JPS61106738A - Conductive spring material - Google Patents

Conductive spring material

Info

Publication number
JPS61106738A
JPS61106738A JP22849984A JP22849984A JPS61106738A JP S61106738 A JPS61106738 A JP S61106738A JP 22849984 A JP22849984 A JP 22849984A JP 22849984 A JP22849984 A JP 22849984A JP S61106738 A JPS61106738 A JP S61106738A
Authority
JP
Japan
Prior art keywords
conductive spring
spring material
properties
conductivity
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22849984A
Other languages
Japanese (ja)
Other versions
JPS634889B2 (en
Inventor
Kazutake Ikushima
生嶋 一丈
Koji Iwatate
岩立 孝治
Shuhei Ishikawa
修平 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP22849984A priority Critical patent/JPS61106738A/en
Priority to US06/776,454 priority patent/US4692192A/en
Priority to EP85307773A priority patent/EP0180443B1/en
Priority to DE8585307773T priority patent/DE3575230D1/en
Publication of JPS61106738A publication Critical patent/JPS61106738A/en
Publication of JPS634889B2 publication Critical patent/JPS634889B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a conductive spring material having superior characteristic of spring as well as conductivity at low cost, by incorporating specific percentage of Ni, Be, and Si to Cu. CONSTITUTION:The Cu alloy consisting of, by weight ratio, 1.8-3.0% Ni, 0.15-0.35% Be, 0.2-1.2% Si, and the balance Cu with inevitable impurities is manufactured. In this way, the conductive spring manufactured at reduced material cost, gaining high strength and bending formability and having improved property of relaxation of stress can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はコネクター、スイッチ、リレーなどの電気機器
用材料として用いられる導電性とばね特性に優れた低コ
ストの導電ばね材料に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a low-cost conductive spring material with excellent conductivity and spring properties that is used as a material for electrical equipment such as connectors, switches, and relays.

(従来の技術) 導電性とばね特性とに優れた導電ばね材料として代表的
なものは、JISに2種又は3種として規定されている
5、5〜9.0%(重量%、以下同じ)のSnと0.0
3〜0.3%のPとを含むりん青銅であるが、最近の小
型化され高い信顛性が求められる電子部品として使用す
るには導電性、曲げ成形性、応力弛緩特性等が不十分で
あること等の理由により改善要求が高まっている。また
、これらの要求を満足する導電ばね材料のひとつとして
公称組成でCu −0,4%B e −1,8%Niの
合金があるが、Beが高価であるため材料価格が高価な
ものとなる欠点があった。
(Prior art) Typical conductive spring materials with excellent conductivity and spring properties are 5.5 to 9.0% (by weight, hereinafter the same), which is specified as Type 2 or Type 3 in JIS. ) and 0.0
Phosphor bronze contains 3 to 0.3% P, but its conductivity, bending formability, stress relaxation properties, etc. are insufficient for use in recent miniaturized electronic components that require high reliability. Demand for improvement is increasing for reasons such as the following. In addition, one of the conductive spring materials that satisfies these requirements is an alloy with a nominal composition of Cu-0.4%Be-1.8%Ni, but since Be is expensive, the material cost is high. There was a drawback.

(発明が解決しようとする問題点) 本発明は上記のような従来の問題点を解決し、従来のC
u −0,4%B e −1,8%Ni合金の優れた特
性を維持しつつ高価なりeを減少させてコストパーフォ
ーマンスの優れた導電ばね材料を提供することを目的と
して完成されたものである。
(Problems to be solved by the invention) The present invention solves the conventional problems as described above, and
u -0.4% B e -1.8% This was completed with the aim of providing a conductive spring material with excellent cost performance by reducing the cost and e while maintaining the excellent characteristics of the alloy. It is.

