JPH08120368A - High-tensile conductive copper alloy excellent in elongation property and bendability and its production - Google Patents

High-tensile conductive copper alloy excellent in elongation property and bendability and its production

Info

Publication number
JPH08120368A
JPH08120368A JP6254031A JP25403194A JPH08120368A JP H08120368 A JPH08120368 A JP H08120368A JP 6254031 A JP6254031 A JP 6254031A JP 25403194 A JP25403194 A JP 25403194A JP H08120368 A JPH08120368 A JP H08120368A
Authority
JP
Japan
Prior art keywords
copper alloy
elongation
wire
tensile strength
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6254031A
Other languages
Japanese (ja)
Other versions
JP3302840B2 (en
Inventor
Kosuke Ohashi
康佑 大橋
Yasuhito Taki
康仁 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP25403194A priority Critical patent/JP3302840B2/en
Publication of JPH08120368A publication Critical patent/JPH08120368A/en
Application granted granted Critical
Publication of JP3302840B2 publication Critical patent/JP3302840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To impart excellent bendability, elongation properties and strength to an alloy without executing complicated heat treatment by specifying the compsn. of an Mg-Sn-In-Co copper alloy. CONSTITUTION: This alloy has a compsn. contg., by weight, 0.05 to 0.25% Mg, 0.1 to 0.6% Sn, 0.02 to 0.08% P, 0.02 to 0.2% In, 0.05 to 0.1% Co, and the balance fundamental Cu, and in which the containing ratio of Mn to Sn is regulated to Mn; Sn=(1); (>=1.0). The working of the alloy to a wire rod is executed in such a manner that a bar stock first subjected to melting and continuous casting is rolled and wire-drawn and is subjected to continuous annealing in the temp. range of 500 to 600 deg.C to form into an element wire. Next, it is wire- drawn at 85 to 95% working ratio and is finally subjected to continuous annealing preferably in the temp. range of 350 to 450 deg.C as final heat treatment. Thus, a conductive wire having >=50Kg/mm<2> tensile strength can be formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅合金に係り、特に、
例えば自動車用電線の導体等として用いた場合に適した
屈曲性、伸び特性、引張強さに優れた導電用高力銅合金
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy, and in particular,
For example, the present invention relates to a conductive high-strength copper alloy excellent in flexibility, elongation property, and tensile strength suitable for use as a conductor of an electric wire for automobiles.

【0002】[0002]

【従来の技術】従来から自動車の自動車用電線の導体と
しては軟銅線が主として用いられてきたが、各種計器類
等の車載装置の電子化が図られ、自動車内における電
気、電子配線回路の数が著しく増加し、自動車内におけ
る占積空間が増加し、自動車用電線による自動車総重量
の増加を招いている。しかし、自動車の車体は、燃費の
向上の点から軽量であることが望ましく、車体の軽量化
を図る上から、自動車内の配線回路数の増加があって
も、自動車内における占積空間の狭小化、及び自動車用
電線の総重量の増加の抑制の要望が強まっている。そこ
で、自動車用電線を軽量化するため導体外径を小さくし
ても機械的強度を確保することのできる硬銅線が検討さ
れたが、硬銅線は材質的に伸びが著しく小さいため、硬
銅線を用いて端子間を圧着接合しても、自動車走行中に
生じる振動衝撃の外力による機械的負荷が接合部に加わ
ると、この接合部が損傷してしまうことがある。このよ
うに硬銅線を用いて端子間を圧着接合すると、端子圧着
箇所が機械的な弱点部となり外的衝撃によって断線を生
じやすく信頼性に乏しいという結果を招来している。ま
た、自動車用電線の使用重量を小さくすることは、導体
径を小さくすることによって実現が可能であるが、従来
の如き軟銅線にあっては、導体外径を小さくすると機械
的強度が低下してしまう。そこで、近年、導体外径を小
さくしても、機械的強度を確保でき、比較的良好な繰り
返し屈曲強度及び導電性を有する銅合金として、Ni−
Si−In−Sn銅合金(特公平5−27699号公
報)が開発されている。このNi−Si−In−Sn銅
合金は、Cu母相中に固溶しているNi、Siを時効硬
化処理により微細に析出させて引張強さ、伸び、導電率
を向上させている。さらにIn、SnをCu母相中に固
溶させ引張強さを、さらに向上させている。
2. Description of the Related Art Conventionally, annealed copper wire has been mainly used as a conductor of an automobile electric wire for automobiles, but on-vehicle devices such as various measuring instruments have been computerized, and the number of electric and electronic wiring circuits in the automobile has been increased. Has increased remarkably, the space occupied inside the vehicle has increased, and the total weight of the vehicle due to the electric wires for the vehicle has increased. However, it is desirable that the body of an automobile be lightweight from the viewpoint of improving fuel efficiency. From the viewpoint of reducing the weight of the automobile, even if the number of wiring circuits in the automobile increases, the space occupied by the automobile is small. There is an increasing demand for a reduction in the total weight of electric wires for automobiles. Therefore, in order to reduce the weight of the electric wire for automobiles, a hard copper wire that can secure the mechanical strength even if the outer diameter of the conductor is made small has been studied. Even if the terminals are crimp-bonded using a copper wire, the joint may be damaged if a mechanical load is applied to the joint due to an external force of a vibration shock generated while the vehicle is running. When the terminals are crimp-bonded with each other by using the hard copper wire, the terminal crimping point becomes a mechanical weak point, which easily causes disconnection due to external impact, resulting in poor reliability. Also, reducing the weight of automobile wires can be achieved by reducing the conductor diameter, but in the case of conventional annealed copper wire, reducing the conductor outer diameter decreases the mechanical strength. Will end up. Therefore, in recent years, as a copper alloy that can secure mechanical strength even if the outer diameter of the conductor is reduced and has relatively good repeated bending strength and conductivity, Ni-
A Si-In-Sn copper alloy (Japanese Patent Publication No. 5-27699) has been developed. In this Ni-Si-In-Sn copper alloy, Ni and Si, which are solid-solved in the Cu matrix, are finely precipitated by an age hardening treatment to improve the tensile strength, elongation and conductivity. Further, In and Sn are solid-dissolved in the Cu matrix to further improve the tensile strength.

