JPS61170534A - Electrically conductive spring material - Google Patents

Electrically conductive spring material

Info

Publication number
JPS61170534A
JPS61170534A JP1062185A JP1062185A JPS61170534A JP S61170534 A JPS61170534 A JP S61170534A JP 1062185 A JP1062185 A JP 1062185A JP 1062185 A JP1062185 A JP 1062185A JP S61170534 A JPS61170534 A JP S61170534A
Authority
JP
Japan
Prior art keywords
conductive spring
electrically conductive
spring material
alloy
properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1062185A
Other languages
Japanese (ja)
Other versions
JPS6319582B2 (en
Inventor
Koji Iwatate
岩立 孝治
Shuhei Ishikawa
修平 石川
Kazutake Ikushima
生嶋 一丈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP1062185A priority Critical patent/JPS61170534A/en
Priority to US06/776,454 priority patent/US4692192A/en
Priority to EP85307773A priority patent/EP0180443B1/en
Priority to DE8585307773T priority patent/DE3575230D1/en
Publication of JPS61170534A publication Critical patent/JPS61170534A/en
Publication of JPS6319582B2 publication Critical patent/JPS6319582B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To reduce the cost of an electrically conductive spring material and to improve the mechanical strength by adding prescribed percentages of Ni, Be, Si, Co, Fe, Zr, Ti and Mg to Cu. CONSTITUTION:An electrically conductive spring material is obtd. by adding 0.01-2wt% in total of one or more among 0.01-1wt% each of Co, Fe, Zr, Ti and Mg as secondary components to a Cu alloy consisting of 1.8-3wt% Ni, 0.15-0.3wt% Be, 0.4-1.2wt% Si and the balance Cu.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はコネクター、スイッチ、リレーなどの電気機器
用材料として用いられる導電性とばね特性に優れた低コ
ストの導電ばね材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a low-cost conductive spring material with excellent conductivity and spring properties that is used as a material for electrical equipment such as connectors, switches, and relays.

(従来の技術) 導電性とばね特性とに優れた導電ばね材料として代表的
なものは、JISに2種又は3種とじて規定されている
5、5〜9.0%(重量%、以下同じ)のSnと0.0
3〜0.3%のPとを含むりん青銅であるが、最近の小
型化され高い信頼性が求められる電子部品として使用す
るには導電性、曲げ成形性、応力弛緩特性等が不十分で
あること等の理由により改善要求が高まっている。また
、これらの要求を満足する導電ばね材料のひとつとして
公称組成でCu −0,4%B e −1,8%NNの
合金があるが、Beが高価であるため材料価格が高価な
ものとなる欠点があった。(例えば、特開昭53−14
612号公報) (発明が解決しようとする問題点) 本発明は上記のような従来の問題点を解決し、従来のC
u −0,4%B e −1,8%Ni合金の優れた特
性を維持しつつ高価なりeを減少させてコストパーフォ
ーマンスの優れた導電ばね材料を提供することを目的と
して完成されたものである。
(Prior art) Typical conductive spring materials with excellent conductivity and spring properties are 5.5 to 9.0% (weight %, hereinafter referred to as 5.5% to 9.0% by weight, which is defined as Type 2 or Type 3 in JIS). Same) Sn and 0.0
Although phosphor bronze contains 3 to 0.3% P, its conductivity, bending formability, stress relaxation properties, etc. are insufficient for use in recent miniaturized electronic components that require high reliability. Demand for improvements is increasing for a number of reasons. In addition, one of the conductive spring materials that satisfies these requirements is an alloy with a nominal composition of Cu-0.4%Be-1.8%NN, but since Be is expensive, the material cost is high. There was a drawback. (For example, JP-A-53-14
(Publication No. 612) (Problems to be solved by the invention) The present invention solves the conventional problems as described above, and
u -0.4% B e -1.8% This was completed with the aim of providing a conductive spring material with excellent cost performance by reducing the cost and e while maintaining the excellent characteristics of the alloy. It is.

