JPH07258803A - Production of titanium-copper alloy excellent in bendability and stress relaxation property - Google Patents

Production of titanium-copper alloy excellent in bendability and stress relaxation property

Info

Publication number
JPH07258803A
JPH07258803A JP5234294A JP5234294A JPH07258803A JP H07258803 A JPH07258803 A JP H07258803A JP 5234294 A JP5234294 A JP 5234294A JP 5234294 A JP5234294 A JP 5234294A JP H07258803 A JPH07258803 A JP H07258803A
Authority
JP
Japan
Prior art keywords
alloy
heat treatment
grain size
less
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5234294A
Other languages
Japanese (ja)
Other versions
JP2790238B2 (en
Inventor
Motoki Wakamatsu
基貴 若松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP5234294A priority Critical patent/JP2790238B2/en
Publication of JPH07258803A publication Critical patent/JPH07258803A/en
Application granted granted Critical
Publication of JP2790238B2 publication Critical patent/JP2790238B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the alloy having high strength, comparable to Cu-Be alloy, by strictly specifying the proportion of Ti in a Cu-Ti alloy and regulating crystalline grain size by applying solution heat treatment prior to each cold rolling performed twice under specific conditions. CONSTITUTION:A copper alloy, having a composition consisting of, by weight, 0.01-4.0% Ti and the balance Cu, is subjected to solution heat treatment at >=800 deg.C for <=240sec under the heat treatment conditions where average crystalline grain size does not exceed 20mum. Then, cold rolling is done at <80% draft. Subsequently, a second solution heat treatment is done at >=800 deg.C for <=240sec under the heat treatment conditions where average crystalline grain size is 1-20mum. Then, a second cold rolling is done at <=50% draft. Further, aging treatment is done at 300-700 deg.C for 1-<15hr. Moreover, 0.05-2.0% Zn and 0.01-3.0%, in total, of one or more elements among Cr, Zr, Fe, Ni, Sn, In, Mn, P, and Si can further be incorporated into the above alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、曲げ性および応力緩和
特性に優れたチタン銅合金の製造方法に関するものであ
り、さらに詳しく述べるならば、各種端子、コネクタ
ー、リレーまたはスイッチなどの電子部品を始めとする
良好な曲げ性が要求され、かつ高いばね性が要求される
あらゆる分野の製品の製造に利用されるチタン銅合金の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium-copper alloy excellent in bendability and stress relaxation characteristics, and more specifically, it will be used for various electronic parts such as terminals, connectors, relays or switches. The present invention relates to a method for producing a titanium-copper alloy which is used for producing products in all fields in which good bendability is required and high spring properties are required.

【0002】[0002]

【従来の技術】電子機器の各種端子、コネクター、リレ
ーまたはスイッチなどの電気伝導性とばね性が必要な材
料には従来、コスト面を重視する用途では安価な「黄
銅」が適用され、ばね特性が重視される用途ではりん青
銅が適用され、あるいはばね特性と耐食性が重視される
用途では洋白が適用されていた。
2. Description of the Related Art Conventionally, for materials that require electrical conductivity and spring properties, such as various terminals, connectors, relays, and switches of electronic equipment, inexpensive "brass" has been used for cost-sensitive applications, and spring characteristics Phosphor bronze was used in applications where is important, or nickel silver is used in applications where spring characteristics and corrosion resistance are important.

【0003】ところが、近年、電子機器類およびその部
品の小型化・薄肉化傾向に伴って、これらの材料は強度
を必ずしも満足できるとは言えないため、ベリリウム銅
(以下「Cu−Be合金」と称す)やチタン銅(以下
「Cu−Ti合金」と称す)など高強度を有する高級ば
ね材の需要が増えている。
However, in recent years, with the trend toward miniaturization and thinning of electronic devices and parts thereof, these materials cannot always be said to have sufficient strength, and therefore beryllium copper (hereinafter referred to as "Cu-Be alloy"). There is an increasing demand for high-grade spring materials having high strength such as titanium) (hereinafter referred to as “Cu-Ti alloy”) and titanium copper (hereinafter referred to as “Cu—Ti alloy”).

【0004】特公平2−49379号公報は、Ti:
0.1〜3.0%,Si:0.03〜1.5%、Ti/
Si重量比率が2〜4の組成を有し、Ti−Si系金属
間化合物をCuマトリックス中に分散析出したCu−T
i合金を、鋳片(鋳塊)の熱間圧延、熱延仕上温度から
急冷することによるTiおよびSiの完全固溶、冷間圧
延、Ti−Si系金属間化合物を析出させる焼鈍、延性
および折り曲げ性を改良するテンションアニールを順次
行うことにより製造している。
Japanese Patent Publication No. 2-49379 discloses Ti:
0.1-3.0%, Si: 0.03-1.5%, Ti /
Cu-T having a composition in which the Si weight ratio is 2 to 4 and in which a Ti-Si based intermetallic compound is dispersed and precipitated in a Cu matrix.
i alloy is hot-rolled into a slab (ingot), complete solid solution of Ti and Si by quenching from hot-rolling finishing temperature, cold-rolling, annealing for precipitating Ti-Si based intermetallic compound, ductility and It is manufactured by sequentially performing tension annealing to improve the bendability.

【0005】[0005]

【発明が解決しようとする課題】近年、電子機器類およ
びその部品の軽薄短小化はますます進んでいるため、材
料の強度や曲げ性に対する要求は厳しくなっている。C
u−Be合金では、このような厳しい曲げの要求に対応
するために、溶体化処理状態で強度の曲げ加工を行い、
その後に熱処理を施して強度を得る方法を実施している
が、この方法では材料を使用する電子部品メーカー側で
熱処理工程を行わなければならない。従って、電子部品
メーカー側としては曲げ加工後に熱処理工程の必要がな
い材料を提供するように要求が高まっており、今後の更
なる部品軽薄短小化に伴いこの要求は一層高まることが
予想される。また、Cu−Be合金は高い強度を有して
いるが、ベリリウムに強い有毒性があり特殊な製造設備
を必要とすることから価格が高価であるという欠点を有
している。
In recent years, electronic devices and their parts are becoming lighter, thinner, shorter, and smaller, so that the requirements for the strength and bendability of materials are becoming strict. C
In the u-Be alloy, in order to meet such a severe bending requirement, strong bending is performed in a solution treatment state,
After that, a method of performing heat treatment to obtain strength is carried out, but in this method, the heat treatment step must be performed by the electronic component manufacturer using the material. Therefore, electronic component manufacturers are increasingly required to provide materials that do not require a heat treatment step after bending, and it is expected that this requirement will further increase as the components become lighter and thinner. Further, although the Cu-Be alloy has high strength, it has a drawback that the price is expensive because beryllium is highly toxic and requires special manufacturing equipment.

【0006】前掲特公平2−49379号公報で提案さ
れるCu−Ti−Si合金は引張強さが約54〜61k
g/mm2 であり、導電率が約37〜50%IACSで
ある。(折り)曲げ性に関しては良好な結果を得ている
が、Cu−Be合金に匹敵する材料で得られたものでは
ない。
The Cu-Ti-Si alloy proposed in Japanese Patent Publication No. 2-49379 mentioned above has a tensile strength of about 54 to 61 k.
g / mm @ 2 and conductivity of about 37-50% IACS. Although good results have been obtained with respect to (folding) bendability, it is not obtained with a material comparable to the Cu-Be alloy.