【0003】[0003]

【発明が解決しようとする課題】このような従来のNi
−Si−In−Sn銅合金にあっては、高価なNiを多
量に使用(通常2〜3wt%)することになり、電線導
体としての材料のコストが高くなるという問題点を有し
ている。この導体材料のコスト高は、電線の価格に影響
を与えることとなる。この電線の価格の上昇は、使用数
量が特に増加している自動車部門において、自動車価格
を押上げる結果を招来することにもなり兼ねず、生産さ
れてから廃車までの使用期間が平均7〜8年という比較
的短命な自動車に用いられる自動車用電線の場合は、大
きな問題となる。価格競争の激しい自動車部門において
は、自動車の機能を下げずに自動車価格の低廉化を実現
することが要求されている。それには、自動車のあらゆ
るパーツ類について、各パーツの性能を落とさず、コス
トダウンを図ることが必要であり、エンジン制御の電子
化に伴い使用数量が特に増加している自動車用電線の場
合も例外ではない。このため電線導体としての材料のコ
ストが高くなるということは電線全体として大きな要素
を占めている。また、従来のNi−Si−In−Sn銅
合金は、溶体化処理、時効硬化処理を行う時効硬化型銅
合金のため、通常の電線製造設備とは別に溶体化処理、
時効硬化処理のための設備を必要としている。この時効
硬化型銅合金の場合には、溶体化処理、時効硬化処理を
行う際に、熱処理の温度制御を正確に行わないと、銅合
金として良好な特性が得られない。ところが溶体化処
理、時効硬化処理を行う際の熱処理の温度は、正確に制
御することが難しい。このため、従来の時効硬化型銅合
金であるNi−Si−In−Sn銅合金にあっては、特
性にバラツキが生じ易いという問題点を有している。さ
らには、従来のNi−Si−In−Sn銅合金は、通常
の電線製造設備とは別に溶体化処理、時効硬化処理のた
めの設備を用い、溶体化処理、時効硬化処理を行って製
造する時効硬化型銅合金であるため、加工コストがアッ
プし、製品コストが大幅にアップするという問題点を有
している。
SUMMARY OF THE INVENTION Such a conventional Ni
In the -Si-In-Sn copper alloy, a large amount of expensive Ni is used (usually 2 to 3 wt%), and there is a problem that the cost of the material as the electric wire conductor becomes high. . The high cost of the conductor material affects the price of the electric wire. This increase in the price of electric wires may result in an increase in automobile prices in the automobile sector, where the number of vehicles used is particularly high. This is a big problem in the case of automobile electric wires used in automobiles, which have a relatively short life of a year. In the automobile sector where price competition is fierce, it is required to reduce the vehicle price without lowering the function of the automobile. For that purpose, it is necessary to reduce the cost of all parts of the automobile without deteriorating the performance of each part, and even for the case of electric wires for automobiles, the number of which is being used is increasing especially due to the computerization of engine control. is not. For this reason, the fact that the cost of the material for the wire conductor is high is a major factor in the wire as a whole. In addition, the conventional Ni-Si-In-Sn copper alloy is an age-hardening type copper alloy that undergoes solution treatment and age-hardening treatment.
Equipment for age hardening treatment is required. In the case of this age hardening type copper alloy, good properties as a copper alloy cannot be obtained unless the temperature of the heat treatment is accurately controlled during the solution treatment and the age hardening treatment. However, it is difficult to accurately control the temperature of the heat treatment when performing the solution treatment and the age hardening treatment. Therefore, the Ni-Si-In-Sn copper alloy, which is a conventional age hardening type copper alloy, has a problem that the characteristics are likely to vary. Further, the conventional Ni-Si-In-Sn copper alloy is manufactured by performing solution treatment and age hardening treatment using equipment for solution treatment and age hardening treatment in addition to ordinary electric wire manufacturing equipment. Since it is an age hardening type copper alloy, it has a problem that the processing cost is increased and the product cost is significantly increased.

【0004】本発明の目的は、複雑な熱処理工程を必要
とせず、導電率の低下を招かないで屈曲性、伸び特性、
引張強さを向上して械的衝撃に対し高強度を保ち、圧着
端子部における屈曲による断線を減少させた導電用高力
銅合金を安価に製造できるようにすることにある。
The object of the present invention is to eliminate the need for complicated heat treatment steps and to prevent the deterioration of the electrical conductivity, and the flexibility, elongation characteristics,
Another object of the present invention is to make it possible to inexpensively manufacture a high-strength copper alloy for electrical conduction, which has improved tensile strength, high strength against mechanical shock, and reduced disconnection due to bending in the crimp terminal.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
Mgを0.05〜0.25wt%、Snを0.1〜0.
6wt%、Pを0.02〜0.08wt%、Inを0.
02〜0.2wt%、Coを0.05〜0.1wt%含
有し、残部が基本的に銅からなり、前記MgとSnの含
有比が、 Mg:Sn=(1):(1.0以上) にしたものである。
According to the first aspect of the present invention,
Mg is 0.05 to 0.25 wt% and Sn is 0.1 to 0.
6 wt%, P 0.02 to 0.08 wt%, In 0.
02-0.2 wt%, Co of 0.05-0.1 wt%, the balance basically consisting of copper, and the content ratio of Mg and Sn is Mg: Sn = (1) :( 1.0 Above).

【0006】請求項2記載の発明は、Mgを0.05〜
0.25wt%、Snを0.1〜0.6wt%、Pを
0.02〜0.08wt%、Inを0.02〜0.2w
t%、Coを0.05〜0.1wt%含有し、残部が基
本的に銅からなり、前記MgとSnの含有比が、 Mg:Sn=(1):(1.0以上) である銅合金を連続鋳造によって作製した鋳造棒を圧
延、伸線後に500〜600℃で連続焼鈍し、その後に
85〜95%の加工率で伸線し、最終熱処理を350〜
450℃で連続焼鈍して製造しようというものである。
According to the second aspect of the invention, Mg is added in an amount of 0.05 to 0.05.
0.25wt%, Sn 0.1-0.6wt%, P 0.02-0.08wt%, In 0.02-0.2w
The content ratio of Mg and Sn is Mg: Sn = (1) :( 1.0 or more). A casting rod produced by continuous casting of a copper alloy is rolled and drawn, then continuously annealed at 500 to 600 ° C., then drawn at a working rate of 85 to 95%, and finally heat treated at 350 to
It is intended to be manufactured by continuous annealing at 450 ° C.

【0007】[0007]

【作用】請求項1記載の発明は、MgをCu母相中に固
溶させ、引張強さを向上させると共に、Mgの最適添加
量を限定することで、Mgによる鋳造性の悪化を最小に
止め、Snを添加することで屈曲特性を大幅に向上させ
ると共に、一層の引張強さ、焼鈍後の伸びの向上を図
り、またMg添加による鋳造性の悪化を改善するもので
ある。そしてPを添加することにより、耐熱性を向上さ
せると共に、さらなる鋳造性の向上を図った。さらに、
Inの添加により引張強さを一層向上させ、Coを添加
することにより伸び及び屈曲性の更なる向上を図ったも
のである。
According to the first aspect of the present invention, Mg is dissolved in the Cu mother phase to form a solid solution, the tensile strength is improved, and the optimum addition amount of Mg is limited, so that deterioration of castability due to Mg is minimized. By stopping and adding Sn, the bending property is significantly improved, the tensile strength and the elongation after annealing are further improved, and the deterioration of the castability due to the addition of Mg is improved. By adding P, the heat resistance was improved and the castability was further improved. further,
By adding In, the tensile strength is further improved, and by adding Co, the elongation and flexibility are further improved.