(問題点を解決するための手段) 本発明は重量比で1.8〜3.0%の団゛iと、0.1
5〜0.35%のBeと、0.4〜1.2%のSiと、
残部Cuおよび不可避的な不純物とからなる合金に、副
成分としてG o : 0.01〜1.0%、Fe:0
゜01〜1.0%、Z r : 0.01〜1.0%、
T i : 0.01〜1.0%、Mg:0.01〜1
.0%からなる群から選択された1種以上の成分を総量
で0.01〜2.0%添加したことを特徴とするもので
ある。即ち、本発明は価格引き下げのためにBe量を減
少させたことによる強度の低下をNi量の増加とSiの
添加で補うことができること、Ba量の減少を図るうえ
で問題となる溶体化処理時の結晶粒成長をNi量を1.
8〜3.0%とすることにより有効に抑制できること、
Stを0.4〜1.2%の範囲で添加することにより応
力弛緩特性、伸び、曲げ成形性等の諸特性を向上できる
こと、更にCoJFe、Zr、’ri、Mg等の成分の
添加が結晶粒微細化及び材料強度のより一層の向上に有
益であること等の新規な知見に基いて完成されたもので
あり、本発明により強度およびばね特性が従来のばね用
りん青銅と同等あるいはそれ以上であり、特に機械的強
度、曲げ成形性、応力弛緩特性、導電性に優れた低価格
の導電ばね材料を実現したものである。
(Means for Solving the Problems) The present invention is characterized by a mass ratio of 1.8 to 3.0% by weight and 0.1% by weight.
5-0.35% Be, 0.4-1.2% Si,
In an alloy consisting of the balance Cu and unavoidable impurities, G o: 0.01 to 1.0%, Fe: 0 as subcomponents.
゜01~1.0%, Zr: 0.01~1.0%,
Ti: 0.01-1.0%, Mg: 0.01-1
.. It is characterized in that one or more components selected from the group consisting of 0% are added in a total amount of 0.01 to 2.0%. That is, the present invention is capable of compensating for the decrease in strength caused by reducing the amount of Be to reduce the price by increasing the amount of Ni and adding Si, and that solution treatment, which is a problem in reducing the amount of Ba, can be compensated for by increasing the amount of Ni and adding Si. Grain growth when the Ni amount is 1.
that it can be effectively suppressed by setting it to 8 to 3.0%;
By adding St in the range of 0.4 to 1.2%, various properties such as stress relaxation properties, elongation, and bending formability can be improved. It was completed based on new knowledge that it is useful for grain refinement and further improvement of material strength, and the strength and spring characteristics of the present invention are equivalent to or higher than those of conventional phosphor bronze for springs. This has resulted in a low-cost conductive spring material that is particularly excellent in mechanical strength, bending formability, stress relaxation properties, and conductivity.

次に各合金成分の含有率の限定理由を説明すると、Ni
は1.8%未満ではBe量の減少に伴う溶体化処理時の
結晶粒の粗大化を防止できないために機械的強度、伸び
、成形性の向上が得られず、また3、0%を超えると添
加量増加に見合う特性向上がないばかりか材料の圧延加
工性や曲げ成形性を阻害するため1.8〜3.0%の範
囲としたもので、特に2.0〜2.8%の範囲が最適で
ある。Beは0.15%未満では析出硬化性が小さくな
るとともに溶体化処理時の結晶粒の粗大化が防止できな
くなり、0.35%を超えると材料価格引下げの効果が
小さくなるため0.15〜0.35%の範囲としたもの
で、特に0.20〜0.25%の範囲が最適である。S
iはBe量の減少に伴う強度低下を補い、伸び、成形性
、応力弛緩特性を改善するために重要な成分であり、0
.4%未満ではその効果が顕著ではなく、1.2%を超
えると導電性が著しく阻害されるので0.4〜1.2%
、特に0.4〜1.0%の範囲が好適なものである。ま
たStを0.4〜1.2%の範囲で添加することにより
合金の鋳造性、スラグ分離性、耐酸化性も大きく改善さ
れ、製造コストの低減にも寄与することができる。
Next, to explain the reason for limiting the content of each alloy component, Ni
If it is less than 1.8%, coarsening of crystal grains during solution treatment due to the decrease in Be content cannot be prevented, so improvements in mechanical strength, elongation, and formability cannot be obtained, and if it exceeds 3.0%. In addition to not improving the properties commensurate with the increase in the amount added, it also inhibits the rolling workability and bending formability of the material, so the range of 1.8 to 3.0% is set, especially 2.0 to 2.8%. The range is optimal. If Be is less than 0.15%, precipitation hardenability decreases and coarsening of crystal grains during solution treatment cannot be prevented, and if it exceeds 0.35%, the effect of reducing material prices will be reduced, so it should be 0.15~ The content is set in the range of 0.35%, and the range of 0.20 to 0.25% is particularly optimal. S
i is an important component to compensate for the decrease in strength due to the decrease in Be content and improve elongation, formability, and stress relaxation properties;
.. If it is less than 4%, the effect is not noticeable, and if it exceeds 1.2%, the conductivity is significantly inhibited, so 0.4 to 1.2%.
In particular, a range of 0.4 to 1.0% is preferred. Furthermore, by adding St in a range of 0.4 to 1.2%, the castability, slag separation properties, and oxidation resistance of the alloy are greatly improved, which can also contribute to reducing manufacturing costs.