(問題点を解決するため7の手段) 本発明は重量比で1.8〜3.0%のNiと、0.15
〜0.35%のBeと、0.2〜1.2%のSiと、残
部Cuおよび不可避的な不純物とからなるものであり、
より好ましくは2.0〜2.8%のNiと、0.20〜
0.25%のBeと、0.3〜1.0%のSiと、残部
Cuおよび不可避的な不純物とからなることを特徴とす
るものである。即ち、本発明は価格引き下げのためにB
e量を減少させたことによる強度の低下をNi量の増加
とSiの添加で補うとともに、I3e量の減少を図るう
えで問題となる溶体化処理時の結晶粒成長をNi量を1
.8〜3.0%とすることにより有効に抑制できるとの
新規な知見に基いて完成さたものであり、強度およびば
ね特性が従来のばね用りん青銅と同等あるいはそれ以上
であり、特に機械的強度、曲げ成形性、応力弛緩性、導
電性に優れた低価格の導電ばね材料を実現したものであ
る。
(Means of 7 for solving the problem) The present invention includes Ni of 1.8 to 3.0% by weight and 0.15% of Ni by weight.
It consists of ~0.35% Be, 0.2~1.2% Si, the balance Cu and unavoidable impurities,
More preferably 2.0-2.8% Ni and 0.20-2.8% Ni
It is characterized by consisting of 0.25% Be, 0.3 to 1.0% Si, and the remainder Cu and unavoidable impurities. That is, the present invention provides B
In addition to compensating for the decrease in strength due to decreasing the amount of e by increasing the amount of Ni and adding Si, we also reduced the amount of Ni to 1 to reduce grain growth during solution treatment, which is a problem in reducing the amount of I3e.
.. It was developed based on the new knowledge that it can be effectively suppressed by setting the content of phosphor bronze to 8 to 3.0%, and its strength and spring properties are equal to or higher than those of conventional phosphor bronze for springs. This has resulted in a low-cost conductive spring material with excellent mechanical strength, bending formability, stress relaxation properties, and conductivity.

次に各合金成分の含有率の限定理由を説明すると、Ni
は1.8%未満ではBe量の減少に伴う溶体化処理時の
結晶粒の粗大化を防止できないために応力弛緩特性の向
上が得られず、また3、0%を超えると添加量増加に見
合う特性向上がないばかりか材料の圧延加工性や曲げ成
形性を阻害するた1.1      め1・8〜3・0
%の範囲としたもので・特に2・θ〜□:”(2,a%
の範囲が最適である。Beは0.15%未満では析出硬
化性が小さくなるとともに溶体化処理時の結晶粒の粗大
化が防止できなくなり、0.35%を超えると材料価格
引下げの効果が小さくなるため0.15〜0.35%の
範囲としたもので、特に0.20〜0.25%の範囲が
最適である。SiはBe量の減少に伴う強度低下を補う
ために重要な成分であり、0.2%未満ではその効果が
顕著ではなく、1.2%を超えると圧延加工性と導電性
が阻害されるので0.2〜1.2%、特に0.3〜1.
0%の範囲が好適なものである。またSiを0.2〜1
.2%の範囲で添加することにより合金の鋳造性、スラ
グ分離性、耐酸化性も大きく改善され、製造コストの低
減にも寄与することができる。
Next, to explain the reason for limiting the content of each alloy component, Ni
If it is less than 1.8%, the coarsening of crystal grains during solution treatment due to the decrease in Be content cannot be prevented, so no improvement in stress relaxation properties can be obtained, and if it exceeds 3.0%, the amount added will increase. 1.1 1.8 to 3.0 because not only does it not improve properties commensurately, it also impairs the rolling workability and bending formability of the material.
% range・Especially 2・θ~□:”(2,a%
The range of is optimal. If Be is less than 0.15%, precipitation hardenability decreases and coarsening of crystal grains during solution treatment cannot be prevented, and if it exceeds 0.35%, the effect of reducing material prices will be reduced, so it should be 0.15~ The content is set in the range of 0.35%, and the range of 0.20 to 0.25% is particularly optimal. Si is an important component to compensate for the decrease in strength due to the decrease in Be content, and if it is less than 0.2%, its effect is not significant, and if it exceeds 1.2%, rolling workability and conductivity are inhibited. Therefore, 0.2 to 1.2%, especially 0.3 to 1.
A range of 0% is preferred. Also, Si is 0.2 to 1
.. By adding within the range of 2%, the castability, slag separation properties, and oxidation resistance of the alloy are greatly improved, and it can also contribute to reducing manufacturing costs.

(実施例) 第1表に示される実施例1〜5の合金および比較6〜9
の合金(比較例9は従来のばね用りん青銅)を高周波誘
導炉で溶解鋳造し、熱間鍛造、熱間圧延を経て焼鈍、冷
間圧延を繰返し0.2 wの板″″1・6°゛0“14
41理、ThLr900”C”ffl      、。
(Example) Alloys of Examples 1 to 5 and Comparisons 6 to 9 shown in Table 1
(Comparative Example 9 is conventional phosphor bronze for springs) was melted and cast in a high-frequency induction furnace, hot forged, hot rolled, annealed, and cold rolled repeatedly to form a 0.2 w plate''1.6''. °゛0“14
41 Logic, ThLr900"C"ffl,.

