JPS62227071A - Manufacture of high strength, electrically conductive copper alloy - Google Patents

Manufacture of high strength, electrically conductive copper alloy

Info

Publication number
JPS62227071A
JPS62227071A JP6976486A JP6976486A JPS62227071A JP S62227071 A JPS62227071 A JP S62227071A JP 6976486 A JP6976486 A JP 6976486A JP 6976486 A JP6976486 A JP 6976486A JP S62227071 A JPS62227071 A JP S62227071A
Authority
JP
Japan
Prior art keywords
strength
alloy
copper alloy
conductive copper
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6976486A
Other languages
Japanese (ja)
Inventor
Junji Miyake
淳司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP6976486A priority Critical patent/JPS62227071A/en
Publication of JPS62227071A publication Critical patent/JPS62227071A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To manufacture a high strength, electrically conductive Cu alloy having superior strength and elasticity by heat treating a Cu alloy having a specified composition under specified conditions after final cold rolling. CONSTITUTION:The composition of a Cu alloy is composed of, by weight, 20-40% Zn, 2-10% Ni, 1-10% Mo, 0.01-3% Sn and the balance Fe with inevitable impurities. The composition may further contain 0.01-3% one or more among Fe, Cr, Co, Zr, V, Be, Cd, As and P. The Cu alloy is heat treated at 150-700 deg.C for 30sec-20hr after final cold rolling.

Description

【発明の詳細な説明】 〔目 的〕  ・ 本発明は、電子・電気機器の端子、コネクター、スイッ
チ等に使用する銅合金の強度、特に引張強さとばね性を
同時に向上させる製造方法に関するものである。
[Detailed Description of the Invention] [Purpose] - The present invention relates to a manufacturing method that simultaneously improves the strength, particularly the tensile strength and springiness, of copper alloys used for terminals, connectors, switches, etc. of electronic and electrical equipment. be.

〔従来技術及び問題点〕[Prior art and problems]

従来、電子・電気機器の端子、コネクター、スイッチ等
のばね材には、洋白、りん青銅、黄銅などが使用されて
いる。通常これらのばね材には以下のことが要求されて
いる。
Conventionally, materials such as nickel silver, phosphor bronze, and brass have been used as spring materials for terminals, connectors, switches, etc. of electronic and electrical equipment. Typically, these spring materials are required to:

(1)  強度が高いこと (2)  耐応力緩和特性に優れていること(3)  
電気伝導度が高いこと (4)  耐食性に優れていること (5)  安価であること 前記に例示したばね材の中で特に洋白は強度が高く、耐
応力緩和特性に優れ、電気伝導度が高く、しかも耐食性
に優れているため、高級ばね材として高く評価されてい
るが、洋白が高価であるため、特に高信頼性が要求され
る機器などの一部に限って使用されている。又、近年、
機器の小型化、軽量化により、更に強度及びばね性を向
上させることが要求され、しかも洋白より安価な材料が
望まれていた。
(1) High strength (2) Excellent stress relaxation properties (3)
High electrical conductivity (4) Excellent corrosion resistance (5) Low cost Among the spring materials listed above, nickel silver has particularly high strength, excellent stress relaxation resistance, and high electrical conductivity. It is highly valued as a high-grade spring material due to its high price and excellent corrosion resistance. However, because nickel silver is expensive, it is only used in some equipment that particularly requires high reliability. Also, in recent years,
As equipment becomes smaller and lighter, there is a demand for further improvements in strength and springiness, and a material that is cheaper than nickel silver is desired.