Co s F e SZ r ST i SM gはそ
れぞれ0.01〜1.0%の範囲内で上記の合金組成に
添加することにより、合金の結晶粒微細化及びその機械
的強度の向上に寄与する成分である。これらの成分は0
.01%未満では実質的な効果が認められず、逆に単独
で1.0%を越えたとき、あるいは総量が2.0%を越
えたときにはその効果が飽和して材料価格の点において
不利となるうえ、伸び、成形性等を劣化させる。
By adding CosFeSZrSTiSMg to the above alloy composition within the range of 0.01 to 1.0%, each contributes to grain refinement of the alloy and improvement of its mechanical strength. It is an ingredient. These components are 0
.. If it is less than 0.01%, no substantial effect is observed, and conversely, if it exceeds 1.0% alone or if the total amount exceeds 2.0%, the effect is saturated and it becomes disadvantageous in terms of material price. Moreover, it deteriorates elongation, moldability, etc.

(実施例) 第1表に示される実施例1〜9の合金および比較例1〜
8の合金(比較例3は従来のCu −0,4%B e−
1,8%Ni合金、比較例8は従来のばね用りん青銅)
を高周波誘導炉で溶解鋳造し、熱間鍛造、熱間圧延を経
て焼鈍、冷間圧延を繰返し0゜32鶴の板材を得た0次
に最終溶体化処理として900℃で5分間加熱後水中冷
却する処理を行い、更に37%の圧延を行った後に40
0℃で2時間の時効処理を施して諸特性を測定した。そ
の結果を第2表に示す、ここで応力弛緩特性は試験片に
40 kg f /wm”の最大曲げ応力を作用させ、
200℃で100時間保持後に荷重を解除して残留応力
を測定し、その応力残留率で評価した0曲げ成形性はク
ランクを生じない最小曲げ半径Rと板厚tの比R/lで
評価した。なお、0°は圧延方向における特性値を、9
0°は圧延方向に直角方向の特性値を示す。
(Example) Alloys of Examples 1 to 9 and Comparative Examples 1 to 9 shown in Table 1
8 alloy (Comparative Example 3 is the conventional Cu-0.4%B e-
1.8% Ni alloy, Comparative Example 8 is conventional phosphor bronze for springs)
was melted and cast in a high-frequency induction furnace, hot forged, hot rolled, annealed, and cold rolled repeatedly to obtain a 0°32mm plate.Next, as a final solution treatment, it was heated at 900°C for 5 minutes and then submerged in water. After cooling and further rolling by 37%,
Aging treatment was performed at 0° C. for 2 hours, and various properties were measured. The results are shown in Table 2, where the stress relaxation properties were determined by applying a maximum bending stress of 40 kg f/wm to the test piece.
After holding at 200°C for 100 hours, the load was released and the residual stress was measured, and the stress residual rate was evaluated. 0 Bending formability was evaluated by the ratio R/l of the minimum bending radius R that does not cause cranking and the plate thickness t. . In addition, 0° is the characteristic value in the rolling direction, 9
0° indicates the characteristic value in the direction perpendicular to the rolling direction.

第1表  合金組成(重量%) (発明の効果) 本発明は以上の実施例による説明からも明らかなように
、高価なりe・の含有率を比較例3として示した従来の
Cu −0,4%B el −1,8%Ni合金より大
幅に引き下げて材料価格の低減を図るとともに、これと
同等以上の高い機械的強度と、応力弛緩特性を達成した
ものであり、また比較例8として示されている従来のば
ね用りん青銅の特性と対比して特に90°方向の成形性
が著しく優れ、導電率、応力弛緩特性についても極めて
優れた特性値を得ることに成功したものである。よって
本発明は従来の導電ばね材料の問題点を解決したコスト
パーフォーマンスに優れた合金として産業の発展に寄与
するところは極めて大である。
Table 1 Alloy Composition (Weight %) (Effects of the Invention) As is clear from the explanation using the above examples, the present invention is advantageous in that the conventional Cu-0, which is expensive and has a content of e. The material cost is significantly lower than that of the 4%Bel-1.8%Ni alloy, and it also achieves high mechanical strength and stress relaxation properties equivalent to or higher than that of the 4%Bel-1.8%Ni alloy. Compared to the properties of the conventional phosphor bronze for springs shown, the moldability is particularly excellent in the 90° direction, and we have succeeded in obtaining extremely excellent characteristic values in terms of electrical conductivity and stress relaxation properties. Therefore, the present invention greatly contributes to the development of industry as an alloy with excellent cost performance that solves the problems of conventional conductive spring materials.

