JPS62199742A - High strength copper alloy and its manufacture - Google Patents

High strength copper alloy and its manufacture

Info

Publication number
JPS62199742A
JPS62199742A JP4385886A JP4385886A JPS62199742A JP S62199742 A JPS62199742 A JP S62199742A JP 4385886 A JP4385886 A JP 4385886A JP 4385886 A JP4385886 A JP 4385886A JP S62199742 A JPS62199742 A JP S62199742A
Authority
JP
Japan
Prior art keywords
alloy
strength
strength copper
based alloy
cold working
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4385886A
Other languages
Japanese (ja)
Other versions
JPH036214B2 (en
Inventor
Shuhei Ishikawa
修平 石川
Koji Iwatate
岩立 孝治
Kazuo Ikushima
生嶋 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4385886A priority Critical patent/JPS62199742A/en
Publication of JPS62199742A publication Critical patent/JPS62199742A/en
Publication of JPH036214B2 publication Critical patent/JPH036214B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a Cu alloy for an electrically conductive spring material having superior strength and electric conductivity by solidifying a molten Cu alloy contg. specified amounts of Be, Ni and Si by rapid cooling, cold working the solidified alloy and carrying out age precipitation. CONSTITUTION:A molten Cu alloy consisting of, by weight, 0.15-1.0% Ba, 0.5-6.0% Ni, 0.2-0.9%.Si and the balance Cu and having 1:(2.8-3.2):(0.8-1.2) atomic ratio of Be:Ni:Si is rapidly cooled at >=500 deg.C/sec cooling rate to form a thin plate having a fine solidified structure of 0.2-25mum grain size. The thin plate is cold worked at <=95% rate, subjected to annealing or soln. heat treatment at 550-1,000 deg.C, cold worked again at <=80% rate and aged at 250-550 deg.C to uniformly precipitate an intermetallic compound. Thus, a Cu alloy for an electrically conductive spring material having >100kg/mm<2> tensile strength, >350 Vickers hardness and superior electric conductivity is manufactured at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は導電ばね材料に好適な強度と導電性とに優れた
高強度銅基合金の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a high-strength copper-based alloy having excellent strength and conductivity and suitable for use as a conductive spring material.

(従来の技術) 強度と導電性とに優れた導電ばね材料として代表的なも
のは、JIS H3130ニ合金番号C1720トして
定められている1、8 %Be、0,25%CO1残部
C,uの析出硬化型の合金があるが、高価なりeを多量
に含有するために地合せ価格が極めて高くなるという欠
点があった。一方、Cuをベースとし、B、Si 、 
P、 Ge、 Te等の半金属元素と、Be又はSとを
加えた合金を溶融状態から急冷凝固して粒度0.5〜1
5μmの急冷凝固組織とすることにより導電性、強度、
硬度等を向上させるという新しい試みが特公昭60−4
311195号公報に示されている。ところがこの合金
は多量の半金属元素を含むために導電性が悪いこと、硬
度及び強度が不十分であること、伸びが小さく脆いため
曲げ成形性に劣ること等の理由から、導電ばね材料とし
ては実用性に乏し〈従来の析出硬化型のCu −Be合
金よりも劣るものであった。
(Prior art) Typical conductive spring materials with excellent strength and conductivity include 1.8% Be, 0.25% CO, balance C, and JIS H3130 alloy number C1720. There is a precipitation hardening type alloy of u, but it has the disadvantage that it is expensive and the preparation price is extremely high because it contains a large amount of e. On the other hand, based on Cu, B, Si,
An alloy containing metalloid elements such as P, Ge, and Te and Be or S is rapidly solidified from a molten state to a particle size of 0.5 to 1.
By forming a rapidly solidified structure of 5 μm, conductivity, strength,
A new attempt to improve hardness etc. was made in 1986-4.
It is shown in the publication No. 311195. However, this alloy has poor conductivity because it contains a large amount of metalloid elements, insufficient hardness and strength, and poor bending formability due to low elongation and brittleness, so it cannot be used as a conductive spring material. It lacks practicality and is inferior to conventional precipitation hardening type Cu-Be alloys.