【0008】MgをCuに添加すると、鋳造時に鋳巣な
どが発生しやすくなり、鋳造性が悪化することが従来よ
り知られている。特に、連続鋳造時には鋳造割れが発生
しやすく、微小な鋳造割れでも圧延した時や伸線した時
に、この微小な鋳造割部が圧延又は伸線後の銅合金の欠
陥部となり、この欠陥部から断線するといことが多発す
る。このためMg銅合金の場合は、表皮を面削してから
伸線を行うが、断線が多発する場合がある。一方、Mg
の添加は導電率の低下が少ない割りに、引張強さの向上
効果が非常に大きい。請求項1記載の発明において、M
gの含有量を0.05〜0.25wt%としたのは、M
gの含有量が0.05wt%未満では、引張強さを向上
させる効果が小さく、Mgの含有量が0.25wt%を
超えても、引張強さを向上させる効果は飽和してしま
い、導電性が大幅に低下し、鋳造性が急速に悪化するか
らである。
It has been conventionally known that when Mg is added to Cu, cast holes and the like are likely to occur during casting and the castability is deteriorated. In particular, during continuous casting, casting cracks are likely to occur, and even when minute casting cracks are rolled or drawn, this minute casting fracture portion becomes a defective portion of the copper alloy after rolling or drawing, and from this defective portion There are a lot of things that happen when you disconnect. For this reason, in the case of Mg copper alloy, the skin is chamfered and then wire drawing is performed, but wire breakage may occur frequently. On the other hand, Mg
Although the addition of is less in the decrease in conductivity, the effect of improving the tensile strength is very large. In the invention according to claim 1, M
The reason why the content of g is 0.05 to 0.25 wt% is that M
When the content of g is less than 0.05 wt%, the effect of improving the tensile strength is small, and even when the content of Mg exceeds 0.25 wt%, the effect of improving the tensile strength is saturated and the conductivity is reduced. This is because the castability deteriorates rapidly and the castability deteriorates rapidly.

【0009】また、Snを添加するとMgの添加により
悪化した鋳造性を向上させると共に、屈曲性が大幅に向
上する。また、Snの添加は、引張強さの向上に効果が
あると共に焼鈍後の伸びの向上にも非常に効果を発揮す
る。請求項1記載の発明において、Snの含有量を0.
1〜0.6wt%としたのは、Snの含有量が0.1w
t%未満では、屈曲性及び鋳造性を向上させる効果が小
さく、Snの含有量が0.6wt%を超えても、引張強
さ及び鋳造性の向上効果が飽和してしまい、焼鈍後の伸
び、屈曲性が悪化し、導電性を大幅に低下させるためで
ある。
Further, addition of Sn improves not only the castability deteriorated by the addition of Mg but also the flexibility. Further, addition of Sn has an effect of improving the tensile strength and also an effect of improving the elongation after annealing. In the invention according to claim 1, the Sn content is set to 0.
1 to 0.6 wt% is because the Sn content is 0.1 w
If it is less than t%, the effect of improving the flexibility and castability is small, and even if the Sn content exceeds 0.6 wt%, the effect of improving the tensile strength and castability is saturated, and the elongation after annealing increases. This is because the flexibility is deteriorated and the conductivity is significantly reduced.

【0010】さらにPの添加は、Snとの相乗効果によ
って鋳造性を向上させる効果が非常に大きく、Mgの添
加による鋳造性の悪化を大きく改善する。またPの添加
によって耐熱性も大きく向上するが、導電率の低下が大
きいため添加量は限定される。請求項1記載の発明にお
いて、Pの含有量を0.02〜0.08wt%としたの
は、Pの含有量が0.02wt%未満では、耐熱性の向
上に効果が少なく、またMgの添加によって低下した鋳
造性を改善しきれず、Pの含有量が0.08wt%を超
えると耐熱性及び鋳造性は向上するが、導電性が大幅に
低下して実用的でないためである。
Further, the addition of P has a very large effect of improving the castability by a synergistic effect with Sn, and greatly improves the deterioration of the castability due to the addition of Mg. Although the heat resistance is greatly improved by the addition of P, the addition amount is limited because the conductivity is largely lowered. In the invention according to claim 1, the content of P is set to 0.02 to 0.08 wt%. When the content of P is less than 0.02 wt%, the effect of improving heat resistance is small, and the content of Mg is This is because the castability reduced by the addition cannot be improved, and if the P content exceeds 0.08 wt%, the heat resistance and the castability are improved, but the conductivity is significantly reduced and it is not practical.

【0011】さらにまた、Inの添加は、引張強さを大
きく向上させる。請求項1記載の発明において、Inの
含有量を0.02〜0.2wt%としたのは、Inの含
有量が0.02wt%未満では、引張強さを向上させる
効果が小さく、Inの含有量が0.2wt%を超えると
引張強さの向上効果が飽和し、導電性が低下してしまう
ためである。また、高価なInを多量に添加することは
コストアップとなり実用的でない。
Furthermore, the addition of In greatly improves the tensile strength. In the invention of claim 1, the content of In is set to 0.02 to 0.2 wt% because the effect of improving the tensile strength is small when the content of In is less than 0.02 wt%, This is because if the content exceeds 0.2 wt%, the effect of improving the tensile strength is saturated and the conductivity is reduced. In addition, adding a large amount of expensive In increases the cost and is not practical.

【0012】また、Coの添加は、伸び特性及び屈曲性
を向上させる。請求項1記載の発明において、Coの含
有量を0.05〜0.1wt%としたのは、Coの含有
量が0.05wt%未満では、伸び特性及び屈曲性を向
上させる効果が小さく、Coの含有量が0.1wt%を
超えると伸び特性及び屈曲性の向上効果が飽和し、導電
性が低下してしまうためである。
Further, the addition of Co improves elongation characteristics and flexibility. In the invention according to claim 1, the content of Co is set to 0.05 to 0.1 wt% because when the Co content is less than 0.05 wt%, the effect of improving the elongation property and the flexibility is small. This is because when the Co content exceeds 0.1 wt%, the effect of improving the elongation characteristics and the flexibility is saturated, and the conductivity decreases.

【0013】ここでMgとSnの添加比率は、鋳造性に
大きく影響する。すなわち、Mgの添加量1に対してS
nの添加量を1.0以上の比率にする必要がある。Mg
とSnの添加比率が、 Mg>Sn の比率では鋳造性の改善はできない。
The addition ratio of Mg and Sn has a great influence on the castability. That is, when the addition amount of Mg is 1, S
The added amount of n must be 1.0 or more. Mg
If the addition ratio of Mg and Sn is Mg> Sn, the castability cannot be improved.