Claims (1)

【特許請求の範囲】[Claims] 重量比で1.8〜3.0%のNiと、0.15〜0.3
5%のBeと、0.4〜1.2%のSiと、残部Cuお
よび不可避的な不純物とからなる合金に、副成分として
Co:0.01〜1.0%、Fe:0.01〜1.0%
、Zr:0.01〜1.0%、Ti:0.01〜1.0
%、Mg:0.01〜1.0%からなる群から選択され
た1種以上の成分を総量で0.01〜2.0%添加した
ことを特徴とする導電ばね材料。
1.8-3.0% Ni and 0.15-0.3% by weight
An alloy consisting of 5% Be, 0.4-1.2% Si, the balance Cu and unavoidable impurities, with Co: 0.01-1.0% and Fe: 0.01 as subcomponents. ~1.0%
, Zr: 0.01-1.0%, Ti: 0.01-1.0
%, Mg: 0.01 to 1.0% in total amount of one or more components selected from the group consisting of 0.01 to 2.0%.
JP1062185A 1984-10-30 1985-01-22 Electrically conductive spring material Granted JPS61170534A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1062185A JPS61170534A (en) 1985-01-22 1985-01-22 Electrically conductive spring material
US06/776,454 US4692192A (en) 1984-10-30 1985-09-16 Electroconductive spring material
EP85307773A EP0180443B1 (en) 1984-10-30 1985-10-28 Electroconductive spring material
DE8585307773T DE3575230D1 (en) 1984-10-30 1985-10-28 ELECTRICALLY CONDUCTIVE ELASTIC MATERIAL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1062185A JPS61170534A (en) 1985-01-22 1985-01-22 Electrically conductive spring material

Publications (2)

Publication Number Publication Date
JPS61170534A true JPS61170534A (en) 1986-08-01
JPS6319582B2 JPS6319582B2 (en) 1988-04-23

Family

ID=11755293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1062185A Granted JPS61170534A (en) 1984-10-30 1985-01-22 Electrically conductive spring material

Country Status (1)

Country Link
JP (1) JPS61170534A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219434A (en) * 1988-07-07 1990-01-23 Dowa Mining Co Ltd Copper-base alloy for wire harness terminal
US5505572A (en) * 1991-04-12 1996-04-09 Nippon Kayaku Kabushiki Kaisha Sealed container and method of manufacturing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115427470A (en) 2020-03-27 2022-12-02 中央硝子株式会社 Novolac resin, epoxy resin, photosensitive resin composition, curable resin composition, cured product, electronic device, method for producing novolak resin, and method for producing epoxy resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219434A (en) * 1988-07-07 1990-01-23 Dowa Mining Co Ltd Copper-base alloy for wire harness terminal
US5505572A (en) * 1991-04-12 1996-04-09 Nippon Kayaku Kabushiki Kaisha Sealed container and method of manufacturing same

Also Published As

Publication number Publication date
JPS6319582B2 (en) 1988-04-23

Similar Documents

Publication Publication Date Title
JPS6167738A (en) Improved copper base alloy having strength and conductivity in combination
JP3797882B2 (en) Copper alloy sheet with excellent bending workability
JPH06184679A (en) Copper alloy for electrical parts
EP0180443B1 (en) Electroconductive spring material
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
JP2790238B2 (en) Method for producing titanium copper alloy excellent in bending property and stress relaxation property
JPH03111529A (en) High-strength and heat-resistant spring copper alloy
JPS62182240A (en) Conductive high-tensile copper alloy
JPS61170534A (en) Electrically conductive spring material
JPS61170533A (en) Electrically conductive spring material
JPS6142772B2 (en)
US5002732A (en) Copper alloy having satisfactory pressability and method of manufacturing the same
JPS62250136A (en) Copper alloy terminal and connector
JPS63230837A (en) Copper alloy for fuse
JPS5821018B2 (en) Copper alloy for high strength conductivity with good heat resistance
JPS61106738A (en) Conductive spring material
JPS6260850A (en) Manufacture of copper alloy having superior stress relaxation resistance
JPH01119635A (en) Spring material having electric conductivity
JPS62243750A (en) Manufacture of copper alloy excellent in property of proof stress relaxation
JPH08120368A (en) High-tensile conductive copper alloy excellent in elongation property and bendability and its production
JPS6164841A (en) Material for conductive spring
JPS6164840A (en) Material for conductive spring
JPS6393837A (en) Copper alloy for electronic equipment and its production
JPS634885B2 (en)
JPS5974250A (en) Heat resistant copper alloy