【0007】そこで、本発明者等はCu−Ti合金の曲
げ性と強度を改善するため、その結晶粒径および冷間圧
延と溶体化処理の回数に注目して鋭意研究を重ねた結
果、Cu−Ti合金の平均結晶粒径を1〜20μmに調
整することによって強度と曲げ性が改善されることが明
らかになった。すなわち本発明は、Cu−Ti合金の曲
げ性と強度を改善した高強度銅合金の製造方法を提供す
るものである。
[0007] Therefore, the present inventors have conducted intensive studies in order to improve the bendability and strength of the Cu-Ti alloy, paying attention to the crystal grain size and the number of times of cold rolling and solution treatment, and as a result, Cu It was revealed that the strength and bendability were improved by adjusting the average crystal grain size of the —Ti alloy to 1 to 20 μm. That is, the present invention provides a method for producing a high-strength copper alloy with improved bendability and strength of the Cu-Ti alloy.

【0008】[0008]

【課題を解決するための手段】本発明者等は、Cu−T
i合金の曲げ性と強度を改善するべく結晶粒径および冷
間圧延と溶体化処理の回数に注目し鋭意研究を重ねた結
果、合金成分として厳密に制限された特定の割合でTi
を含有させる;2回冷間圧延に先立って溶体化処理を各
回毎に行う;その1回目の溶体化処理を当該処理後のT
iを溶質とするCu結晶の平均結晶粒径を20μm以下
に調整する条件とする;2回目の溶体化処理による平均
結晶粒径を整粒の状態で1〜20μmに調整する;結晶
粒の粗大化を防止しながらTiを充分にCuに固溶する
ために中間に冷間圧延を介在させた2回溶体化処理を行
う;このように一連の製造条件を制御した製法による銅
合金は強度、導電性、曲げ性、応力緩和特性などの諸特
性を現在および今後の電子機器用として望まれる高いレ
ベルでバランス良く兼備することができる上、Cu−T
i基本組成に適量のZnを添加し、さらに必要によりC
r,Fe,Ni,Sn,In,Pおよび/またはSiを
添加することによって半田付け特性や強度特性の更なる
改善も可能である;冷間圧延に代えて冷間伸線、冷間鍛
造などの加工を行うことができるとの新しい知見を得る
ことができた。
The present inventors have found that Cu-T
In order to improve the bendability and strength of the i-alloy, as a result of intensive studies focused on the crystal grain size and the number of times cold rolling and solution treatment were carried out, the Ti content was limited to a certain ratio strictly as an alloy component.
A solution treatment is performed each time prior to the second cold rolling; the first solution treatment is performed after the treatment.
The conditions are such that the average crystal grain size of Cu crystals having i as a solute is adjusted to 20 μm or less; the average crystal grain size by the second solution treatment is adjusted to 1 to 20 μm in a sized state; In order to sufficiently dissolve Ti in Cu while preventing solidification, a solution treatment is performed twice with cold rolling interposed in the middle; In addition to being able to combine various characteristics such as conductivity, bendability, and stress relaxation characteristics at a high level desired for current and future electronic devices in a well-balanced manner, Cu-T
i Add an appropriate amount of Zn to the basic composition, and further add C if necessary.
Further improvement of soldering properties and strength properties is possible by adding r, Fe, Ni, Sn, In, P and / or Si; cold wire drawing, cold forging, etc. instead of cold rolling. It was possible to obtain new knowledge that the processing of can be performed.

【0009】本発明は、上記知見を具体化することによ
って完成されたものであり、Ti:0.01〜4.0%
(成分割合を表す%は「重量%」とする)を含有し、あ
るいは更にZn:0.05〜2.0%,およびCr,Z
r,Fe,Ni,Sn,In,Mn,PおよびSiの1
種以上を総量で0.01〜3.0%を含有すると共に、
残部がCuおよび不可避的不純物からなる銅合金に、
(1)800℃以上の温度で240秒以内かつ平均結晶
粒径が20μmを越えない熱処理条件で行う1回目の溶
体化処理、(2)80%未満の加工度で行う1回目の冷
間圧延、(3)800℃以上の温度で240秒以内かつ
平均結晶粒径が1〜20μmを越えない範囲となる熱処
理条件で行う2回目の溶体化処理、(4)50%以下の
加工度で行う2回目の冷間圧延、(5)300〜700
℃の温度で1時間以上15時間未満の時効処理を順次施
すことを特徴とする方法である。
The present invention has been completed by embodying the above findings, and Ti: 0.01 to 4.0%
(% Representing the component ratio is "% by weight"), or further Zn: 0.05 to 2.0%, and Cr, Z
1 of r, Fe, Ni, Sn, In, Mn, P and Si
In addition to containing 0.01 to 3.0% in total of at least one species,
Copper alloy with the balance Cu and unavoidable impurities,
(1) First solution treatment performed at a temperature of 800 ° C. or higher for 240 seconds or less under heat treatment conditions in which the average grain size does not exceed 20 μm, and (2) first cold rolling performed at a workability of less than 80%. (3) Second solution treatment performed at a temperature of 800 ° C. or higher for 240 seconds or less under heat treatment conditions in which the average crystal grain size does not exceed 1 to 20 μm, (4) Performed at a working degree of 50% or less Second cold rolling, (5) 300-700
The method is characterized by sequentially performing an aging treatment for 1 hour or more and less than 15 hours at a temperature of ° C.

【0010】[0010]

【作用】以下、本発明の成分組成並びに製造条件の限定
理由を、その作用と共に詳述する。Ti :Tiには、Cu−Ti合金を時効処理した際にス
ピノーダル分解を起こして母材中に濃度の変調構造を作
り、これにより非常に高い強度を確保する作用がある
が、その含有量が0.01%未満では所望の強化が期待
できず、一方4.0%を超えてTiを含有させると粒界
反応型の析出を起こしやすくなって逆に強度低下を招い
たり、加工性を劣化したりすることから、Ti含有量は
0.01〜4.0%と定めた。
The reasons for limiting the component composition and the production conditions of the present invention will be described in detail below together with their action. Ti : Ti has the effect of causing spinodal decomposition when a Cu-Ti alloy is aged to form a concentration-modulated structure in the base material, thereby ensuring extremely high strength, but its content is If it is less than 0.01%, the desired strengthening cannot be expected. On the other hand, if Ti is contained in excess of 4.0%, precipitation of grain boundary reaction type is likely to occur, resulting in a decrease in strength or deterioration of workability. Therefore, the Ti content is set to 0.01 to 4.0%.