【0014】請求項2記載の発明は、連続鋳造によって
作製したMgを0.05〜0.25wt%、Snを0.
1〜0.6wt%、Pを0.02〜0.08wt%、I
nを0.02〜0.2wt%、Coを0.05〜0.1
wt%含有し、残部が基本的に銅からなり、前記Mgと
Snの含有比が、 Mg:Sn=(1):(1.0以上) である銅合金の鋳造棒を圧延、伸線後に500〜600
℃で連続焼鈍し、その後に85〜95%の加工率で伸線
し、最終熱処理を350〜450℃で連続焼鈍して製造
することにより、複雑な熱処理工程(溶体化処理、時効
硬化処理)を必要としない固溶強化型の銅合金で、特に
屈曲特性、伸線加工特性に優れ、引張強さ、伸びにも優
れた、安価な銅合金を得ることができる。
According to the second aspect of the present invention, Mg produced by continuous casting is 0.05 to 0.25 wt% and Sn is less than 0.
1-0.6 wt%, P 0.02-0.08 wt%, I
n is 0.02 to 0.2 wt% and Co is 0.05 to 0.1
wt%, the balance is basically copper, and the content ratio of Mg and Sn is Mg: Sn = (1) :( 1.0 or more). 500-600
Complicated heat treatment process (solution treatment, age hardening treatment) by continuous annealing at ℃, wire drawing at a working rate of 85 to 95%, and final annealing at 350 to 450 ℃ It is possible to obtain an inexpensive copper alloy that is a solid solution strengthened copper alloy that does not require, and is particularly excellent in bending properties and wire drawing properties, and also in tensile strength and elongation.

【0015】[0015]

【実施例】以下、本願請求項1記載の発明に係る伸び特
性及び屈曲特性に優れた導電用高力銅合金の具体的実施
例について比較例、従来例と比較して説明する。本願請
求項1記載の発明の実施例として、不活性ガス雰囲気に
保たれたグラファイト製の坩堝炉で、黒鉛粒被覆下にて
電気銅地金を溶解した後、Mg,Sn,Inを純金属の
形態で、P,Coを母合金の形態で添加して均一な溶湯
を得る。これを連続鋳造により表1に示す如き各実施例
(No1〜No11)の組成の20mmφの鋳造棒を作製
した。これらを冷間圧延後、伸線機によって3.2mmφ
に伸線し、550℃で連続焼鈍した。これを、さらに伸
線機によって1.0mmφに伸線した後、不活性ガス雰囲
気の電気炉を用い、420℃で連続焼鈍した。その後、
導電率、引張強さ、伸び、屈曲性を測定した。
EXAMPLES Hereinafter, specific examples of the high-strength copper alloy for electroconductivity according to the invention of claim 1 of the present invention, which are excellent in the elongation property and the bending property, will be described in comparison with comparative examples and conventional examples. As an embodiment of the invention according to claim 1 of the present application, in a crucible furnace made of graphite kept in an inert gas atmosphere, Mg, Sn, In are pure metals after melting electrolytic copper metal under the graphite grain coating. In this form, P and Co are added in the form of a master alloy to obtain a uniform molten metal. This was continuously cast to produce a 20 mmφ cast rod having the composition of each of the examples (No. 1 to No. 11) shown in Table 1. After cold rolling these, 3.2mmφ by wire drawing machine
Was drawn and continuously annealed at 550 ° C. This was further drawn to a diameter of 1.0 mm by a wire drawing machine, and then continuously annealed at 420 ° C. using an electric furnace in an inert gas atmosphere. afterwards,
The electrical conductivity, tensile strength, elongation and flexibility were measured.

【0016】従来例1は、不活性ガス雰囲気に保たれた
グラファイト製の坩堝炉で、黒鉛粒被覆下にて電気銅地
金を溶解した後、Ni,Sn,Inを純金属の形態で、
Siを母合金の形態で添加して均一な溶湯を得る。これ
を連続鋳造により表1に示す如き組成の20mmφの鋳造
棒を作製した。これを冷間圧延後、伸線機によって3.
2mmφに伸線した後、不活性ガス雰囲気炉で900℃で
1時間加熱保持後、水冷し溶体化処理を施した。その
後、1.0mmφまで伸線し、さらに不活性ガス雰囲気炉
で470℃で6時間の時効硬化処理を行った。その後、
導電率、引張強さ、伸び、屈曲性を測定した。硬銅は通
常の無酸素銅線である。また、軟銅は通常の無酸素銅線
を不活性ガス雰囲気炉で300℃で2時間の焼鈍処理を
行った後、導電率、引張強さ、伸び、屈曲性を測定し
た。表2に比較例(No1〜No10)が示されてお
り、この各比較例は、実施例と同様の製造方法によって
製造されたものである。なお、表1、2に示される各連
続焼鈍機における焼鈍温度は、熱効率を90%と仮定し
て、焼鈍電圧(V)、焼鈍速度(m/分)、各銅合金線
の導体抵抗(Ω)から産出したものである。また、表
1、2に示される各銅合金のそれぞれについての屈曲性
試験は、図1に示す如く、治具1に供試材2を挟持し、
他端を2kgの引張荷重Wを加えた状態で図1に図示
(A)→(B)→(C)→(D)と左右90゜曲げを1
回として破断するまで、繰返し行い、その破断するまで
の曲げ回数で表した繰返し屈曲強度を屈曲性とした。な
お、比較例の合金No1〜No10は、組成がMg,S
n,P,Inと本発明の合金No1〜No11と同一の
組成成分で構成されているが、比較例合金の各組成の含
有量が本発明の各組成の含有量とは異なっている。
Conventional Example 1 is a graphite crucible furnace kept in an inert gas atmosphere, in which electrolytic copper ingots are melted under a graphite grain coating, and then Ni, Sn, In are in the form of pure metal.
Si is added in the form of a master alloy to obtain a uniform molten metal. This was continuously cast to produce a 20 mmφ cast rod having the composition shown in Table 1. After cold-rolling this, 3.
After wire drawing to 2 mmφ, it was heated and held at 900 ° C. for 1 hour in an inert gas atmosphere furnace, and then cooled with water to be subjected to solution treatment. After that, the wire was drawn to 1.0 mmφ, and further, an age hardening treatment was performed at 470 ° C. for 6 hours in an inert gas atmosphere furnace. afterwards,
The electrical conductivity, tensile strength, elongation and flexibility were measured. Hard copper is a normal oxygen-free copper wire. Further, for the annealed copper, an ordinary oxygen-free copper wire was annealed at 300 ° C. for 2 hours in an inert gas atmosphere furnace, and then the electrical conductivity, tensile strength, elongation and flexibility were measured. Comparative examples (No. 1 to No. 10) are shown in Table 2, and each comparative example is manufactured by the same manufacturing method as that of the example. As for the annealing temperature in each continuous annealing machine shown in Tables 1 and 2, assuming that the thermal efficiency is 90%, the annealing voltage (V), the annealing speed (m / min), the conductor resistance (Ω) of each copper alloy wire. ). Further, as shown in FIG. 1, the bending test for each of the copper alloys shown in Tables 1 and 2 was performed by sandwiching the test material 2 in the jig 1.
With the other end being subjected to a tensile load W of 2 kg, the left and right 90 ° bends are made as shown in FIG. 1 (A) → (B) → (C) → (D).
The test piece was repeatedly bent until it broke, and the repetitive bending strength expressed by the number of times of bending until rupture was defined as the flexibility. The alloys No. 1 to No. 10 of the comparative example have compositions of Mg and S.
Although it is composed of the same composition components as n, P, In and alloys No. 1 to No. 11 of the present invention, the content of each composition of the comparative example alloy is different from the content of each composition of the present invention.