(発明が解決しようとする問題点) 本発明はこのような従来の問題点を解決し、Beの含有
率を低くして地合せ価格を安価なものとするとともに、
嘗冷凝固法を利用してNi織の微細化を図り、しかも硬
度、強度、導電性等の導電ばね材に要求される特性を十
分に満足することができる高強度銅基合金及びその製造
方法を目的として完成されたものである。
(Problems to be Solved by the Invention) The present invention solves these conventional problems, lowers the Be content, lowers the combined price, and
A high-strength copper-based alloy and a method for producing the same, which utilize a cold solidification method to refine the Ni weave and sufficiently satisfy the properties required for conductive spring materials such as hardness, strength, and conductivity. It was completed with the purpose of

(問題点を解決するための手段) 本願第1の発明はBe 0.15〜1.0%(重量%、
以下同じ) 、Ni 0.5〜6.0%、Si 0.2
〜0.9 %、残部Cu及び不可避的不純物からなる急
冷凝固組織中に、加工により析出サイトを増加させ時効
処理後の析出物を均一に分散させてビッカース硬度30
0以上の硬度を持たせたことを特徴とするものであり、
また本願第2の発明はBe 0.15〜1.0 %、N
 t O、5〜6 、0%、S i 0 、2〜0 、
9%、残部Cu及び不 ・可避的不純物からなる合金を
溶融状態から急冷凝固して結晶粒度が0.2〜25μm
の急冷凝固組織としたのち、95%以下の冷間加工を行
い、更に時効析出処理により金属間化合物を均一に析出
させたことを特徴とするものである。
(Means for solving the problem) The first invention of the present application contains Be 0.15 to 1.0% (wt%,
(same below), Ni 0.5-6.0%, Si 0.2
~0.9%, the balance Cu and unavoidable impurities in the rapidly solidified structure, the number of precipitation sites is increased by processing, and the precipitates after aging are uniformly dispersed, resulting in a Vickers hardness of 30.
It is characterized by having a hardness of 0 or more,
In addition, the second invention of the present application contains Be 0.15 to 1.0%, N
tO, 5-6, 0%, Si0, 2-0,
An alloy consisting of 9% Cu, the balance Cu and unavoidable impurities is rapidly solidified from a molten state to a crystal grain size of 0.2 to 25 μm.
After forming a rapidly solidified structure, cold working is performed to 95% or less, and an intermetallic compound is uniformly precipitated by aging precipitation treatment.

本発明は、上記のように時効析出挙動を呈するCu  
Be  Ni−Si合金を溶融状態から急冷凝固させる
ことにより平衡凝固によっては不可能な過剰量のBe、
 Nl、 Si等の溶質原子をマトリックス中に固溶さ
せた極めて微細な急冷凝固組織を得たうえ、これに冷間
加工を加えて加工欠陥を金属組織中に生成させ、更にこ
れを時効析出処理して多量の金属間化合物を均一微細に
析出させることにより硬度、強度、曲げ成形性を高める
ことに成功したものである。次に本発明の各構成要件に
ついて更に具体的に説明する。
The present invention provides Cu exhibiting aging precipitation behavior as described above.
By rapidly cooling and solidifying the Be Ni-Si alloy from a molten state, an excessive amount of Be, which cannot be achieved by equilibrium solidification, can be obtained.
After obtaining an extremely fine rapidly solidified structure in which solute atoms such as Nl and Si are dissolved in the matrix, this is subjected to cold working to generate processing defects in the metal structure, and then subjected to aging precipitation treatment. By uniformly and finely precipitating a large amount of intermetallic compounds, we succeeded in increasing hardness, strength, and bending formability. Next, each component of the present invention will be explained in more detail.