【0011】Zn:ZnはCu−Ti合金の導電性を低
下させずに半田耐熱剥離性を改善する作用が期待できる
ため、必要に応じて添加されるが、その含有量が0.0
5%未満であると所望の効作用が得られず、一方2.0
%を超える含有量になると導電性並びに応力緩和特性が
劣化することから、Znの含有量は0.05〜2.0%
と定めた。
Zn : Zn is expected to have the effect of improving the solder heat release property without lowering the conductivity of the Cu—Ti alloy, so it is added as necessary, but its content is 0.0
If it is less than 5%, the desired effect cannot be obtained, while 2.0
%, The conductivity and stress relaxation characteristics deteriorate, so the Zn content is 0.05-2.0%.
I decided.

【0012】Cr,Zr,Fe.Ni,Sn,In,M
n,PおよびSi:Cr,Zr,Fe,Niはいずれも
Cu−Ti合金の導電性を大きく低下させず粒界型析出
を抑制し、結晶粒径を微細化しさらに時効析出により強
度を上昇させるなどの作用を有している。また、Sn,
In,Mn,P,Siは主として固溶強化によりCu−
Ti合金の強度を向上させる作用を有している。従って
必要によりこれらの元素は1種または2種以上添加され
るが、その含有量が総量で0.01%未満であると前記
作用による所望の効果が得られず、一方総量で3.0%
を超える含有量になるとCu−Ti合金の導電性および
加工性を著しく劣化する。このため、1種の単独添加あ
るいは2種以上の複合添加がなされるCr,Zr,F
e,Ni,Sn,In,Mn,Pおよび/またはSiの
含有量は総量で0.01〜3.0%と定めた。
Cr, Zr, Fe. Ni, Sn, In, M
n, P and Si : Cr, Zr, Fe, and Ni all suppress grain boundary type precipitation without significantly reducing the conductivity of the Cu-Ti alloy, refine the crystal grain size, and further increase the strength by aging precipitation. And so on. Also, Sn,
In, Mn, P, and Si are mainly Cu-due to solid solution strengthening.
It has the effect of improving the strength of the Ti alloy. Therefore, if necessary, one or more of these elements are added, but if the total content is less than 0.01%, the desired effect due to the above action cannot be obtained, while the total amount is 3.0%.
If the content exceeds the range, the conductivity and workability of the Cu-Ti alloy are significantly deteriorated. For this reason, Cr, Zr, F, which are added singly or in combination of two or more,
The total content of e, Ni, Sn, In, Mn, P and / or Si was set to 0.01 to 3.0%.

【0013】続いて製造工程を説明する。本発明におい
ては、溶体化処理とこれに続く冷間圧延の工程を2回行
い、その後時効処理を行うことが基本となっている。す
なわち、一般的な溶体化処理と冷間圧延を1回のみ行う
方法では強度を確保しつつ整粒組織を得ることが難しい
ので、Cu−Ti−(Zn)合金の特性を十分に発揮で
きる上記工程としている。以下限定理由を説明する製造
条件もこのような観点から設定されている。
Next, the manufacturing process will be described. In the present invention, the solution treatment and the subsequent cold rolling process are performed twice, and then the aging treatment is basically performed. That is, since it is difficult to obtain a grain size controlled structure while securing strength by a general method of performing solution treatment and cold rolling only once, it is possible to sufficiently exhibit the characteristics of the Cu—Ti— (Zn) alloy. It is a process. The manufacturing conditions for explaining the reason for the limitation are set from this viewpoint as well.

【0014】溶体化処理 本発明においては、Tiを充分に固溶させることによっ
て後の時効処理で高強度の材料を得るために、一回目お
よび二回目の溶体化処理温度を800℃以上としてい
る。すなわち、処理温度が800℃未満ではTiの含有
量によってはTiが未固溶となり、時効硬化型銅合金の
特徴である高強度が得られないのである。800℃以上
の温度での材料保持時間すなわち「処理時間」を240
秒以内とするのは、240秒以上の処理時間では結晶粒
の粗大化が起こるのである。
Solution Treatment In the present invention, the temperature of the first and second solution treatments is set to 800 ° C. or higher in order to obtain a high-strength material in the subsequent aging treatment by sufficiently dissolving Ti. . That is, when the treatment temperature is lower than 800 ° C., Ti does not form a solid solution depending on the content of Ti, and the high strength characteristic of the age hardening type copper alloy cannot be obtained. The material holding time at a temperature of 800 ° C or higher, that is, the "processing time" is 240
The reason for setting the time within seconds is that coarsening of crystal grains occurs in the processing time of 240 seconds or more.

【0015】また、2回の溶体化処理のうち1回目の溶
体化処理では平均結晶粒径を20μm以下とするよう
に、素材のTi量、溶体化処理前の結晶粒径等に対応し
て溶体化処理時間を240秒以内で調整することが必要
である。1回目の溶体化処理で上述のように結晶粒径を
制御するのは、2回目の溶体化処理で整粒の状態で20
μm以下の結晶粒径を得るためである。すなわち、1回
目の溶体化処理後の平均結晶粒径が20μmを超える
と、2回目の溶体化処理で20μm以下の平均結晶粒径
を得ようとして溶体化処理温度を低くしかつ処理時間を
短くしても混粒あるいは未再結晶部が生じる。
Corresponding to the Ti amount of the raw material, the crystal grain size before the solution treatment, etc., so that the average crystal grain size is 20 μm or less in the first solution treatment of the two solution treatments. It is necessary to adjust the solution treatment time within 240 seconds. The control of the crystal grain size as described above in the first solution treatment is performed in the second solution treatment in the sized state.
This is to obtain a crystal grain size of μm or less. That is, if the average crystal grain size after the first solution treatment exceeds 20 μm, the solution treatment temperature is lowered and the treatment time is shortened in order to obtain the average crystal grain size of 20 μm or less in the second solution treatment. Even if mixed grains or unrecrystallized parts are generated.

【0016】また、2回目の溶体化処理後の平均結晶粒
径を1〜20μmとするのは、結晶粒が曲げ性および応
力緩和特性に大きく影響を及ぼすためである。平均結晶
粒径が1μm未満では、このような微結晶材料を板ばね
として用いると応力緩和特性が悪くなり、これを板ばね
として用いた場合ばね圧の低下が早期に生じる。また2
0μmを超えると曲げ加工の際表面に肌荒れが生じやす
くなり、曲げ半径が小さい場合は割れることもある。溶
体化処理後の冷却方法は特に限定されないがTiが析出
しないように冷却速度が充分に速い空冷または水冷で行
うことが好ましい。
The average crystal grain size after the second solution treatment is set to 1 to 20 μm because the crystal grains have a great influence on bendability and stress relaxation characteristics. When the average crystal grain size is less than 1 μm, when such a microcrystalline material is used as a leaf spring, the stress relaxation characteristic is deteriorated, and when this is used as a leaf spring, the spring pressure is reduced at an early stage. Again 2
If it exceeds 0 μm, the surface is likely to be roughened during bending, and it may be broken if the bending radius is small. The cooling method after the solution treatment is not particularly limited, but it is preferable to perform air cooling or water cooling having a sufficiently high cooling rate so that Ti does not precipitate.