【0017】[0017]

【表 1】 [Table 1]

【表 2】 表1の実施例(No1〜No11)は、従来例1のNi
−Si−In−Sn銅合金と比べて引張強さで若干劣る
が、導電率、伸び率、屈曲性(繰り返し屈曲強度)にお
いては良好な特性を有している。また、実施例(No1
〜No11)は、硬銅に比べると導電率は劣るものの引
張強さ、伸び率、屈曲性については大幅に向上している
ことが判る。
[Table 2] The examples (No. 1 to No. 11) in Table 1 are Ni of the conventional example 1.
Although it is slightly inferior in tensile strength to the -Si-In-Sn copper alloy, it has good characteristics in electrical conductivity, elongation and flexibility (repetitive flexural strength). In addition, the embodiment (No1
It can be seen that Nos. 11 to 11) have inferior electrical conductivity as compared with hard copper, but have significantly improved tensile strength, elongation and flexibility.

【0018】さらに、実施例(No1〜No11)は、
屈曲性に優れる軟銅と比較すると、屈曲性が軟銅と同等
以上の特性を有していることが判る。このように、表1
の実施例(No1〜No11)は、各従来例と比較する
と総合的に各従来例よりも優れた特性を有していること
が判る。
Further, in the examples (No1 to No11),
It can be seen that as compared with annealed copper, which has excellent flexibility, the flexibility has characteristics equal to or greater than those of annealed copper. Thus, Table 1
It can be understood that the examples (No. 1 to No. 11) of (1) to (11) have comprehensively superior characteristics as compared with the conventional examples.

【0019】表2の比較例(No1〜No10)は、次
のようなものである。比較例1は、Mgの添加量が上限
以上であり、引張強さは良好であるが、導電率、伸び
率、屈曲性が低下する。また、Mg:Snの比率が1:
1.0以下のため伸線機における伸線加工性が悪化す
る。比較例2は、Mgの添加量が下限以下のため、引張
強さ、伸び率が大幅に劣る。比較例3は、Snの添加量
が上限以上であり、引張強さは良好であるが、導電率、
伸び率及び屈曲性が著しく劣る。比較例4は、Snの添
加量が下限以下のため、導電率は良好であるが、引張強
さ、伸び率、屈曲性が大幅に劣る。また、Mg:Snの
比率が1:1.0以下のため伸線機における伸線加工性
が悪化する。比較例5は、Pの添加量が上限以上のた
め、導電率が大幅に劣る。比較例6は、Pの添加量が下
限以下のため、導電率は良好であるが、伸線機における
伸線加工性が悪化する。比較例7は、Inの添加量が上
限以上のため、引張強さは良好であるが、導電率が著し
く劣る。比較例8は、Inの添加量が下限以下のため、
引張強さが劣る。比較例9は、Coの添加量が上限以上
のため、導電率が大幅に劣る。比較例10は、Coの添
加量が下限以下のため、伸び率及び屈曲性が劣る。
Comparative examples (No. 1 to No. 10) in Table 2 are as follows. In Comparative Example 1, the added amount of Mg is not less than the upper limit and the tensile strength is good, but the conductivity, the elongation rate, and the flexibility are lowered. Further, the ratio of Mg: Sn is 1 :.
Since it is 1.0 or less, the wire drawing workability in the wire drawing machine is deteriorated. In Comparative Example 2, the addition amount of Mg is less than or equal to the lower limit, so that the tensile strength and the elongation rate are significantly inferior. In Comparative Example 3, the added amount of Sn is not less than the upper limit and the tensile strength is good, but the conductivity,
The elongation and flexibility are extremely poor. In Comparative Example 4, since the amount of Sn added is not more than the lower limit, the electrical conductivity is good, but the tensile strength, the elongation rate, and the flexibility are significantly poor. Further, since the ratio of Mg: Sn is 1: 1.0 or less, the wire drawing workability of the wire drawing machine is deteriorated. In Comparative Example 5, since the amount of P added is not less than the upper limit, the conductivity is significantly inferior. In Comparative Example 6, since the amount of P added is not more than the lower limit, the conductivity is good, but the wire drawing workability in the wire drawing machine deteriorates. In Comparative Example 7, since the amount of In added is not less than the upper limit, the tensile strength is good, but the conductivity is significantly poor. In Comparative Example 8, since the amount of In added is equal to or less than the lower limit,
Poor tensile strength. In Comparative Example 9, since the amount of Co added is not less than the upper limit, the conductivity is significantly inferior. In Comparative Example 10, since the amount of Co added is not more than the lower limit, the elongation rate and the flexibility are inferior.

【0020】したがって、本発明に係る伸び特性及び屈
曲特性に優れた導電用高力銅合金の実施例によれば、自
動車用電線の導体に適した特性を有し、導体外径の小
型、軽量化に対応した機械的強度を確保し、圧着端子部
における引張り及び屈曲による断線を減少させることが
できる。また、本実施例によれば、製造コストも安価に
することができる。
Therefore, according to the embodiment of the high-strength copper alloy for electric conduction which is excellent in the elongation property and the bending property according to the present invention, it has the properties suitable for the conductor of the electric wire for automobiles, the outer diameter of the conductor is small and the weight is light. It is possible to secure the mechanical strength corresponding to the increase in the number of wires and reduce the disconnection due to the pulling and bending in the crimp terminal portion. Further, according to this embodiment, the manufacturing cost can be reduced.

【0021】次に、本願請求項2記載の発明に係る伸び
特性及び屈曲特性に優れた導電用高力銅合金の製造方法
の実施例について比較例と比較して説明する。請求項2
記載の発明に係る伸び特性及び屈曲特性に優れた導電用
高力銅合金の製造方法は、連続鋳造によって作製したM
gを0.05〜0.25wt%、Snを0.1〜0.6
wt%、Pを0.02〜0.08wt%、Inを0.0
2〜0.2wt%、Coを0.05〜0.1wt%含有
し、残部が基本的に銅からなり、前記MgとSnの含有
比が、 Mg:Sn=(1):(1.0以上) である銅合金の鋳造棒を圧延、伸線後に500〜600
℃で連続焼鈍し、その後に85〜95%の加工率で伸線
し、最終熱処理を350〜450℃で連続焼鈍して製造
するものである。
Next, an example of a method for producing a high-strength copper alloy for electrical conduction having excellent elongation and bending characteristics according to the present invention will be described in comparison with a comparative example. Claim 2
The manufacturing method of the high-strength copper alloy for electric conduction excellent in the elongation property and the bending property according to the described invention is M manufactured by continuous casting.
g is 0.05 to 0.25 wt%, Sn is 0.1 to 0.6
wt%, P 0.02 to 0.08 wt%, In 0.0
2 to 0.2 wt%, Co of 0.05 to 0.1 wt% and the balance basically made of copper, and the content ratio of Mg and Sn is Mg: Sn = (1) :( 1.0 Above) is a copper alloy casting rod, which is 500 to 600 after rolling and wire drawing.
It is manufactured by continuously annealing at 0 ° C, drawing at a working rate of 85 to 95%, and finally annealing at 350 to 450 ° C for final heat treatment.