本発明の銅基合金中Beは析出硬化性を生ぜしめるため
の基本的な元素であり、0.15%未満では析出硬化性
が不十分で機械的強度の向上が得られず、逆に1.0%
を越えると地合せ価格が上昇して本発明の目的が達成さ
れなくなるとともに、急冷凝固法によっても全体がマト
リックス中に固溶できなくなり、含有量増加に見合った
合金特性向上効果が得られないので0.15〜1.0%
の範囲とするもので、特に0.4〜0.8%の範囲が最
適である。次にNiもBeと同様に析出硬化性を付与す
るための元素であって、0.5%未満では析出硬化性が
不十分であり、6.0%を越えると急冷凝固時にマトリ
ックス中に固溶できない部分が生ずるうえ導電率を悪化
させるので0.5〜6.0%とすることが必要で、特に
2.0〜5.0%の範囲が好ましいものである。またS
iはNiとともに金属間化合物を析出させて高価なりe
を増加させることなく機械的強度を向上させるために有
効であるのみならず、合金のSh造性、スラグ分離性、
耐酸化性等を向上させるためにも重要な元素であり、少
なくとも0.2%以上が必要とされるが0.9%を越え
ると導電性及び圧延加工性を著しく悪化させるため、0
.2〜0.9%、特に好ましくは0.4〜0.8 %と
される。これらのBe、 Nis Siは強化に寄与す
る金属間化合物の化学量論的組成に近付けるため、原子
比を1:2.8〜3.2  :o、s〜1.2の範囲と
することが好ましい。
Be in the copper-based alloy of the present invention is a basic element for producing precipitation hardenability, and if it is less than 0.15%, precipitation hardenability is insufficient and mechanical strength cannot be improved; .0%
If it exceeds this amount, the formation price will increase and the object of the present invention will not be achieved, and even if the rapid solidification method is used, the whole will not be able to be solidly dissolved in the matrix, and the effect of improving alloy properties commensurate with the increase in content will not be obtained. 0.15-1.0%
The range is preferably 0.4% to 0.8%. Next, like Be, Ni is also an element that imparts precipitation hardenability, and if it is less than 0.5%, precipitation hardenability is insufficient, and if it exceeds 6.0%, it will solidify in the matrix during rapid solidification. Since insoluble portions are generated and the conductivity is deteriorated, it is necessary to set the content to 0.5 to 6.0%, and a range of 2.0 to 5.0% is particularly preferable. Also S
i causes intermetallic compounds to precipitate together with Ni, making it expensive.
Not only is it effective for improving mechanical strength without increasing the
It is an important element for improving oxidation resistance, etc., and is required to be present at least 0.2%, but if it exceeds 0.9%, the conductivity and rolling workability will be significantly deteriorated.
.. The content is preferably 2 to 0.9%, particularly preferably 0.4 to 0.8%. In order to bring these Be and Nis Si closer to the stoichiometric composition of the intermetallic compound that contributes to strengthening, the atomic ratio can be set in the range of 1:2.8 to 3.2:o, s to 1.2. preferable.

このような合金は溶融状態から例えば回転ローラ間に流
し込む等の方法によって500 ℃/秒を越す高速度で
瞬時に冷却固化される。このような急冷凝固の結果、結
晶粒度が0.2〜25μmの微細な急冷凝固組織が得ら
れるとともに、前述したとおリBe、 Ni、 Si等
の元素は平衡冷却によっては到底固溶できない多くの分
量がマトリ・ノクス中に固溶し、強化に寄与しない粗大
析出物をほとんど生しない。本発明においてはこの組織
に圧延等により95%以下の冷間加工を加えて組織内に
加工欠陥を生成させ、更に必要に応じて550〜100
0℃の溶体化処理と80%以下の冷間加工とを加えたの
ち、250〜500℃で時効析出処理を行う。これらの
処理によって急冷凝固組織中には加工による析出サイト
が増加してBes Nis Stの金属間化合物が均一
微細に析出し、後の実施例のデータにも示すとおり材料
の硬度がビッカース硬度で300以上となるほか、引張
強度、曲げ加工性等が著しく向上する。
Such an alloy is instantaneously cooled and solidified from a molten state at a high rate of over 500° C./second by, for example, being poured between rotating rollers. As a result of such rapid solidification, a fine rapidly solidified structure with a grain size of 0.2 to 25 μm is obtained, and as mentioned above, there are many elements such as Be, Ni, and Si that cannot be dissolved in solid form by equilibrium cooling. The amount is solidly dissolved in Matri Nox, and hardly any coarse precipitates that do not contribute to strengthening are formed. In the present invention, this structure is subjected to cold working of 95% or less by rolling or the like to generate processing defects within the structure, and if necessary,
After adding solution treatment at 0°C and cold working to 80% or less, aging precipitation treatment is performed at 250 to 500°C. Through these treatments, the number of precipitation sites due to processing increases in the rapidly solidified structure, and the Bes Nis St intermetallic compound precipitates uniformly and finely, and as shown in the data of the later examples, the hardness of the material increased to 300 on the Vickers hardness scale. In addition to the above, tensile strength, bending workability, etc. are significantly improved.