【0017】冷間圧延 1回目の冷間圧延の加工度が80%以上であると加工硬
化が著しく実操業のうえでインゴットの減面を進めるの
が困難になるため、1回目の冷間圧延は80%未満の任
意の加工度で行う。ただし、30%以上が好ましい。2
回目の冷間圧延は50%を超える加工度で行うと、圧延
による集合組織の発達が顕著に生じ、異方性が大きくな
り、圧延方向と直角方向の曲げ軸での曲げ性が劣化する
ために、50%以下の加工度で行う。
[0017] Since the working ratio of the cold rolling first cold rolling becomes difficult to proceed with the reduction surface of the ingot upon work hardening is remarkably practical operation and 80% or more, between the first cold rolling Is performed at an arbitrary workability of less than 80%. However, 30% or more is preferable. Two
When the cold rolling for the second time is performed at a workability of more than 50%, the texture is significantly developed by rolling, the anisotropy becomes large, and the bendability in the bending axis perpendicular to the rolling direction deteriorates. In addition, it is performed at a working ratio of 50% or less.

【0018】時効処理 時効処理は、強度および導電性を向上させるために30
0〜700℃で行う。時効処理温度が300℃未満では
時効処理に時間がかかり経済的ではなく、一方700℃
を超えると、Ti含有量によっては、Tiが固溶してし
まい、時効硬化型の合金の特徴である強度および導電性
が得られないので、300〜700℃の温度範囲の時効
処理が必要である。強度および導電性を安定して向上さ
せる上で420〜480℃での時効処理が実操業的には
推奨される。時効時間が1時間未満では時効による強
度、導電性の向上が期待できず、15時間を超えると著
しい過時効による強度の低下が起こるために、1〜15
時間の時効時間が必要である。
Aging treatment Aging treatment is performed to improve strength and conductivity.
Perform at 0-700 ° C. If the aging temperature is less than 300 ° C, the aging process takes time and is not economical, while 700 ° C.
If the content of Ti exceeds the range, Ti will form a solid solution depending on the Ti content, and the strength and conductivity characteristic of the age-hardening type alloy cannot be obtained. Therefore, aging treatment in the temperature range of 300 to 700 ° C. is required. is there. For stable improvement of strength and conductivity, aging treatment at 420 to 480 ° C is recommended for practical use. When the aging time is less than 1 hour, improvement in strength and conductivity due to aging cannot be expected, and when it exceeds 15 hours, strength is significantly reduced due to overaging.
Time aging is necessary.

【0020】なお、本発明の製造方法において、溶体化
処理後の平均結晶粒径と最終冷間圧延加工度は、良好な
曲げ性を得るために極めて重要であり、その両方が共に
規定した条件を満たさない限り、良好な曲げ性を有する
材料は得られない。実操業では、Cu−Ti合金の特定
の用途で定められる板厚やその他の仕様に基づいて上記
範囲内で加工度、温度、時間を調整するのは当然である
が、因に、引張強さが約980N/mm2 以上、ばね限
界値が約950N/mm2 以上、電気伝導度13%IA
CS以上が得られるように上記条件を調整する。
In the production method of the present invention, the average crystal grain size after solution treatment and the final cold rolling workability are extremely important for obtaining good bendability, and both conditions are defined. Unless the above condition is satisfied, a material having good bendability cannot be obtained. In actual operation, it is natural to adjust the workability, temperature, and time within the above range based on the plate thickness and other specifications determined by the specific application of the Cu-Ti alloy, but the tensile strength is Is about 980 N / mm2 or more, the spring limit value is about 950 N / mm2 or more, and the electric conductivity is 13% IA.
The above conditions are adjusted so that CS or higher can be obtained.

【0021】[0021]

【実施例】続いて、本発明を特に好ましい合金組成範囲
を示す実施例によりさらに具体的に説明する。まず、電
気銅あるいは無酸素銅を原料とし、高周波真空溶解炉に
て表1(実施例)および表2(比較例)に示す各種組成
の銅合金インゴット(厚さ20mm)を溶製した。次
に、これら各インゴットに、表中の結晶粒径に調整する
ために1回目の溶体化処理(850℃×0.0458時
間(165秒))、1回目の冷間圧延40%、2回目の
溶体化処理(850℃×0.017時間(60秒))、
2回目の冷間圧延、時効処理(430℃×8時間)を順
次行い、0.30mmの板とした。
EXAMPLES Next, the present invention will be described in more detail with reference to examples showing particularly preferable alloy composition ranges. First, using electrolytic copper or oxygen-free copper as a raw material, copper alloy ingots (thickness: 20 mm) having various compositions shown in Table 1 (Examples) and Table 2 (Comparative Examples) were melted in a high-frequency vacuum melting furnace. Next, each of these ingots was subjected to the first solution treatment (850 ° C. × 0.0458 hours (165 seconds)) in order to adjust the crystal grain size in the table, the first cold rolling 40%, and the second time. Solution treatment (850 ° C. × 0.017 hours (60 seconds)),
The second cold rolling and aging treatment (430 ° C. × 8 hours) were sequentially performed to obtain a 0.30 mm plate.

【0022】そして、上記一連の処理を施すころにより
得られた板材から各種の試験片を採取して材料試験を行
い、ばね材としての特性を「強度」、「導電性」、「ば
ね性」、「曲げ性」および「応力緩和特性」を調査する
ことによって評価した。これらの特性のうち「強度」お
よび「伸び」は引張試験により測定し、「導電性」は導
電率(%IACS)を測定して求めた。また、「ばね
性」についてはばね限界値(Kb)を測定した。
Then, various test pieces are sampled from the plate material obtained by performing the series of treatments described above, and a material test is conducted to determine the characteristics of the spring material as "strength", "conductivity", and "springiness". , "Bendability" and "stress relaxation characteristics" were evaluated. Among these characteristics, "strength" and "elongation" were measured by a tensile test, and "conductivity" was determined by measuring the conductivity (% IACS). As for the "spring property", the spring limit value (Kb) was measured.

【0023】次に、「曲げ性」については、W曲げ試験
機によって曲げ加工を施し、その曲げ部を目視観察する
ことにより肌荒れの程度および割れの有無を調査して評
価した。なお、評価結果は、 ○:肌荒れおよび割れの発生なし ×:肌荒れまたは割れが発生 で表示した。
Next, the "bendability" was evaluated by conducting a bending process with a W bending tester and visually observing the bent portion to examine the degree of rough skin and the presence of cracks. In addition, the evaluation results are indicated by ◯: no skin roughness and cracking occurred, X: skin roughness or cracking occurred.

【0024】また、「応力緩和特性」については、短冊
状試験片の一端を固定すると共に他端に応力を負荷して
曲げ応力を加え、この状態で200℃に1000時間保
持した後、応力を開放した際にもなお残留する歪を測定
する方法により評価した。
Regarding the "stress relaxation characteristics", one end of a strip-shaped test piece was fixed, and a stress was applied to the other end to apply bending stress. It was evaluated by a method of measuring the strain still remaining even when opened.