5分間加熱後水中冷却する処理を行い、更に37%の圧
延を行った後に400℃で2時間の時効処理を施して緒
特性を測定した。その結果を第2表に示す。ここで応力
弛緩特性は試験片に40 kg f/鶴2の最大曲げ応
力を作用させ、200″Cで100時間保持後に荷重を
解除して残留応力を測定し、その応力残留率で評価した
。曲げ成形性はクランクを生じない最小曲げ半径Rと板
厚tの比R/lで評価した。なお、θ″は圧延方向にお
ける特性値を、90°は圧延方向に直角方向の特性値を
示す。
After heating for 5 minutes and cooling in water, the material was further rolled by 37% and then aged at 400° C. for 2 hours, and its properties were measured. The results are shown in Table 2. Here, the stress relaxation properties were evaluated by applying a maximum bending stress of 40 kg f/Tsuru 2 to the test piece, holding it at 200''C for 100 hours, releasing the load, measuring the residual stress, and measuring the residual stress rate. Bending formability was evaluated by the ratio R/l of the minimum bending radius R that does not cause cranking and the plate thickness t. Note that θ″ indicates the characteristic value in the rolling direction, and 90° indicates the characteristic value in the direction perpendicular to the rolling direction. .

第1表      (重量%) (発明の効果) 本発明は以上の実施例による説明からも明らかなように
、高価なりeの含有率を従来のCu −0゜4%B e
 −1,8%Ni合金より大幅に引き下げて材料価格の
低減を図るとともに、これと同等以上の高い強度と、曲
げ成形性を達成したものであり、また比較例9として示
されている従来のばね用りん青銅の特性と対比して特に
90°方向の成形性が著しく優れ、導電率、応力弛緩特
性についても極めて優れたものである。よって本発明は
従来の導電ばね材料の問題点を解決したものとして産業
の発展に寄与するところは極めて大である。
Table 1 (Weight %) (Effects of the Invention) As is clear from the explanation using the above embodiments, the present invention is more expensive than the conventional Cu -0°4% B e content.
-The material price is significantly lower than that of the 1.8% Ni alloy, and it also achieves high strength and bending formability equivalent to or higher than that of the conventional Ni alloy, as shown in Comparative Example 9. Compared to the properties of phosphor bronze for springs, it has particularly excellent formability in the 90° direction, and is also extremely excellent in electrical conductivity and stress relaxation properties. Therefore, the present invention greatly contributes to the development of industry as it solves the problems of conventional conductive spring materials.

手続補正書(自発) 昭和60年7月11日 昭和59年特許願第228499号 2、発明の名称 導電ばね材料 3、補正をする者 事件との関係 特許出願人 住所  愛知県名古屋市瑞穂区須田町2番56号4、代
理人 5、補正の対象 6、補正の内容 +11、明細書第3頁第14行に、「応力弛緩特性」と
あるは、「機械的緒特性」と補正する。
Procedural amendment (voluntary) July 11, 1985 Patent Application No. 228499 2, Name of the invention Conductive spring material 3, Relationship with the case by the person making the amendment Patent applicant address Suda, Mizuho Ward, Nagoya City, Aichi Prefecture Town 2 No. 56 No. 4, Agent 5, Subject of amendment 6, Contents of amendment + 11, On page 3, line 14 of the specification, "stress relaxation characteristics" shall be amended to read "mechanical stress characteristics."

(2)、明細書第4頁第4行に、「補うために」とある
は、「補い、伸び、成形性および応力弛緩特性を改善す
るために」と補正する。
(2) On page 4, line 4 of the specification, the phrase "to compensate" is amended to read "to compensate, to improve elongation, formability, and stress relaxation properties."

(3)、明細書第4頁第16行に、r 0.2 ** 
Jとあるは、rO,32tmJと補正する。
(3), page 4, line 16 of the specification, r 0.2 **
J is corrected as rO, 32tmJ.

(4)、明細書第5頁第1表中の比較例8にr 1.5
 Jとあるは、r 1.8 Jに、ro、30Jとある
は、ro、40Jとそれぞれ補正する。
(4) r 1.5 in Comparative Example 8 in Table 1 on page 5 of the specification.
J is corrected to r 1.8 J, and ro and 30J are corrected to ro and 40J, respectively.