特に本発明においては急冷凝固法により過剰量のBe、
 Ni、 Si元素をマトリックス中に固溶させである
ため、時効析出処理により短時間で均一かつ微細な金属
間化合物が一斉に析出することとなり、硬度、強度、曲
げ加工性等を著しく向上させることができる。また本発
明においては溶体化処理を行った場合にも、急冷凝固法
により固溶されたBe、Ni、 Siが結晶粒成長を効
果的に抑制し、最終組織の粒度は25μmを越えること
はない。
In particular, in the present invention, an excessive amount of Be,
Since Ni and Si elements are dissolved in the matrix, uniform and fine intermetallic compounds are precipitated all at once in a short time by aging precipitation treatment, which significantly improves hardness, strength, bending workability, etc. I can do it. Furthermore, in the present invention, even when solution treatment is performed, Be, Ni, and Si dissolved in solid solution by the rapid solidification method effectively suppress grain growth, and the grain size of the final structure does not exceed 25 μm. .

なお、冷間加工の程度を95%以下としたのは、組織中
に加工欠陥を十分に生じさせるために必要なためであり
、また結晶粒度を0.2〜2.5 μmとしたのは、0
.2 μm未満の結晶を生じさせることは困難であり、
逆に25μmを越えると延性や曲げ成形性が低下するか
らである。
The degree of cold working was set to 95% or less because it was necessary to sufficiently generate processing defects in the structure, and the grain size was set to 0.2 to 2.5 μm. ,0
.. It is difficult to produce crystals smaller than 2 μm;
On the other hand, if it exceeds 25 μm, ductility and bending formability will decrease.

このように本発明の合金は低ベリリウムであるにもかか
わらず硬度、強度に優れ、しかも組織が緻密であるため
延性及び曲げ成形性に優れるうえ、導電性を阻害する元
素や粗大析出物をほとんど含まないので導電ばね材料と
して好適な高い導電性を有するものである。
As described above, the alloy of the present invention has excellent hardness and strength despite its low beryllium content, and has a dense structure that provides excellent ductility and bending formability. Since it does not contain carbon, it has high conductivity suitable as a conductive spring material.

(実施例) 第1表に示される磁1〜隘7の種々の組成の合金を高速
で回転するローラ間に噴き出し、500 °C/秒以上
の速度で溶融状態から急冷凝固して厚さ0.35m■の
薄板を作成した。これを第1表中にa、b、c、d等の
記号で示す処理工程により処理したうえでビッカース硬
さ、引張強度、伸び、導電率を測定し同表に記した。ま
た第2表は合金組成が本発明の範囲を外れた合金につき
、第1表に示したと同様に処理した場合の測定値を示し
たもので、第2表中のfill−11h14は従来技術
として引用した特公昭60−43895号の範囲内のも
のである。
(Example) Alloys with various compositions of magnets 1 to 7 shown in Table 1 are jetted between rollers rotating at high speed, and rapidly solidified from a molten state at a speed of 500 °C/second or more to a thickness of 0. A thin plate of .35 m was made. These were treated in the treatment steps indicated by symbols a, b, c, d, etc. in Table 1, and their Vickers hardness, tensile strength, elongation, and electrical conductivity were measured and recorded in the same table. In addition, Table 2 shows the measured values for alloys whose alloy compositions are outside the range of the present invention when treated in the same manner as shown in Table 1. Fill-11h14 in Table 2 is a conventional technology. This is within the scope of the cited Japanese Patent Publication No. 60-43895.

なお、a % hの記号で示した処理工程の内容は第3
表にまとめて示した。
In addition, the contents of the processing steps indicated by symbols a % h are the contents of the third
They are summarized in the table.

第1表 第2表 第3表(7)界工肋 (発明の効果) 本発明は以上の説明からも明らかなように、Be含有量
を低くして地合せ価格を引下げるとともに、急冷凝固と
冷間加工と時効析出処理の組合せにより硬度、強度、導
電性、曲げ成形性等の導電ばね材料に要求される緒特性
をバランス良く向上させることに成功したものであるか
ら、従来のCu −Be合金及び従来の急冷凝固合金の
問題点を一掃したものとして、産業の発展に寄与すると
ころは極めて大きいものである。
Table 1 Table 2 Table 3 (7) Field construction (effects of the invention) As is clear from the above explanation, the present invention lowers the Be content to lower the formation price, and also improves rapid solidification. The combination of cold working and aging precipitation treatment has succeeded in improving the properties required for conductive spring materials, such as hardness, strength, conductivity, and bending formability, in a well-balanced manner. As it eliminates the problems of Be alloys and conventional rapidly solidified alloys, it will greatly contribute to the development of industry.

Claims (1)

【特許請求の範囲】 1、Be0.15〜1.0%(重量%、以下同じ)、N
i0.5〜6.0%、Si0.2〜0.9%、残部Cu
及び不可避的不純物からなる急冷凝固組織中に、加工に
よる析出サイトを増加させ時効処理後の析出物を均一微
細に分散させてビッカース硬度300以上の硬度を持た
せたことを特徴とする高強度銅基合金。 2、Be、Ni、Siの含有量をBe0.4〜0.8%
、Ni2.0〜5.0%、Si0.4〜0.8%とした
特許請求の範囲第1項記載の高強度銅基合金。 3、Be、Ni、Siの原子比を1:2.8〜3.2:
0.8〜1.2とした特許請求の範囲第1項記載の高強
度銅基合金。 4、引張強度が100kg/mm^2以上、ビッカース
硬度が350以上である特許請求の範囲第1項記載の高
強度銅基合金。 5、Be0.15〜1.0%、Ni0.5〜6.0%、
Si0.2〜0.9%、残部Cu及び不可避的不純物か
らなる合金を溶融状態から急冷凝固して結晶粒度が0.
2〜25μmの急冷凝固組織としたのち、95%以下の
冷間加工を行い、更に時効析出処理により金属間化合物
を均一微細に析出させたことを特徴とする高強度銅基合
金の製造方法。 6、急冷凝固を500℃/秒以上の速度で行う特許請求
の範囲第5項記載の高強度銅基合金の製造方法。 7、冷間加工ののち、550〜1000℃の焼鈍又は溶
体化処理と80%以下の冷間加工を行ったうえ250〜
550℃で時効析出処理を行う特許請求の範囲第5項記
載の高強度銅基合金の製造方法。
[Claims] 1. Be 0.15-1.0% (weight %, same hereinafter), N
i0.5-6.0%, Si0.2-0.9%, balance Cu
A high-strength copper characterized by having a hardness of 300 or more on the Vickers hardness scale by increasing the number of precipitation sites through processing and uniformly and finely dispersing the precipitates after aging treatment in the rapidly solidified structure consisting of unavoidable impurities. Base alloy. 2. Be, Ni, Si content: Be0.4-0.8%
, 2.0 to 5.0% Ni, and 0.4 to 0.8% Si. 3. The atomic ratio of Be, Ni, and Si is 1:2.8 to 3.2:
The high-strength copper-based alloy according to claim 1, wherein the strength is 0.8 to 1.2. 4. The high-strength copper-based alloy according to claim 1, which has a tensile strength of 100 kg/mm^2 or more and a Vickers hardness of 350 or more. 5, Be0.15-1.0%, Ni0.5-6.0%,
An alloy consisting of 0.2 to 0.9% Si, the remainder Cu, and unavoidable impurities is rapidly solidified from a molten state to a grain size of 0.9%.
A method for producing a high-strength copper-based alloy, characterized in that after forming a rapidly solidified structure of 2 to 25 μm, cold working is performed to 95% or less, and further, intermetallic compounds are uniformly and finely precipitated by aging precipitation treatment. 6. The method for producing a high-strength copper-based alloy according to claim 5, wherein the rapid solidification is performed at a rate of 500° C./second or more. 7. After cold working, perform annealing or solution treatment at 550 to 1000°C and cold working to 80% or less, and then
The method for producing a high-strength copper-based alloy according to claim 5, wherein the aging precipitation treatment is performed at 550°C.
JP4385886A 1986-02-27 1986-02-27 High strength copper alloy and its manufacture Granted JPS62199742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4385886A JPS62199742A (en) 1986-02-27 1986-02-27 High strength copper alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4385886A JPS62199742A (en) 1986-02-27 1986-02-27 High strength copper alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS62199742A true JPS62199742A (en) 1987-09-03
JPH036214B2 JPH036214B2 (en) 1991-01-29