【0025】さらに、素材に5μm厚の半田(90%S
n−10%Pb)メッキを施した後、150℃の高温槽
に1000時間間で保持し、この間100時間毎に取り
出して90°曲げ往復1回を施して半田剥離の開始時間
を調べる手法により、「半田耐熱剥離性」を調査し、1
000時間まで剥離のなかったものは調査結果を「10
00hr」と表示した。これらの調査結果を表3(実施
例)および表4(比較例)に示す。
Further, the material is 5 μm thick solder (90% S
n-10% Pb) After plating, hold in a high temperature tank at 150 ° C for 1000 hours, take out every 100 hours and perform 90 ° bending reciprocation once to check the start time of solder peeling. , "Solder heat resistance peeling resistance" was investigated and 1
If the peeling did not occur up to 000 hours, the investigation result was "10.
"00 hr" was displayed. The results of these investigations are shown in Table 3 (Examples) and Table 4 (Comparative Examples).

【0026】[0026]

【表1】 組 成 製 造 条 件 溶体化処理時の 2 回目 時効処理 Ti Zn その他 Cuおよび 結晶粒径 冷間圧延 時間 不純物 (μm) 加工度 1回目 2回目 (%) (hr) 1 3.2 − 残 10 20 40 8 2 2.9 1.2 残 15 10 45 8 3 2.9 − Sn0.17 残 12.5 12.5 40 8 4 3.0 − P 0.21 残 12.5 15 50 8 5 3.4 − 注1 残 10 10 50 8 6 3.1 − 注2 残 15 10 40 8 7 3.3 − 注3 残 10 20 50 8 8 2.9 1.7 注4 残 10 12.5 40 8 9 3.1 0.6 注5 残 15 15 40 8 10 3.1 1.3 注6 残 20 15 40 8 11 2.9 1.4 注7 残 10 10 40 8 12 3.0 0.8 注8 残 15 10 50 8 13 3.0 1.3 注9 残 15 12.5 45 8 14 3.2 1.5 注10 残 10 12.5 40 8 15 3.0 1.6 Mn0.42 残 12.5 10 40 8 16 2.9 0.8 In 残 10 10 45 8 17 2.9 1.2 Si 残 10 10 45 8 18 3.2 1.4 Fe 残 10 12.5 40 8 19 2.9 1.0 Ni 残 15 10 40 8 20 3.1 1.2 Cr 残 10 12.5 50 8 21 3.1 0.8 Zr 残 15 12.5 45 8 [Table 1] Composition A second aging treatment during solution heat treatment under treatment Ti Zn Other Cu and grain size Cold rolling time Impurity (μm) Workability 1st 2nd (%) (hr) 1 3.2 - residual 10 20 40 8 2 2.9 1.2 residual 15 10 45 8 3 2.9 - Sn0.17 remaining 12.5 12.5 40 8 4 3.0 - P 0.21 remaining 12.5 15 50 8 5 3.4 - Note 1 Remaining 10 10 50 8 6 3.1 − Note 2 Remaining 15 10 40 8 7 3.3 − Note 3 Remaining 10 20 50 8 8 2.9 1.7 Note 4 Remaining 10 12.5 40 8 9 3.1 0.6 Note 5 Remaining 15 15 40 8 10 3.1 1.3 Note 6 Remaining 20 15 40 8 11 2.9 1.4 Note 7 Remaining 10 10 40 8 12 3.0 0.8 Note 8 Remaining 15 10 50 8 13 3.0 1.3 Note 9 Remaining 15 12.5 45 8 14 3.2 1.5 Note 10 Remaining 10 12.5 40 8 15 3.0 1.6 Mn0.42 Remaining 12.5 10 40 8 16 2.9 0.8 In Remaining 10 10 45 8 17 2.9 1.2 Si Remaining 10 10 45 8 18 3.2 1.4 Fe Remaining 10 12.5 40 8 19 2.9 1.0 Ni Remaining 15 10 40 8 20 3.1 1.2 Cr Remaining 10 12.5 50 8 21 3.1 0.8 Zr Remaining 15 12.5 45 8

【0027】注1:In0.32,Si0.07,Fe0.02 注2: Sn0.24,Mn0.15,Cr0.05, Zr0.08 ,Ni0.01 注3:Cr0.12,Zr0.15,Fe0.06,Ni0.04 注4:In0.30,Mn0.14,P0.13 注5:Sn0.10,In0.15,Si0.12,Fe0.13 注6:Sn0.12,In0.07,Mn0.21,P0.08 ,Si0.13 注7:P0.06 ,Si0.04,Cr0.32,Zr0.05,Fe0.12,Ni0.
14 注8:Sn0.32,In0.12,Mn0.21,P0.04, Si0.03 注9:Cr0.28,Zr0.12,Fe0.02 注10:Cr0.43,Zr0.04,Fe0.21,Ni0.26
Note 1: In0.32, Si0.07, Fe0.02 Note 2: Sn0.24, Mn0.15, Cr0.05, Zr0.08, Ni0.01 Note 3: Cr0.12, Zr0.15, Fe0.06, Ni0.04 Note 4: In0.30, Mn0.14, P0.13 Note 5: Sn0.10, In0.15, Si0.12, Fe0.13 Note 6: Sn0.12, In0.07, Mn0.21, P0.08, Si0.13 Note 7: P0.06, Si0.04, Cr0.32, Zr0.05, Fe0.12, Ni0.
14 Note 8: Sn0.32, In0.12, Mn0.21, P0.04, Si0.03 Note 9: Cr0.28, Zr0.12, Fe0.02 Note 10: Cr0.43, Zr0.04, Fe0. 21, Ni0.26

【0028】[0028]

【表2】 組 成 製 造 条 件 溶体化処理時の 2 回目 時効処理 Ti Zn その他 Cuおよび 結晶粒径 冷間圧延 時間 不純物 (μm) 加工度 1回目 2回目 (%) (hr) 22 0.008 − − 残 10 15 40 8 23 0.006 1.5 注1 残 10 20 40 8 24 6.8 − 注2 残 10 20 40 8 25 5.4 0.8 注3 残 10 10 45 8 26 2.9 3.7 注4 残 15 10 40 8 27 3.1 1.4 注5 残 40 未再結晶部 45 8 有り 28 2.9 1.3 注6 残 15 70 40 8 29 3.0 1.5 注7 残 12.5 10 85 8 30 3.1 1.5 注8 残 10 10 45 20 31 2.9 1.8 注9 残 12.5 10 45 0.5 32 3.2 − − 残 − 混 粒 40 8 33 3.2 − − 残 10 − 40 8 34 3.2 − − 残 10 10 0 [Table 2] Composition A second aging treatment during solution heat treatment under treatment Ti Zn Other Cu and grain size Cold rolling time Impurity (μm) Workability 1st 2nd (%) (hr) 22 0.008 - - residual 10 15 40 8 23 0.006 1.5 Note 1 residual 10 20 40 8 24 6.8 - Note 2 residual 10 20 40 8 25 5.4 0.8 Note 3 residual 10 10 45 8 26 2.9 3.7 Note 4 Remaining 15 10 40 8 27 3.1 1.4 Note 5 Remaining 40 Unrecrystallized part 45 8 Yes 28 2.9 1.3 Note 6 Remaining 15 70 40 8 29 3.0 1.5 Note 7 Remaining 12.5 10 85 8 30 3.1 1.5 Note 8 Remaining 10 10 45 20 31 2.9 1.8 Note 9 Remaining 12.5 10 45 0.5 32 3.2 − − Remaining − Mixed grain 40 8 33 3.2 − − Remaining 10 − 40 8 34 3.2 − − Remaining 10 10 0