(5)、明細書第6頁第2表中の実施例1に「78」と
あるは、「84」に、実施例2に「82」とあるは、「
90」に、実施例3に「83」とあるは、「95」にそ
れぞれ補正する。
(5) In Table 2 on page 6 of the specification, "78" in Example 1 is replaced with "84", and "82" in Example 2 is replaced with "84".
"90" and "83" in Example 3 are respectively corrected to "95".

(6)、明細書第7頁第6行に、「達成した」とあるは
、「達成し、さらに、応力弛緩特性を改善し」と補正す
る。
(6) On page 7, line 6 of the specification, the phrase "achieved" is amended to read "achieved and further improved stress relaxation properties."

以上 −23七that's all -237

Claims (1)

【特許請求の範囲】[Claims] 重量比で1.8〜3.0%のNiと、0.15〜0.3
5%のBeと、0.2〜1.2%のSiと、残部Cuお
よび不可避的な不純物とからなる導電ばね材料
1.8-3.0% Ni and 0.15-0.3% by weight
Conductive spring material consisting of 5% Be, 0.2 to 1.2% Si, and the balance Cu and unavoidable impurities
JP22849984A 1984-10-30 1984-10-30 Conductive spring material Granted JPS61106738A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22849984A JPS61106738A (en) 1984-10-30 1984-10-30 Conductive spring material
US06/776,454 US4692192A (en) 1984-10-30 1985-09-16 Electroconductive spring material
EP85307773A EP0180443B1 (en) 1984-10-30 1985-10-28 Electroconductive spring material
DE8585307773T DE3575230D1 (en) 1984-10-30 1985-10-28 ELECTRICALLY CONDUCTIVE ELASTIC MATERIAL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22849984A JPS61106738A (en) 1984-10-30 1984-10-30 Conductive spring material

Publications (2)

Publication Number Publication Date
JPS61106738A true JPS61106738A (en) 1986-05-24
JPS634889B2 JPS634889B2 (en) 1988-02-01

Family

ID=16877407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22849984A Granted JPS61106738A (en) 1984-10-30 1984-10-30 Conductive spring material

Country Status (1)

Country Link
JP (1) JPS61106738A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199742A (en) * 1986-02-27 1987-09-03 Ngk Insulators Ltd High strength copper alloy and its manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123862A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Manufacture of copper alloy for lead material for semiconductor apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123862A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Manufacture of copper alloy for lead material for semiconductor apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62199742A (en) * 1986-02-27 1987-09-03 Ngk Insulators Ltd High strength copper alloy and its manufacture
JPH036214B2 (en) * 1986-02-27 1991-01-29 Ngk Insulators Ltd

Also Published As

Publication number Publication date
JPS634889B2 (en) 1988-02-01

Similar Documents

Publication Publication Date Title
JPS6167738A (en) Improved copper base alloy having strength and conductivity in combination
JPS5853057B2 (en) Highly conductive copper-based alloy
JPH06184679A (en) Copper alloy for electrical parts
EP0180443B1 (en) Electroconductive spring material
JP2790238B2 (en) Method for producing titanium copper alloy excellent in bending property and stress relaxation property
US3930894A (en) Method of preparing copper base alloys
JPH03111529A (en) High-strength and heat-resistant spring copper alloy
US4242131A (en) Copper base alloy containing manganese and iron
US4242132A (en) Copper base alloy containing manganese and nickle
JPS61106738A (en) Conductive spring material
JPS6296638A (en) Aluminum alloy for lead frame
JPS61170534A (en) Electrically conductive spring material
JPS61170533A (en) Electrically conductive spring material
JPS63213628A (en) Copper alloy for fuse
JPS6142772B2 (en)
US5215711A (en) Age-hardening type special Cu alloy
JPS63230837A (en) Copper alloy for fuse
JPS59136439A (en) Copper base alloy
JPH0379417B2 (en)
JPS5821018B2 (en) Copper alloy for high strength conductivity with good heat resistance
JPS62185847A (en) High strength copper alloy for high thermal and electric conductivity use and its production
JPS6311418B2 (en)
JPS6164841A (en) Material for conductive spring
JPS5989743A (en) High-strength copper alloy with high electric conductivity
JPH01119635A (en) Spring material having electric conductivity