Family

ID=12675400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4385886A Granted JPS62199742A (en) 1986-02-27 1986-02-27 High strength copper alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS62199742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018873A1 (en) * 1994-01-06 1995-07-13 Ngk Insulators, Ltd. Beryllium copper alloy having high strength, machinability and heat resistance and production method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314612A (en) * 1976-07-28 1978-02-09 Toshiba Corp Lead wire
JPS58123862A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Manufacture of copper alloy for lead material for semiconductor apparatus
JPS58123846A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Lead material for semiconductor apparatus
JPS59145746A (en) * 1983-12-13 1984-08-21 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor apparatus
JPS59145747A (en) * 1983-12-13 1984-08-21 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor apparatus
JPS61106738A (en) * 1984-10-30 1986-05-24 Ngk Insulators Ltd Conductive spring material
JPS61119660A (en) * 1984-11-16 1986-06-06 Nippon Mining Co Ltd Manufacture of copper alloy having high strength and electric conductivity
JPS62120451A (en) * 1985-11-21 1987-06-01 Nippon Mining Co Ltd Copper alloy for press fit pin

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5314612A (en) * 1976-07-28 1978-02-09 Toshiba Corp Lead wire
JPS58123862A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Manufacture of copper alloy for lead material for semiconductor apparatus
JPS58123846A (en) * 1982-01-20 1983-07-23 Nippon Mining Co Ltd Lead material for semiconductor apparatus
JPS59145746A (en) * 1983-12-13 1984-08-21 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor apparatus
JPS59145747A (en) * 1983-12-13 1984-08-21 Nippon Mining Co Ltd Copper alloy for lead material of semiconductor apparatus
JPS61106738A (en) * 1984-10-30 1986-05-24 Ngk Insulators Ltd Conductive spring material
JPS61119660A (en) * 1984-11-16 1986-06-06 Nippon Mining Co Ltd Manufacture of copper alloy having high strength and electric conductivity
JPS62120451A (en) * 1985-11-21 1987-06-01 Nippon Mining Co Ltd Copper alloy for press fit pin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018873A1 (en) * 1994-01-06 1995-07-13 Ngk Insulators, Ltd. Beryllium copper alloy having high strength, machinability and heat resistance and production method thereof
US5824167A (en) * 1994-01-06 1998-10-20 Ngk Insulators, Ltd. Beryllium-copper alloy excellent in strength, workability and heat resistance and method for producing the same

Also Published As

Publication number Publication date
JPH036214B2 (en) 1991-01-29

Similar Documents

Publication Publication Date Title
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
JP4677505B1 (en) Cu-Ni-Si-Co-based copper alloy for electronic materials and method for producing the same
JPH0625388B2 (en) High strength, high conductivity copper base alloy
KR20050050654A (en) Age-hardening copper-base alloy and processing
US4466939A (en) Process of producing copper-alloy and copper alloy plate used for making electrical or electronic parts
JP5451674B2 (en) Cu-Si-Co based copper alloy for electronic materials and method for producing the same
JP3408021B2 (en) Copper alloy for electronic and electric parts and method for producing the same
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
JPH05171331A (en) High strength magnesium-base alloy
JPS62199743A (en) High strength copper alloy and its manufacture
JP2534073B2 (en) Copper alloy for electronic component construction and method for producing the same
JP2909089B2 (en) Maraging steel and manufacturing method thereof
GB1569466A (en) Method of obtaining precipitation hardened copper base alloys
JP3346861B2 (en) High strength copper alloy
JP2956696B1 (en) High strength and high conductivity copper alloy and its processing method
JPS62199742A (en) High strength copper alloy and its manufacture
JP3407054B2 (en) Copper alloy with excellent heat resistance, strength and conductivity
JPH03140444A (en) Manufacture of beryllium copper alloy member
JP5252722B2 (en) High strength and high conductivity copper alloy and method for producing the same
JP4158337B2 (en) Method for producing chromium-zirconium-based copper alloy for continuous casting mold
JPH02194142A (en) Al-base alloy powder for sintering
JPS5924177B2 (en) Square hysteresis magnetic alloy
JP3407527B2 (en) Copper alloy materials for electronic equipment
JPS61143564A (en) Manufacture of high strength and highly conductive copper base alloy
JPH0285330A (en) Copper alloy having good press bendability and its manufacture