〔構 成〕〔composition〕

本発明は、この様な状況に鑑みて研究を行った結果、Z
 n 20−40 w t%、N i 2〜10 w 
t%、Mn 1〜10wt%、Sn0.01〜3wt%
を含み、残部Cu及び不可避的不純物からなる合金を、
最終冷間圧延の後に150℃〜7oo℃で30秒〜20
時間熱処理し、強度とばね性を向上させることを特徴と
する高力導電銅合金の製造方法並びにZn20〜40w
t%、Ni2〜1゜wt%、M n 1〜10 w t
%、Sn0.01〜3wし%及び他にTe、Cr、Co
、Zr、V、Be、Cd、As、Pの内1種又は2種以
上を0゜01〜3wt%を含み、残部Cu及び不可避的
不純物からなる合金を、最終冷間圧延の後に150℃〜
700℃で30秒〜20時間熱処理し、強度とばね性を
向上させることを特徴とするτG力導電銅合金の製造方
法を提供するものである。
The present invention was developed as a result of research conducted in view of such circumstances.
n 20-40 wt%, Ni 2-10 w
t%, Mn 1-10wt%, Sn0.01-3wt%
An alloy containing Cu and unavoidable impurities,
After final cold rolling at 150℃~7oo℃ for 30 seconds~20
A method for producing a high-strength conductive copper alloy characterized by time heat treatment to improve strength and elasticity, and Zn20-40w
t%, Ni2~1゜wt%, Mn 1~10wt
%, Sn0.01~3w% and others Te, Cr, Co
, Zr, V, Be, Cd, As, P containing 0.01 to 3 wt% of one or more of P, and the balance being Cu and unavoidable impurities.
The present invention provides a method for producing a τG force conductive copper alloy, which is characterized by heat treatment at 700° C. for 30 seconds to 20 hours to improve strength and springiness.

〔発明の詳細な説明〕[Detailed description of the invention]

次に本発明に適用される合金の合金成分及び製造方法の
限定理由について説明する。
Next, the reasons for limiting the alloy components and manufacturing method of the alloy applied to the present invention will be explained.

Cu及びZnは本発明合金のJl(本成分であり、加工
性、機械的性質、及び電気伝導性を良好に保有せしめる
。Znn含有量20〜40w1;%とする理由は、Z 
n含有量が20wt%未満では強度が十分でなく、Z 
n含有量が40wt%を超えると加工性が劣化する為で
ある。
Cu and Zn are the Jl (main components) of the alloy of the present invention, which ensure good workability, mechanical properties, and electrical conductivity.
If the n content is less than 20 wt%, the strength is insufficient, and Z
This is because workability deteriorates when the n content exceeds 40 wt%.

Ni含有量を2〜10w’t%とする理由は。What is the reason for setting the Ni content to 2 to 10 w't%?

Ni含有量が2wt%未満では強度及び耐食性が十分で
なく、Ni含有量が10wし%を超えると加工性が悪く
なり、又価格も高くなるためである。
This is because if the Ni content is less than 2 wt%, the strength and corrosion resistance will not be sufficient, and if the Ni content exceeds 10 wt%, the workability will deteriorate and the price will increase.

M rrを添加するのは、Niよりも安価で、かつ強度
を向上させるため一部Niの代替材として使用でき、し
かも熱間加工性を向」―させるからである。
The reason for adding M rr is that it is cheaper than Ni, can be used as a partial substitute for Ni to improve strength, and also improves hot workability.

Mn含有量を1〜10wt%とする理由は、Mn含有量
が1wt%未満では強度及び熱間加工性の向−にの効果
が認められず、又Mn含有量が1゜wし%を超えると逆
に加工性が悪化するためである。Snを添加するのは、
強度及び耐食性を向上させるためであり、Sn含有量を
0.01〜3wt%とする理由は、Sn含有量がO,0
1wt%未満では強度及び耐食性の向上が認められず、
Sn含有量が3wt%を超えると加工性が悪化し、又価
格も高くなるためである。
The reason why the Mn content is set to 1 to 10 wt% is that when the Mn content is less than 1 wt%, no effect on strength and hot workability is observed, and when the Mn content exceeds 1 w%. This is because workability deteriorates on the contrary. Adding Sn is
This is to improve strength and corrosion resistance, and the reason why the Sn content is set to 0.01 to 3 wt% is that the Sn content is O, 0.
If it is less than 1 wt%, no improvement in strength and corrosion resistance is observed,
This is because if the Sn content exceeds 3 wt%, processability will deteriorate and the price will also increase.

さらに副成分としてTe、Cr、Co、Zr、V、Be
、Cd、As、Pを添加するのは、強度及び耐食性を向
上させるからである。
Furthermore, Te, Cr, Co, Zr, V, Be as subcomponents
, Cd, As, and P are added because they improve strength and corrosion resistance.