【0022】連続鋳造で作製した鋳造棒を、圧延、伸線
後に連続焼鈍するのは、圧延及び伸線での加工組織を回
復させ、最終熱処理で引張強さを低下することなく伸び
及び屈曲性を向上させるためである。そして、連続焼鈍
の焼鈍温度を500〜600℃としたのは、焼鈍温度が
500℃を下回る温度では圧延及び伸線での加工組織を
十分回復させることができないために最終熱処理で伸び
が十分に向上せず、焼鈍温度が600℃を超えると焼鈍
処理中の変色が著しく、線材としての巻き取り張力の調
整が困難となるためである。また、500〜600℃焼
鈍した後に伸線するのは、最終熱処理で引張強さを大幅
に低下させることなく、伸び及び屈曲性を向上させるた
めである。そして、この伸線の加工率を85〜95%に
したのは、加工率が85%を下回ると、最終熱処理後に
おいて十分な引張強さが確保できず、95%を超える加
工率では最終熱処理後において伸び及び屈曲性が十分に
向上しないためである。さらに、連続焼鈍して最終熱処
理を施すのは、伸び及び屈曲性を向上するためである。
そして、この連続焼鈍の焼鈍温度を350〜450℃と
したのは、焼鈍温度が350℃を下回る温度では伸びが
十分に向上せず、450℃を超える焼鈍温度では引張強
さが低下するためである。
The continuous annealing of the cast rod produced by continuous casting after rolling and wire drawing restores the work structure in rolling and wire drawing, and the elongation and bendability of the final heat treatment without lowering the tensile strength. Is to improve. And, the annealing temperature of the continuous annealing is set to 500 to 600 ° C., because the working structure in rolling and wire drawing cannot be sufficiently recovered at a temperature where the annealing temperature is lower than 500 ° C. If the annealing temperature is not improved and the annealing temperature exceeds 600 ° C., the discoloration during the annealing treatment is remarkable, and it becomes difficult to adjust the winding tension as a wire rod. Further, the reason why wire drawing is performed after annealing at 500 to 600 ° C. is to improve elongation and flexibility without significantly reducing tensile strength in the final heat treatment. And, the processing rate of this wire drawing is set to 85 to 95% because when the processing rate is less than 85%, sufficient tensile strength cannot be secured after the final heat treatment, and when the processing rate exceeds 95%, the final heat treatment is performed. This is because the elongation and flexibility are not sufficiently improved later. Further, the reason why the continuous annealing is performed and the final heat treatment is performed is to improve elongation and flexibility.
And the reason why the annealing temperature of this continuous annealing is 350 to 450 ° C. is that the elongation does not sufficiently improve at a temperature below 350 ° C. and the tensile strength decreases at an annealing temperature above 450 ° C. is there.

【0023】このような伸び特性及び屈曲特性に優れた
導電用高力銅合金の製造法によって製造した導電用高力
銅合金の実施例と比較例とが表3に示されている。表3
における実施例(No12)と比較例(No11〜No
15)とは組成成分が同一でその製造方法を変えたもの
である。
Table 3 shows examples and comparative examples of the conductive high-strength copper alloy manufactured by the manufacturing method of the conductive high-strength copper alloy excellent in the elongation property and the bending property. Table 3
Example (No12) and Comparative Examples (No11 to No)
In 15), the composition components are the same but the manufacturing method is changed.

【0024】[0024]

【表 3】 実施例12は表1の実施例11と同一の組成を有し、同
一の製造方法によって製造されたものである。すなわ
ち、実施例12は、不活性ガス雰囲気に保たれたグラフ
ァイト製の坩堝炉で、黒鉛粒被覆下にて電気銅地金を溶
解した後、Mg,Sn,Inを純金属の形態で、P,C
oを母合金の形態で添加して均一な溶湯を得、これを連
続鋳造により20mmφの鋳造棒を作製し、さらに冷間圧
延後、伸線機によって3.2mmφに伸線し、550℃で
連続焼鈍した後、伸線機によって1.0mmφに伸線し、
不活性ガス雰囲気の電気炉を用い、420℃で連続焼鈍
して製造したものである。この導電用高力銅合金の線材
について、各特性試験を行った結果、導電率が63.8
%IACS、引張強さが55.2kg/mm2 、伸び率が9.0
%、屈曲性が48回となっている。
[Table 3] Example 12 has the same composition as Example 11 in Table 1 and was manufactured by the same manufacturing method. That is, Example 12 is a graphite crucible furnace kept in an inert gas atmosphere, in which electrolytic copper ingot is melted under the graphite grain coating, and Mg, Sn, In are added in the form of pure metal, and P , C
O was added in the form of a mother alloy to obtain a uniform molten metal, which was continuously cast to form a 20 mmφ casting rod, which was further cold-rolled and then drawn to 3.2 mmφ by a wire drawing machine at 550 ° C. After continuous annealing, draw wire to 1.0mmφ by wire drawing machine,
It was manufactured by continuous annealing at 420 ° C. using an electric furnace in an inert gas atmosphere. As a result of conducting various characteristic tests on the wire material of the high-strength copper alloy for electroconductivity, the electric conductivity was 63.8.
% IACS, tensile strength 55.2 kg / mm 2 , elongation rate 9.0
%, The flexibility is 48 times.

【0025】比較例11は、中間焼鈍温度が350℃と
焼鈍温度範囲(500〜600℃)の下限値以下であ
り、中間焼鈍によって圧延及び伸線での加工組織を十分
回復させることができないため、最終焼鈍で引張強さを
低下させることなく、伸び率が7.2%と実施例12の
ように向上させることができない。比較例12は、中間
焼鈍から最終焼鈍までの伸線加工率が75%と加工率範
囲(85〜95%)の下限値以下であり、引張強さが4
8.2kg/mm2 と最終熱処理後において伸線加工による
引張強さの向上が十分に得られない。比較例13は、中
間焼鈍から最終焼鈍までの伸線加工率が99%と加工率
範囲の上限値以上であり、最終焼鈍で引張強さが57.
4kg/mm2 と低下させることはないが、伸び率が7.0
%、屈曲性が40回と向上させることができない。
In Comparative Example 11, the intermediate annealing temperature is 350 ° C., which is lower than the lower limit value of the annealing temperature range (500 to 600 ° C.), and the work structure in rolling and wire drawing cannot be sufficiently restored by the intermediate annealing. However, the elongation ratio was 7.2% and could not be improved as in Example 12 without lowering the tensile strength in the final annealing. In Comparative Example 12, the wire drawing work ratio from the intermediate annealing to the final annealing is 75%, which is less than or equal to the lower limit of the work ratio range (85 to 95%), and the tensile strength is 4 or less.
After the final heat treatment of 8.2 kg / mm 2 , improvement in tensile strength due to wire drawing cannot be sufficiently obtained. In Comparative Example 13, the wire drawing work ratio from the intermediate annealing to the final annealing is 99%, which is equal to or higher than the upper limit value of the work ratio range, and the tensile strength in the final annealing is 57.
It does not decrease to 4kg / mm 2 , but the elongation is 7.0.
%, The flexibility cannot be improved to 40 times.