【0029】注1:Sn0.17,In0.18,P0.04 ,Si0.03 注2:Sn0.14,P0.12 ,Cr0.31,Zr0.15,Fe0.08 注3:In0.26,P0.02 ,Zr0.11,Ni0.05 注4:Sn0.22,P0.15 ,Fe0.03,Ni0.06 注5:Mn0.22,P0.03 ,Si0.07,Zr0.14,Fe0.06,Ni0.
12 注6:Sn0.15,In0.07,Mn0.06,Si0.08,Fe0.14 注7:P0.08 ,Si0.18,Cr0.23,Ni0.07 注8:Sn0.26,Mn0.18,Cr0.42,Zr0.ll,Fe0.01 注9:In0.21,Mn0.03,Zr0.08,Fe0.14,Ni0.l6 表中アンダーラインは本発明外の値であることを意味す
る。
Note 1: Sn0.17, In0.18, P0.04, Si0.03 Note 2: Sn0.14, P0.12, Cr0.31, Zr0.15, Fe0.08 Note 3: In0.26, P0.02, Zr0.11, Ni0.05 Note 4: Sn0.22, P0.15, Fe0.03, Ni0.06 Note 5: Mn0.22, P0.03, Si0.07, Zr0.14, Fe0. 06, Ni0.
12 Note 6: Sn0.15, In0.07, Mn0.06, Si0.08, Fe0.14 Note 7: P0.08, Si0.18, Cr0.23, Ni0.07 Note 8: Sn0.26, Mn0. 18, Cr0.42, Zr0.ll, Fe0.01 Note 9: In0.21, Mn0.03, Zr0.08, Fe0.14, Ni0.l6 The underline in the table means a value outside the scope of the present invention. To do.

【0030】[0030]

【表3】 合 伸 ばね 電気 曲 応力緩和 半田耐熱 金 引張強度 び 限界値 伝導度 げ 特性 剥離時間 No(N /mm2 )(%)(N /mm2 )(%IACS) 性 (%) (hr) 1 990 12.2 974 13.2 ○ 4.7 100 2 982 13.8 960 13.4 ○ 4.6 1000 3 992 12.5 980 13.4 ○ 5.1 100 4 1004 12.3 985 13.0 ○ 4.5 100 5 1015 13.5 997 13.8 ○ 4.7 100 6 1017 13.0 1010 14.4 ○ 4.5 100 7 1013 12.4 1006 15.3 ○ 4.8 100 8 1027 13.7 1017 14.4 ○ 5.0 1000 9 1020 14.5 1008 14.5 ○ 4.3 1000 10 1018 15.7 1009 13.8 ○ 5.2 800 11 1025 13.2 1015 13.3 ○ 5.4 1000 12 1020 15.2 1010 13.6 ○ 4.5 1000 13 1010 12.8 1000 14.7 ○ 5.3 1000 14 1021 14.4 1014 14.1 ○ 4.2 900 15 1015 14.0 1012 14.0 ○ 4.3 800 16 1020 13.7 1000 13.4 ○ 5.0 800 17 1024 14.2 1005 13.0 ○ 5.2 800 18 1010 15.0 997 14.2 ○ 5.2 1000 19 1005 14.7 982 13.8 ○ 4.5 1000 20 1030 12.8 1010 13.6 ○ 4.3 900 21 1017 14.0 998 14.1 ○ 4.2 1000 [Table 3] Synthetic extension spring Electric bending Stress relaxation Solder heat resistant gold Tensile strength and limit value Conductivity characteristics Peeling time No. (N / mm2) (%) (N / mm2) (% IACS) Performance (%) (hr) 1 990 12.2 974 13.2 ○ 4.7 100 2 982 13.8 960 13.4 ○ 4.6 1000 3 992 12.5 980 13.4 ○ 5.1 100 4 1004 12.3 985 13.0 ○ 4.5 100 5 1015 13.5 997 13.8 ○ 4.7 100 6 1017 13.0 1010 14.4 ○ 4.5 100 7 1013 12.4 1006 15.3 ○ 4.8 100 8 1027 13.7 1017 14.4 ○ 5.0 1000 9 1020 14.5 1008 14.5 ○ 4.3 1000 10 1018 15.7 1009 13.8 ○ 5.2 800 11 1025 13.2 1015 13.3 ○ 5.4 1000 12 1020 15.2 1010 13.6 ○ 4.5 1000 13 1010 12.8 1000 14.7 ○ 5.3 1000 14 1021 14.4 1014 14.1 ○ 4.2 900 15 1015 14.0 1012 14.0 ○ 4.3 800 16 1020 13.7 1000 13.4 ○ 5.0 800 17 1024 14.2 1005 13.0 ○ 5.2 800 18 1010 15.0 997 14.2 ○ 5.2 1000 19 1005 14.7 982 13.8 ○ 4.5 1000 20 1030 12.8 1010 13.6 ○ 4.3 900 21 1017 14.0 998 14.1 ○ 4.2 1000

【0031】[0031]

【表4】 合 伸 ばね 電気 曲 応力緩和 半田耐熱 金 引張強度 び 限界値 伝導度 げ 特性 剥離時間 No(N /mm2 )(%)(N /mm2 )(%IACS) 性 (%) (hr) 22 603 22.4 582 15.2 ○ 6.0 100 23 622 21.7 595 15.4 ○ 6.2 1000 24 652 20.8 630 14.3 ○ 5.3 100 25 638 21.5 604 14.6 ○ 5.5 900 26 1012 12.4 992 8.4 ○ 10.4 900 27 874 11.7 850 13.8 × 6.0 1000 28 950 15.4 933 13.7 × 3.7 900 29 1030 5.8 1012 14.2 × 4.8 1000 30 912 16.7 900 14.0 ○ 4.7 1000 31 880 17.1 862 13.2 ○ 4.5 1000 32 877 16.5 848 13.5 × 4.2 100 33 1105 1.2 1088 13.7 × 5.3 100 34 617 23.2 588 14.0 ○ 5.1 100 [Table 4] Synthetic extension spring Electric bending Stress relaxation Solder heat resistant gold Tensile strength and limit value Conductivity characteristics Peeling time No. (N / mm2) (%) (N / mm2) (% IACS) Properties (%) (hr) 22 603 22.4 582 15.2 ○ 6.0 100 23 622 21.7 595 15.4 ○ 6.2 1000 24 652 20.8 630 14.3 ○ 5.3 100 25 638 21.5 604 14.6 ○ 5.5 900 26 1012 12.4 992 8.4 ○ 10.4 900 27 874 11.7 850 13.8 × 6.0 1000 28 950 15.4 933 13.7 × 3.7 900 29 1030 5.8 1012 14.2 × 4.8 1000 30 912 16.7 900 14.0 ○ 4.7 1000 31 880 17.1 862 13.2 ○ 4.5 1000 32 877 16.5 848 13.5 × 4.2 100 33 1105 1.2 1088 13.7 × 5.3 100 34 617 23.2 588 14.0 ○ 5.1 100

【0032】表3、4に示される結果からは次のことが
明らかである。即ち、本発明合金1〜21は、いずれも
強度、曲げ性、応力緩和特性が共に優れており、またそ
の他の特性についても充分に良好な評価が得られるもの
である。
The following is clear from the results shown in Tables 3 and 4. That is, the alloys 1 to 21 of the present invention are all excellent in strength, bendability, and stress relaxation characteristics, and sufficiently good evaluations can be obtained for other characteristics.

【0031】これに対して、比較合金22、23はTi
含有量が充分ではなく、比較合金24、25はTi含有
量が上限値を超えているために強度が劣っている。ま
た、比較合金26はZn含有量が上限値を超えているた
め、導電性と応力緩和特性が大きく劣っている。比較合
金27は、1回目の溶体化処理時の結晶粒径が上限値を
超えているために、2回目の溶体化処理時にうまく結晶
粒径がつくりこめなかった例である。比較合金28は、
2回目の溶体化処理時の結晶粒径が上限値を超えている
ために、曲げ性が劣っている。比較合金29は、2回目
の冷間圧延の加工度が上限値を超えているために曲げ性
が劣っている。比較合金30は時効処理時間が上限を超
えており、比較合金31は時効処理時間が十分ではない
ために強度が劣っている。比較合金32は1回目の溶体
化処理を行わなかった例であり、2回目の溶体化処理時
に混粒となっており、強度、曲げ性が劣っている。比較
合金33は2回目の溶体化処理を行わなかった例であり
加工硬化が著しく曲げ性が劣っている。比較合金34は
冷間圧延を1回だけ行った例であり強度が劣っている。
On the other hand, the comparative alloys 22 and 23 are made of Ti.
The content is not sufficient, and the comparative alloys 24 and 25 are inferior in strength because the Ti content exceeds the upper limit. Moreover, since the Zn content of the comparative alloy 26 exceeds the upper limit value, the conductivity and the stress relaxation property are greatly deteriorated. Comparative alloy 27 is an example in which the crystal grain size during the second solution treatment was not successfully created because the crystal grain size during the first solution treatment exceeded the upper limit. Comparative alloy 28 is
The bendability is poor because the crystal grain size during the second solution treatment exceeds the upper limit. Comparative alloy 29 is inferior in bendability because the workability of the second cold rolling exceeds the upper limit value. Comparative alloy 30 had an aging treatment time exceeding the upper limit, and Comparative alloy 31 had a poor aging treatment time and thus was inferior in strength. Comparative alloy 32 is an example in which the first solution treatment was not performed, and it was mixed grains during the second solution treatment, and the strength and bendability were poor. Comparative alloy 33 is an example in which the second solution treatment was not performed, and the work hardening was remarkable and the bendability was poor. Comparative alloy 34 is an example in which cold rolling was performed only once, and the strength was poor.

【0033】[0033]

【発明の効果】本発明の製造方法を採用することによ
り、曲げ加工特性および応力緩和特性の良好な、Cu−
Be合金に遜色がない高強度銅合金を得ることが可能と
なり、電子機器類の小型化、薄肉化に大きく寄与し得る
など、産業上極めて有用な効果がもたらされる。
EFFECTS OF THE INVENTION By adopting the manufacturing method of the present invention, Cu-
It is possible to obtain a high-strength copper alloy that is as good as a Be alloy, which greatly contributes to the miniaturization and thinning of electronic devices, which is extremely useful in industry.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にてTi:0.01〜4.0%
を含有し、残部がCuおよび不可避的不純物からなる銅
合金に、 (1)800℃以上の温度で240秒以内かつ平均結晶
粒径が20μmを越えない熱処理条件で行う1回目の溶
体化処理、 (2)80%未満の加工度で行う1回目の冷間圧延、 (3)800℃以上の温度で240秒以内かつ平均結晶
粒径が1〜20μmを越えない範囲となる熱処理条件で
行う2回目の溶体化処理、 (4)50%以下の加工度で行う2回目の冷間圧延、 (5)300〜700℃の温度で1時間以上15時間未
満の時効処理、を順次施すことを特徴とする曲げ性およ
び応力緩和特性に優れたチタン銅合金の製造方法。
1. Ti: 0.01 to 4.0% by weight.
A copper alloy containing Cu and the balance Cu and unavoidable impurities, and (1) a first solution heat treatment carried out at a temperature of 800 ° C. or higher for 240 seconds or less and under an average crystal grain size not exceeding 20 μm, (2) First cold rolling performed at a workability of less than 80%, (3) Heat treatment at a temperature of 800 ° C. or higher for 240 seconds or less and an average grain size of 1 to 20 μm or less 2 The solution treatment of the second time, (4) the second cold rolling performed at a working degree of 50% or less, and (5) the aging treatment of 1 hour or more and less than 15 hours at a temperature of 300 to 700 ° C. are sequentially performed. A method for producing a titanium-copper alloy having excellent bendability and stress relaxation characteristics.
【請求項2】 重量割合にてTi:0.01〜4.0%
を含有し、更にZn:0.05〜2.0%,およびC
r,Zr,Fe,Ni,Sn,In,Mn,PおよびS
iの1種以上を総量で0.01〜3.0%を含有し、残
部がCuおよび不可避的不純物からなる銅合金に、 (1)800℃以上の温度で240秒以内かつ平均結晶
粒径が20μmを越えない熱処理条件で行う1回目の溶
体化処理、 (2)80%未満の加工度で行う1回目の冷間圧延、 (3)800℃以上の温度で240秒以内かつ平均結晶
粒径が1〜20μmを越えない範囲となる熱処理条件で
行う2回目の溶体化処理、 (4)50%以下の加工度で行う2回目の冷間圧延、 (5)300〜700℃の温度で1時間以上15時間未
満の時効処理、を順次施すことを特徴とする曲げ性およ
び応力緩和特性に優れたチタン銅合金の製造方法。
2. Ti: 0.01 to 4.0% by weight.
Containing Zn: 0.05 to 2.0%, and C
r, Zr, Fe, Ni, Sn, In, Mn, P and S
In a copper alloy containing 0.01 to 3.0% in total of one or more kinds of i, and the balance of Cu and inevitable impurities, (1) within a temperature of 800 ° C. or higher for 240 seconds and an average crystal grain size. The first solution heat treatment under the heat treatment condition that does not exceed 20 μm, (2) the first cold rolling with a workability of less than 80%, and (3) the average grain size within 240 seconds at a temperature of 800 ° C. or higher. The second solution heat treatment under the heat treatment condition that the diameter does not exceed 1 to 20 μm, (4) the second cold rolling with a workability of 50% or less, (5) at a temperature of 300 to 700 ° C. A method for producing a titanium-copper alloy having excellent bendability and stress relaxation characteristics, which comprises sequentially performing an aging treatment for 1 hour or more and less than 15 hours.
JP5234294A 1994-03-23 1994-03-23 Method for producing titanium copper alloy excellent in bending property and stress relaxation property Expired - Fee Related JP2790238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5234294A JP2790238B2 (en) 1994-03-23 1994-03-23 Method for producing titanium copper alloy excellent in bending property and stress relaxation property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5234294A JP2790238B2 (en) 1994-03-23 1994-03-23 Method for producing titanium copper alloy excellent in bending property and stress relaxation property

Publications (2)

Publication Number Publication Date
JPH07258803A true JPH07258803A (en) 1995-10-09
JP2790238B2 JP2790238B2 (en) 1998-08-27

Family

ID=12912136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5234294A Expired - Fee Related JP2790238B2 (en) 1994-03-23 1994-03-23 Method for producing titanium copper alloy excellent in bending property and stress relaxation property

Country Status (1)

Country Link
JP (1) JP2790238B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306453A1 (en) * 2001-10-26 2003-05-02 YKK Corporation Nickel-free white copper alloy, and method of producing nickel-free white copper alloy
JP2006241573A (en) * 2005-03-07 2006-09-14 Yamaha Metanikusu Kk Plate of copper-titanium alloy and manufacturing method therefor
WO2006104152A1 (en) * 2005-03-28 2006-10-05 Sumitomo Metal Industries, Ltd. Copper alloy and process for producing the same
KR100732553B1 (en) * 2005-06-28 2007-06-27 인하대학교 산학협력단 Fabrication method for two-phases brass having excellent superplastic formability
JP2007270267A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk High-strength copper alloy excellent in bending workability and dimensional stability
EP2194149A1 (en) * 2008-11-28 2010-06-09 Dowa Metaltech Co., Ltd. Copper alloy plate and method for producing the same
JP2013204140A (en) * 2012-03-29 2013-10-07 Jx Nippon Mining & Metals Corp Titanium copper
JP2016211077A (en) * 2016-07-26 2016-12-15 Jx金属株式会社 Titanium copper
EP3643799A1 (en) 2018-10-22 2020-04-29 JX Nippon Mining & Metals Corporation Titanium copper, method for producing titanium copper and electronic component
EP3643798A1 (en) 2018-10-22 2020-04-29 JX Nippon Mining & Metals Corp. Titanium copper, method for producing titanium copper and electronic component
CN111101016A (en) * 2020-02-26 2020-05-05 宁波博威合金材料股份有限公司 Aging-strengthened titanium-copper alloy and preparation method thereof
CN115044846A (en) * 2022-06-23 2022-09-13 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof
RU2795584C2 (en) * 2018-10-22 2023-05-05 ДжейЭкс НИППОН МАЙНИНГ ЭНД МЕТАЛЗ КОРПОРЕЙШН Titanium-copper material, titanium-copper material production method and electronic component

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462459C (en) * 2001-10-26 2009-02-18 Ykk株式会社 Nickelless argentan alloy and production method of nickelless argentan alloy
KR100507793B1 (en) * 2001-10-26 2005-08-11 와이케이케이 가부시끼가이샤 Nickel-free white copper alloy, and method of producing nickel-free white copper alloy
EP1306453A1 (en) * 2001-10-26 2003-05-02 YKK Corporation Nickel-free white copper alloy, and method of producing nickel-free white copper alloy
JP2006241573A (en) * 2005-03-07 2006-09-14 Yamaha Metanikusu Kk Plate of copper-titanium alloy and manufacturing method therefor
WO2006104152A1 (en) * 2005-03-28 2006-10-05 Sumitomo Metal Industries, Ltd. Copper alloy and process for producing the same
KR100732553B1 (en) * 2005-06-28 2007-06-27 인하대학교 산학협력단 Fabrication method for two-phases brass having excellent superplastic formability
JP4634955B2 (en) * 2006-03-31 2011-02-16 Jx日鉱日石金属株式会社 High strength copper alloy with excellent bending workability and dimensional stability
JP2007270267A (en) * 2006-03-31 2007-10-18 Nikko Kinzoku Kk High-strength copper alloy excellent in bending workability and dimensional stability
EP2194149A1 (en) * 2008-11-28 2010-06-09 Dowa Metaltech Co., Ltd. Copper alloy plate and method for producing the same
US8871041B2 (en) 2008-11-28 2014-10-28 Dowa Metaltech Co., Ltd. Copper alloy plate and method for producing same
US10174406B2 (en) 2008-11-28 2019-01-08 Dowa Metaltech Co., Ltd. Copper alloy plate and method for producing same
JP2013204140A (en) * 2012-03-29 2013-10-07 Jx Nippon Mining & Metals Corp Titanium copper
JP2016211077A (en) * 2016-07-26 2016-12-15 Jx金属株式会社 Titanium copper
EP3643799A1 (en) 2018-10-22 2020-04-29 JX Nippon Mining & Metals Corporation Titanium copper, method for producing titanium copper and electronic component
EP3643798A1 (en) 2018-10-22 2020-04-29 JX Nippon Mining & Metals Corp. Titanium copper, method for producing titanium copper and electronic component
RU2795584C2 (en) * 2018-10-22 2023-05-05 ДжейЭкс НИППОН МАЙНИНГ ЭНД МЕТАЛЗ КОРПОРЕЙШН Titanium-copper material, titanium-copper material production method and electronic component
CN111101016A (en) * 2020-02-26 2020-05-05 宁波博威合金材料股份有限公司 Aging-strengthened titanium-copper alloy and preparation method thereof
CN115044846A (en) * 2022-06-23 2022-09-13 中国科学院宁波材料技术与工程研究所 CuCrSn alloy and deformation heat treatment method thereof

Also Published As

Publication number Publication date
JP2790238B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US11655524B2 (en) Copper alloy with excellent comprehensive performance and application thereof
JP5479798B2 (en) Copper alloy sheet, copper alloy sheet manufacturing method, and electric / electronic component
JP4809602B2 (en) Copper alloy
JP4418028B2 (en) Cu-Ni-Si alloy for electronic materials
WO2010064547A1 (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
JP2011508081A (en) Copper-nickel-silicon alloy
JP5619389B2 (en) Copper alloy material
JP4653240B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
WO2010134210A1 (en) Copper alloy material and manufacturing method therefor
CN109338151B (en) Copper alloy for electronic and electrical equipment and application
JP2000080428A (en) Copper alloy sheet excellent in bendability
JPH07258803A (en) Production of titanium-copper alloy excellent in bendability and stress relaxation property
JPH03162553A (en) Manufacture of high strength and high conductivity copper alloy having good bendability
JPH03188247A (en) Production of high strength and high conductivity copper alloy excellent in bendability
JP4166196B2 (en) Cu-Ni-Si copper alloy strip with excellent bending workability
JPH0987814A (en) Production of copper alloy for electronic equipment
JP2006016629A (en) Cu-Ni-Si BASED COPPER ALLOY STRIP HAVING EXCELLENT BENDING WORKABILITY IN BAD WAY
JPH07258804A (en) Production of copper alloy for electronic equipment
JP2012229467A (en) Cu-Ni-Si BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2009108392A (en) High-strength nickel silver superior in bendability, and manufacturing method therefor
JPH0718355A (en) Copper alloy for electronic appliance and its production
JP4831969B2 (en) Brass material manufacturing method and brass material
JP4653239B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080612

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090612

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100612

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110612

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees