と第2の逆
止弁(14)との間を接続するバイパス配管に電磁弁(
23)を配して構成している。
As described above, in the heat pump type air conditioning system of this embodiment, the pressure reducing mechanism (4) arranged between the indoor heat exchanger (3) and the outdoor heat exchanger (5) is connected to the first capillary tube (21 ) and a second capillary tube (22) are connected in series, and in parallel with this, a first check valve (13) and a second check valve (14) are connected in series and in opposite directions, Said first
A solenoid valve (
23).

したがって、減圧機構(4)の構成部品点数が従来例に
比べて削減され、配管構成が極めて簡易になり、減圧機
構(4)のユニット容積が削減できるので、装置全体の
価格が安価になる。しかも、従来例と同様に冷媒の減圧
を適正に調整でき、圧縮機(1)の保護及び冷房または
暖房運転時の室内の温度を適正に維持できる。
Therefore, the number of component parts of the pressure reducing mechanism (4) is reduced compared to the conventional example, the piping configuration is extremely simplified, and the unit volume of the pressure reducing mechanism (4) can be reduced, so the price of the entire device is reduced. Moreover, as in the conventional example, the pressure reduction of the refrigerant can be appropriately adjusted, and the compressor (1) can be protected and the indoor temperature can be maintained appropriately during cooling or heating operation.

ところで、上記の実施例ではヒートポンプ式冷暖房装置
を圧縮機(1)の周波数を変化させる容量制御型の冷凍
サイクルに利用する場合について説明をしたが、従来例
で述べたように冷房及び暖房運転時の始動時と安定運転
時とで冷媒の減圧量を調整する場合にも当然利用できる
By the way, in the above embodiment, the case where the heat pump air conditioning system is used in a capacity control type refrigeration cycle that changes the frequency of the compressor (1) was explained, but as described in the conventional example, during cooling and heating operation. Naturally, it can also be used to adjust the amount of refrigerant pressure reduction at startup and during stable operation.

以上説明したとおり、この発明のヒートポンプ式冷暖房
装置は、第1のキャピラリチューブ(21)と第2のキ
ャピラリチューブ(22)とを直列に接続し、これと並
列に第1の逆止弁(13)と第2の逆止弁(14)とを
直列かつ逆方向に接続し、前記第1のキャピラリチュー
ブ(21)と第2のキャピラリチューブ(22)との間
と第1の逆止弁(13)と第2の逆止弁(14)との間
を接続するバイパス配管に電磁弁(23)を配してなる
減圧機構(4)を冷凍サイクル中の室内熱交換器(3)
と室外熱交換器(5)との間に配したことにより、減圧
機構(4)の配管構成が簡易になり、減圧機構(4)の
ユニット容積が削減できるので、装置全体の価格が安価
になる。しかも、この減圧機構(4)で運転状態に応じ
て冷媒を適正に減圧できるので、圧縮機(1)の保護及
び冷房または暖房運転時の室内の温度を適正に維持でき
る。
As explained above, the heat pump air-conditioning device of the present invention connects the first capillary tube (21) and the second capillary tube (22) in series, and connects the first check valve (13) in parallel. ) and a second check valve (14) are connected in series and in opposite directions, and between the first capillary tube (21) and the second capillary tube (22) and the first check valve ( 13) and the second check valve (14), the pressure reducing mechanism (4) is configured by disposing a solenoid valve (23) in the bypass pipe connecting the indoor heat exchanger (3) during the refrigeration cycle.
By placing the pressure reduction mechanism (4) between the heat exchanger (5) and the outdoor heat exchanger (5), the piping configuration of the pressure reduction mechanism (4) can be simplified, and the unit volume of the pressure reduction mechanism (4) can be reduced, making the entire device cheaper. Become. Moreover, since the pressure reducing mechanism (4) can appropriately reduce the pressure of the refrigerant depending on the operating state, it is possible to protect the compressor (1) and maintain an appropriate indoor temperature during cooling or heating operation.