【0026】比較例14は、最終焼鈍温度が320℃と
焼鈍温度範囲(350〜450℃)の下限値以下であ
り、引張強さは56.4kg/mm2 と良好であるが、焼鈍
効果が得られず、伸び率が4.8%、屈曲性が36回と
向上しない。比較例15は、最終焼鈍温度が500℃と
焼鈍温度範囲の上限値以上であり、導電率が67.4%
IACS、伸び率が9.4%、屈曲性が49回と良好である
が、引張強さが44.8kg/mm2 と大幅に低下してしま
う。
In Comparative Example 14, the final annealing temperature was 320 ° C., which was lower than the lower limit of the annealing temperature range (350 to 450 ° C.), and the tensile strength was good at 56.4 kg / mm 2 , but the annealing effect was good. Not obtained, the elongation is 4.8%, and the flexibility is 36 times, which is not improved. In Comparative Example 15, the final annealing temperature is 500 ° C., which is equal to or higher than the upper limit of the annealing temperature range, and the electrical conductivity is 67.4%.
The IACS and elongation are 9.4% and the flexibility is 49 times, which is good, but the tensile strength is significantly reduced to 44.8 kg / mm 2 .

【0027】このように本実施例によれば、溶体化処
理、時効処理等の複雑な熱処理工程を省略することがで
き、溶体化処理に対する中間焼鈍及び時効処理に対する
最終焼鈍ともに、電線製造工程で通常使用されている連
続焼鈍機を用いた2回の熱処理で実施することができ、
硬銅以上の引張強さを有し、導電率は若干低下するが、
軟銅よりも優れた屈曲性を有し、従来のNi−Si−I
n−Sn銅合金と比べても、引張強さは低下するが伸び
率、導電率、屈曲性が優れ、添加元素もNi−Si−I
n−Sn銅合金と比べ廉価であり、製造工程も簡素化す
ることができる。
As described above, according to this embodiment, complicated heat treatment steps such as solution treatment and aging treatment can be omitted, and both the intermediate annealing for solution treatment and the final annealing for aging treatment can be performed in the wire manufacturing process. It can be carried out by two heat treatments using a commonly used continuous annealing machine,
It has a tensile strength higher than that of hard copper, and its conductivity decreases slightly,
It has better flexibility than annealed copper and has the conventional Ni-Si-I
The tensile strength is lower than that of the n-Sn copper alloy, but the elongation, conductivity, and flexibility are excellent, and the additive element is Ni-Si-I.
It is cheaper than the n-Sn copper alloy and the manufacturing process can be simplified.

【0028】[0028]

【発明の効果】請求項1記載の発明によれば、Mgを
0.05〜0.25wt%、Snを0.1〜0.6wt
%、Pを0.02〜0.08wt%、Inを0.02〜
0.2wt%、Coを0.05〜0.1wt%含有し、
残部を基本的に銅によって構成し、MgとSnの含有比
を、(1):(1.0以上)にしてあるため、複雑な熱
処理工程を必要とせず、導電率の低下を招かないで屈曲
性、伸び特性、引張強さを向上して械的衝撃に対し高強
度を保ち、圧着端子部における屈曲による断線を減少さ
せた導電用高力銅合金を安価に製造することができる。
According to the invention of claim 1, 0.05 to 0.25 wt% of Mg and 0.1 to 0.6 wt% of Sn are used.
%, P 0.02-0.08 wt%, In 0.02-
0.2 wt%, containing 0.05-0.1 wt% Co,
Since the balance is basically made of copper and the content ratio of Mg and Sn is (1) :( 1.0 or more), a complicated heat treatment step is not required and the conductivity is not lowered. It is possible to inexpensively manufacture a high-strength copper alloy for electric conduction, which has improved flexibility, elongation property, and tensile strength, maintains high strength against mechanical impact, and has reduced disconnection due to bending in the crimp terminal portion.

【0029】請求項2記載の発明によれば、Mgを0.
05〜0.25wt%、Snを0.1〜0.6wt%、
Pを0.02〜0.08wt%、Inを0.02〜0.
2wt%、Coを0.05〜0.1wt%含有し、残部
を基本的に銅によって構成し、MgとSnの含有比を、
(1):(1.0以上)にした銅合金を、連続鋳造によ
って作製した鋳造棒を圧延、伸線後に500〜600℃
で連続焼鈍し、その後に85〜95%の加工率で伸線
し、最終熱処理を350〜450℃で連続焼鈍して製造
することにより、複雑な熱処理工程(溶体化処理、時効
硬化処理)を必要としない固溶強化型の銅合金で、特に
屈曲特性、伸線加工特性に優れ、引張強さ、伸びにも優
れた、安価な銅合金を得ることができる。
According to the second aspect of the present invention, the Mg content of 0.
05-0.25wt%, Sn 0.1-0.6wt%,
P is 0.02 to 0.08 wt%, In is 0.02 to 0.
2 wt%, 0.05 to 0.1 wt% Co, and the balance basically composed of copper, and the content ratio of Mg and Sn is
(1): A copper alloy made to be (1.0 or more) is continuously cast, and a cast rod is rolled and drawn at 500 to 600 ° C.
By continuous annealing, then wire drawing at a working rate of 85-95%, and continuous annealing at the final heat treatment at 350-450 ° C to produce a complicated heat treatment step (solution treatment, age hardening treatment). It is an unnecessary solid solution strengthened copper alloy, and it is possible to obtain an inexpensive copper alloy having excellent bending properties, wire drawing properties, tensile strength and elongation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例及び比較例、従来例の屈曲試験
方法を示す図である。
FIG. 1 is a diagram showing a bending test method of an example of the present invention, a comparative example, and a conventional example.