これら副成分の内1種若しくは2種以上を0゜01〜3
 w t%とする理由は、O,01wt%未満では強度
及び耐食性の向上の効果が認められず、又3wt%を超
えると加工性が劣化するからである。
One or more of these sub-ingredients at 0°01-3
The reason why O is set at 0.01 wt% is that the effect of improving strength and corrosion resistance is not recognized when O is less than 0.01 wt%, and when it exceeds 3 wt%, workability deteriorates.

熱処理温度を150℃〜700℃に限定したのは、15
0℃未満では熱処理効果が現われず、又700℃を超え
る温度では短時間で軟化してしまい[1的とする強度が
得られないためである。より好ましい熱処理温度は20
0℃〜6oo℃である。
The heat treatment temperature was limited to 150°C to 700°C in 15
If the temperature is lower than 0°C, the heat treatment effect will not appear, and if the temperature exceeds 700°C, it will soften in a short time [this is because it is not possible to obtain the desired strength. A more preferable heat treatment temperature is 20
The temperature is 0°C to 60°C.

又、熱処理時間を30秒〜20時間に限定したのは30
秒未満では得られる材料特性が安定せず、又20時間を
超えると熱処理の効果が飽和し、それ以上続けても無駄
であり経済的価値がなくなるからである。
In addition, the heat treatment time was limited to 30 seconds to 20 hours.
This is because, if the heat treatment is less than 2 seconds, the obtained material properties will not be stable, and if the heat treatment exceeds 20 hours, the effect of the heat treatment will be saturated, and continuing the heat treatment for any longer than that will be wasteful and will have no economic value.

〔実施例〕〔Example〕

次に本発明合金の実施例を説明する。 Next, examples of the alloy of the present invention will be described.

第1表に示す諸組成の合金を溶製し、厚さ30mの鋳塊
を得た。次にこの鋳塊を約850’Cで熱間圧延し、厚
さ8.Onwnにした後、適宜焼鈍を加えなから冷間圧
延により厚さ0.3neの板とした。
Alloys having various compositions shown in Table 1 were melted to obtain ingots with a thickness of 30 m. This ingot was then hot rolled at approximately 850'C to a thickness of 8. After turning it on, it was appropriately annealed and then cold rolled into a plate with a thickness of 0.3ne.

その後第1表に示す所定の熱処理を行い、引張特性、ば
ね限界値及び応力緩和特性の調査を行った。
Thereafter, prescribed heat treatments shown in Table 1 were performed, and tensile properties, spring limit values, and stress relaxation properties were investigated.

応力緩和特性は、150’C1大気中で、耐力の80%
を負荷して1000時間後の応力緩和特性を%で評価し
た。
Stress relaxation property is 80% of yield strength in 150'C1 atmosphere
The stress relaxation characteristics after 1000 hours of loading were evaluated in %.

第1表から明らかな様に、Ni、Mn及びSn含有量の
多いものは引張特性、ばね限界値、応ヵ緩和特性は良好
であるが、本発明の熱処理を施すことにより、特にばね
限界値及び応力緩和特性が一層向上することがわかる。
As is clear from Table 1, those with high Ni, Mn, and Sn contents have good tensile properties, spring limit values, and stress relaxation properties, but by applying the heat treatment of the present invention, especially the spring limit values It can be seen that the stress relaxation properties are further improved.

〔効 果〕〔effect〕

以上の様に本発明の製造方法により、強度、ばね性が著
しく向上し、電子・電気機器の端子、コネクター、スイ
ッチ等に最適なばね用銅合金が得られる。
As described above, by the manufacturing method of the present invention, it is possible to obtain a copper alloy for springs, which has significantly improved strength and spring properties and is ideal for terminals, connectors, switches, etc. of electronic and electrical equipment.

以下余白Margin below

Claims (2)

【特許請求の範囲】[Claims] (1)Zn20〜40wt%、Ni2〜10wt%、M
n1〜10wt%、Sn0.01〜3wt%を含み、残
部Cu及び不可避的不純物からなる合金を、最終冷間圧
延の後に150℃〜700℃で30秒〜20時間熱処理
し、強度とばね性を向上させることを特徴とする高力導
電銅合金の製造方法。
(1) Zn20-40wt%, Ni2-10wt%, M
After the final cold rolling, an alloy containing 1 to 10 wt% of n, 0.01 to 3 wt% of Sn, and the remainder Cu and unavoidable impurities is heat treated at 150 to 700 °C for 30 seconds to 20 hours to improve strength and elasticity. A method for producing a high-strength conductive copper alloy.
(2)Zn20〜40wt%、Ni2〜10wt%、M
n1〜10wt%、Sn0.01〜3wt%及び他にT
e、Cr、Co、Zr、V、Be、Cd、As、Pの内
1種又は2種以上を0.01〜3wt%を含み、残部C
u及び不可避的不純物からなる合金を、最終冷間圧延の
後に150℃〜700℃で30秒〜20時間熱処理し、
強度とばね性を向上させることを特徴とする高力導電銅
合金の製造方法。
(2) Zn20-40wt%, Ni2-10wt%, M
n1~10wt%, Sn0.01~3wt% and other T
Contains 0.01 to 3 wt% of one or more of e, Cr, Co, Zr, V, Be, Cd, As, and P, and the balance is C.
After the final cold rolling, the alloy consisting of U and inevitable impurities is heat treated at 150°C to 700°C for 30 seconds to 20 hours,
A method for producing a high-strength conductive copper alloy characterized by improved strength and springiness.
JP6976486A 1986-03-29 1986-03-29 Manufacture of high strength, electrically conductive copper alloy Pending JPS62227071A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6976486A JPS62227071A (en) 1986-03-29 1986-03-29 Manufacture of high strength, electrically conductive copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6976486A JPS62227071A (en) 1986-03-29 1986-03-29 Manufacture of high strength, electrically conductive copper alloy

Publications (1)

Publication Number Publication Date
JPS62227071A true JPS62227071A (en) 1987-10-06

Family

ID=13412192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6976486A Pending JPS62227071A (en) 1986-03-29 1986-03-29 Manufacture of high strength, electrically conductive copper alloy

Country Status (1)

Country Link
JP (1) JPS62227071A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627011B2 (en) 2000-04-14 2003-09-30 Dowa Mining Co., Ltd. Process for producing connector copper alloys
US6949150B2 (en) 2000-04-14 2005-09-27 Dowa Mining Co., Ltd. Connector copper alloys and a process for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627011B2 (en) 2000-04-14 2003-09-30 Dowa Mining Co., Ltd. Process for producing connector copper alloys
US6949150B2 (en) 2000-04-14 2005-09-27 Dowa Mining Co., Ltd. Connector copper alloys and a process for producing the same

Similar Documents

Publication Publication Date Title
JPS5834536B2 (en) Copper alloy for lead material of semiconductor equipment
JPS5937340B2 (en) Copper/nickel/silicon/chromium alloy with improved conductivity
US5322575A (en) Process for production of copper base alloys and terminals using the same
JP2000328158A (en) Copper alloy sheet excellent in press punchability
JP2000073130A (en) Copper alloy sheet excellent in press punchability
JPH07258803A (en) Production of titanium-copper alloy excellent in bendability and stress relaxation property
JPS6326320A (en) High power conductive copper alloy
JPH03111529A (en) High-strength and heat-resistant spring copper alloy
JPH04311544A (en) Electrically conductive material
JPH0987814A (en) Production of copper alloy for electronic equipment
JPS62227071A (en) Manufacture of high strength, electrically conductive copper alloy
JPH04180531A (en) Electrically conductive material
JP4721067B2 (en) Manufacturing method of copper alloy material for electric and electronic parts
JPS63213628A (en) Copper alloy for fuse
JPS62243750A (en) Manufacture of copper alloy excellent in property of proof stress relaxation
JPS63230837A (en) Copper alloy for fuse
JPS5821018B2 (en) Copper alloy for high strength conductivity with good heat resistance
JPS6142772B2 (en)
JPS63109132A (en) High-strength conductive copper alloy and its production
JPS58213847A (en) Copper alloy for electric and electronic parts and its manufacture
JPS6260850A (en) Manufacture of copper alloy having superior stress relaxation resistance
JP2682577B2 (en) Manufacturing method of copper alloy for terminals and connectors
JPS62227052A (en) Copper-base alloy for terminal and connector and its production
JPS61170534A (en) Electrically conductive spring material
JPS62146230A (en) Copper alloy for spring