[発明の効果][Effect of the invention]

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例であるヒートポンプ式冷暖
房装置の冷媒配管を示す系統図、第2図は従来のヒート
ポンプ式冷暖房装置の冷媒配管を示す系統図である。 図において、 1:圧縮機     3:室内熱交換器4:減圧機構 
   5二室外熱交換器13:第1の逆止弁 14:第
2の逆止弁21:第1のキャピラリチューブ 22:第2のキャピラリチューブ 23:電磁弁 である。 なお、図中、同−符号及び同一記号は同一または相当部
分を示すものである。
FIG. 1 is a system diagram showing refrigerant piping of a heat pump type air conditioning system according to an embodiment of the present invention, and FIG. 2 is a system diagram showing refrigerant piping of a conventional heat pump type air conditioning system. In the figure, 1: Compressor 3: Indoor heat exchanger 4: Pressure reduction mechanism
5 Two outdoor heat exchangers 13: First check valve 14: Second check valve 21: First capillary tube 22: Second capillary tube 23: Solenoid valve. In the drawings, the same reference numerals and the same symbols indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 第1のキャピラリチューブと第2のキャピラリチューブ
とを直列に接続し、これと並列に第1の逆止弁と第2の
逆止弁とを直列かつ逆方向に接続し、前記第1のキャピ
ラリチューブと第2のキャピラリチューブとの間と第1
の逆止弁と第2の逆止弁との間を接続するバイパス配管
に電磁弁を配した減圧機構と、 前記減圧機構を室内熱交換器と室外熱交換器との間に配
し、圧縮機、室内熱交換器、減圧機構、及び室外熱交換
器を連接してなる冷凍サイクルとを具備することを特徴
とするヒートポンプ式冷暖房装置。
[Claims] A first capillary tube and a second capillary tube are connected in series, and a first check valve and a second check valve are connected in parallel in series and in opposite directions. , between the first capillary tube and the second capillary tube, and between the first capillary tube and the second capillary tube.
a pressure reducing mechanism in which a solenoid valve is disposed in a bypass pipe connecting between the check valve and the second check valve; and the pressure reducing mechanism is disposed between an indoor heat exchanger and an outdoor heat exchanger, and What is claimed is: 1. A heat pump type air-conditioning and heating system comprising: a heat exchanger, an indoor heat exchanger, a pressure reduction mechanism, and a refrigeration cycle formed by connecting an outdoor heat exchanger.
JP18656689A 1989-07-19 1989-07-19 Heat pump type cooling or heating device Pending JPH0351673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18656689A JPH0351673A (en) 1989-07-19 1989-07-19 Heat pump type cooling or heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18656689A JPH0351673A (en) 1989-07-19 1989-07-19 Heat pump type cooling or heating device

Publications (1)

Publication Number Publication Date
JPH0351673A true JPH0351673A (en) 1991-03-06

Family

ID=16190771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18656689A Pending JPH0351673A (en) 1989-07-19 1989-07-19 Heat pump type cooling or heating device

Country Status (1)

Country Link
JP (1) JPH0351673A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240493A (en) * 1996-03-13 1997-09-16 Koyo Seiko Co Ltd Intermediate shaft for steering device
US7771530B2 (en) 2001-01-18 2010-08-10 Siltronic Ag Process and apparatus for producing a silicon single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09240493A (en) * 1996-03-13 1997-09-16 Koyo Seiko Co Ltd Intermediate shaft for steering device
US7771530B2 (en) 2001-01-18 2010-08-10 Siltronic Ag Process and apparatus for producing a silicon single crystal

Similar Documents

Publication Publication Date Title
JP2002168532A (en) Supercritical steam compression system, and device for regulating pressure in high-pressure components of refrigerant circulating therein
JPH0232546B2 (en)
JPH11193967A (en) Refrigerating cycle
US20060150667A1 (en) Heat exchanger and air conditioner using the same
CA1137323A (en) Series compressor refrigeration circuit with liquid quench and compressor by-pass
WO2021146364A1 (en) Heating, ventilation, and air-conditioning systems and methods
JPH1114177A (en) Air conditioner
JPH0420764A (en) Air conditioner
JPH0351673A (en) Heat pump type cooling or heating device
JPH05157372A (en) Electric part box cooler for air conditioner
JPH0420749A (en) Air conditioner
KR102313304B1 (en) Air conditioner for carbon dioxide
KR100441008B1 (en) Cooling and heating air conditioning system
JPH07151413A (en) Separate type air conditioner
JPH05264108A (en) Refrigeration device
JPH0420752A (en) Double-element type freezer device
JPH09210480A (en) Two-stage compression type refrigerating apparatus
JP2001280729A (en) Refrigerating device
KR20040003628A (en) The heat pump system
JP2833339B2 (en) Thermal storage type air conditioner
JP3492912B2 (en) Refrigeration equipment
JPH04302953A (en) Heat storage freezing cycle device
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JPH06137690A (en) Air conditioner
JPS6185218A (en) Automotive air conditioner