【符号の説明】[Explanation of symbols]

1……………………………………治具 2……………………………………供試材 1 …………………………………… Jig 2 …………………………………… Test material

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成7年2月13日[Submission date] February 13, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】[0017]

【表 1】 [Table 1]

【表 2】 表1の実施例(No1〜No11)は、従来例1のNi
−Si−In−Sn銅合金と比べて引張強さで若干劣る
が、導電率、伸び率、屈曲性(繰り返し屈曲強度)にお
いては良好な特性を有している。また、実施例(No1
〜No11)は、硬銅に比べると導電率は劣るものの引
張強さ、伸び率、屈曲性については大幅に向上している
ことが判る。
[Table 2] The examples (No. 1 to No. 11) in Table 1 are Ni of the conventional example 1.
Although it is slightly inferior in tensile strength to the -Si-In-Sn copper alloy, it has good characteristics in electrical conductivity, elongation and flexibility (repetitive flexural strength). In addition, the embodiment (No1
It can be seen that Nos. 11 to 11) have inferior electrical conductivity as compared with hard copper, but have significantly improved tensile strength, elongation and flexibility.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mgを0.05〜0.25wt%、Sn
を0.1〜0.6wt%、Pを0.02〜0.08wt
%、Inを0.02〜0.2wt%、Coを0.05〜
0.1wt%含有し、残部が基本的に銅からなり、前記
MgとSnの含有比が、 Mg:Sn=(1):(1.0以上) である伸び特性及び屈曲特性に優れた導電用高力銅合
金。
1. Mg-0.05-0.25 wt%, Sn
0.1 to 0.6 wt%, P 0.02 to 0.08 wt
%, In 0.02 to 0.2 wt%, Co 0.05 to
0.1 wt% content, the balance being basically copper, and the content ratio of Mg and Sn is Mg: Sn = (1) :( 1.0 or more), which is excellent in elongation property and bending property. High strength copper alloy for use.
【請求項2】 Mgを0.05〜0.25wt%、Sn
を0.1〜0.6wt%、Pを0.02〜0.08wt
%、Inを0.02〜0.2wt%、Coを0.05〜
0.1wt%含有し、残部が基本的に銅からなり、前記
MgとSnの含有比が、 Mg:Sn=(1):(1.0以上) である銅合金を連続鋳造によって作製した鋳造棒を圧
延、伸線後に500〜600℃で連続焼鈍し、その後に
85〜95%の加工率で伸線し、最終熱処理を350〜
450℃で連続焼鈍して製造する伸び特性及び屈曲特性
に優れた導電用高力銅合金の製造方法。
2. Mg-0.05-0.25 wt%, Sn
0.1 to 0.6 wt%, P 0.02 to 0.08 wt
%, In 0.02 to 0.2 wt%, Co 0.05 to
Casting made by continuous casting of a copper alloy containing 0.1 wt% and the balance being basically copper, and the content ratio of Mg and Sn is Mg: Sn = (1) :( 1.0 or more) After rolling and drawing, the bar is continuously annealed at 500 to 600 ° C., then drawn at a working rate of 85 to 95%, and finally heat treated at 350 to
A method for producing a high-strength copper alloy for electrical conduction, which is produced by continuous annealing at 450 ° C. and has excellent elongation and bending characteristics.
JP25403194A 1994-10-20 1994-10-20 High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same Expired - Fee Related JP3302840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25403194A JP3302840B2 (en) 1994-10-20 1994-10-20 High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25403194A JP3302840B2 (en) 1994-10-20 1994-10-20 High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08120368A true JPH08120368A (en) 1996-05-14
JP3302840B2 JP3302840B2 (en) 2002-07-15

Family

ID=17259282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25403194A Expired - Fee Related JP3302840B2 (en) 1994-10-20 1994-10-20 High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same

Country Status (1)

Country Link
JP (1) JP3302840B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027640A (en) * 2006-07-19 2008-02-07 Yazaki Corp Electric wire for automobile using highly strengthened copper alloy wire
EP2246448A1 (en) * 2008-02-26 2010-11-03 Mitsubishi Shindoh Co., Ltd. High-strength high-conductive copper wire rod
US10266917B2 (en) 2003-03-03 2019-04-23 Mitsubishi Shindoh Co., Ltd. Heat resistance copper alloy materials
US10311991B2 (en) 2009-01-09 2019-06-04 Mitsubishi Shindoh Co., Ltd. High-strength and high-electrical conductivity copper alloy rolled sheet and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10266917B2 (en) 2003-03-03 2019-04-23 Mitsubishi Shindoh Co., Ltd. Heat resistance copper alloy materials
JP2008027640A (en) * 2006-07-19 2008-02-07 Yazaki Corp Electric wire for automobile using highly strengthened copper alloy wire
EP2246448A1 (en) * 2008-02-26 2010-11-03 Mitsubishi Shindoh Co., Ltd. High-strength high-conductive copper wire rod
EP2246448A4 (en) * 2008-02-26 2014-07-02 Mitsubishi Shindo Kk High-strength high-conductive copper wire rod
US10163539B2 (en) 2008-02-26 2018-12-25 Mitsubishi Shindoh Co., Ltd. High strength and high conductivity copper alloy rod or wire
US10311991B2 (en) 2009-01-09 2019-06-04 Mitsubishi Shindoh Co., Ltd. High-strength and high-electrical conductivity copper alloy rolled sheet and method of manufacturing the same

Also Published As

Publication number Publication date
JP3302840B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
US20100294534A1 (en) Conductor wire for electronic apparatus and electrical wire for wiring using the same
US4755235A (en) Electrically conductive precipitation hardened copper alloy and a method for manufacturing the same
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
JP2844120B2 (en) Manufacturing method of copper base alloy for connector
JPH05311283A (en) Cu alloy extra fine wire excellent in wire drawability and repeated bendability
JP2001262255A (en) Copper based alloy bar for terminal and its producing method
JP2001032029A (en) Copper alloy excellent in stress relaxation resistance, and its manufacture
JP2790238B2 (en) Method for producing titanium copper alloy excellent in bending property and stress relaxation property
JPH0428838A (en) High strength and high conductivity copper alloy excellent in bending resistance
JPH08120368A (en) High-tensile conductive copper alloy excellent in elongation property and bendability and its production
JPH0987814A (en) Production of copper alloy for electronic equipment
JPS6328971B2 (en)
JP3333654B2 (en) High-strength copper alloy for electric conduction excellent in elongation characteristics and bending characteristics, and method for producing the same
JPH0718355A (en) Copper alloy for electronic appliance and its production
EP0399070A1 (en) Electrical conductors based on Cu-Fe-P alloys
JPH0995747A (en) High tensile conductive copper alloy excellent in drawability and bendability and its production
JP2813652B2 (en) High strength copper alloy for conductive
JP2594250B2 (en) Copper base alloy for connector and method of manufacturing the same
JPH0565571B2 (en)
JPH07331362A (en) High strength conductive copper alloy excellent in bendability and wire drawability
JPH07268573A (en) Production of high strength and high conductivity copper alloy for electronic equipment
JP2000273561A (en) Copper base alloy for terminal and its production
JPH0355532B2 (en)
JP3381817B2 (en) High strength copper alloy for electric wire conductor and method for producing electric wire conductor
JP2804966B2 (en) High strength copper alloy for conductive

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees