JPH07258804A - Production of copper alloy for electronic equipment - Google Patents

Production of copper alloy for electronic equipment

Info

Publication number
JPH07258804A
JPH07258804A JP5234394A JP5234394A JPH07258804A JP H07258804 A JPH07258804 A JP H07258804A JP 5234394 A JP5234394 A JP 5234394A JP 5234394 A JP5234394 A JP 5234394A JP H07258804 A JPH07258804 A JP H07258804A
Authority
JP
Japan
Prior art keywords
copper alloy
cold rolling
temperature
electronic devices
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5234394A
Other languages
Japanese (ja)
Inventor
Yasuo Tomioka
靖夫 富岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP5234394A priority Critical patent/JPH07258804A/en
Publication of JPH07258804A publication Critical patent/JPH07258804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To improve strength, stress relaxation ratio, electric conductivity, bendability, and spring limit value which are required of a copper alloy for electronic equipment. CONSTITUTION:The copper alloy has a composition consisting of 0.05-0.4% Cr, 0.03-0.25% Zr, and the balance Cu with inevitable impurities and containing, if necessary, 0.06-2.0% Zn and further 0.01-1.0%, in total, of one or more elements among Ti, Fe, Ni, Sn, In, Mn, P, Mg, and Si. In the manufacturing process of this copper alloy, the following treatments are successively done: (a) solution heat treatment performed at >=700 deg.C under the conditions where average crystalline grain size does not exceed 40mum; (b) cold rolling at 20-60% draft; (c) aging treatment at 300-700 deg.C; (d) cold rolling at <=30% draft; (e) stress relief annealing at 350-700 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電子機器用銅合金の製造
方法に関するものであり、さらに詳しく述べるならば、
各種端子、コネクター、リレーまたはスイッチ等の電子
部品であって、優れた強度、導電率、曲げ性および応力
緩和特性がバランスしていることが要求されるあらゆる
部品の製造に利用可能なCu−Cr−Zr系銅合金の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a copper alloy for electronic equipment.
Cu-Cr that can be used to manufacture all kinds of electronic parts such as terminals, connectors, relays and switches, which are required to have excellent strength, conductivity, bendability and stress relaxation characteristics in balance. -A method for manufacturing a Zr-based copper alloy.

【0002】[0002]

【従来の技術】従来、上記した電子部品には、従来、コ
ストが重要な用途では黄銅が、ばね特性が重要な用途で
はりん青銅が、又ばね特性と耐食性が重要な用途では洋
白が、それぞれ使用されてきた。
2. Description of the Related Art Conventionally, among the above-mentioned electronic parts, brass is conventionally used in applications where cost is important, phosphor bronze is used in applications where spring characteristics are important, and nickel silver is used in applications where spring characteristics and corrosion resistance are important. Each has been used.

【0003】ところが、近年、電子機器類およびその部
品には小型化、薄肉化が要求されるようになり、また、
自動車の電送部品のように百数十℃程度の高温の環境下
で使用される用途では、過酷な環境に耐えられる信頼性
の高い部品が望まれている。このような要求に対して次
のような材料特性が望まれている。 (a)薄い板厚においても高い接触圧を生じるための十
分な強度を有すること。 (b)応力緩和率が低く、高温下で長期間使用しても接
触圧が低下しないこと。 (c)導電率が高く、通電時にジュール熱の発生しにく
いこと、また、発生する熱を放散しやすいこと。 (d)厳しい曲げ加工を行っても曲げ部に割れや肌あれ
を生じないこと。 (e)高いばね応力まで使用できるようにばね限界値が
高いこと。
In recent years, however, electronic devices and their parts are required to be smaller and thinner, and
In applications such as automobile transmission parts that are used in a high temperature environment of about a hundred and several tens of degrees Celsius, highly reliable parts that can withstand harsh environments are desired. The following material properties are desired to meet such requirements. (A) It has sufficient strength to generate a high contact pressure even with a thin plate thickness. (B) The stress relaxation rate is low, and the contact pressure does not decrease even after long-term use at high temperature. (C) The conductivity is high, Joule heat is unlikely to be generated when energized, and the generated heat is easily dissipated. (D) Even if severe bending is performed, the bent portion should not be cracked or roughened. (E) The spring limit value is high so that even high spring stress can be used.

【0004】このような要請に応えるために本出願人は
Cu−Cr−Sn系合金を開発してきた(特開平4−4
1632号、同4−110429号、同平4−1415
61号、同平4−141561号公報参照)。
In order to meet such demands, the present applicant has developed a Cu--Cr--Sn alloy (Japanese Patent Laid-Open No. 4-4).
1632, 4-110429 and 4-1415
No. 61, the same Japanese Patent Publication No. 4-141561).

【0005】電子機器用Cu−Cr−Zr系合金自体は
公知であって、例えば特開平5−117789号公報に
よると、その製法としては半連続鋳造鋳塊を熱間圧延
し、両面面削後冷間圧延する方法が採用されている。し
かし、この処理法では十分な特性(a)〜(e)が得ら
れない。
[0005] Cu-Cr-Zr alloys for electronic devices are known per se. For example, according to Japanese Patent Laid-Open No. 5-117789, a semi-continuous casting ingot is hot-rolled, and both surfaces are ground. The method of cold rolling is adopted. However, this treatment method cannot obtain sufficient characteristics (a) to (e).

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、Cu−
Cr−Zr系合金について、溶体化処理により再結晶粒
の粗大化を避けつつ十分なCrの固溶状態をもたらし、
溶体化処理後急冷によってCrの固溶状態を維持し、時
効前後に冷間圧延を強圧下率で行い硬化を図る方法によ
り特性(a)〜(e)を向上させることを検討した。し
かしながら、この方法では特にばね限界値、導電率、曲
げ性が現在の要求水準には達しなかった。
The present inventors have found that Cu-
For Cr-Zr alloys, solution treatment brings about sufficient solid solution state of Cr while avoiding coarsening of recrystallized grains,
It was examined to improve the characteristics (a) to (e) by a method of maintaining the solid solution state of Cr by quenching after solution treatment and performing cold rolling at a strong reduction before and after aging to achieve hardening. However, in this method, the spring limit value, conductivity, and bendability did not reach the current required levels.

【0007】したがって、本発明は、Cu−Cr−Zr
系合金の合金元素の特性をより一層発揮させるととも
に、前述の特性a)〜e)について優れた成績を達成
し、特に、ばね限界値、曲げ性及び導電率を向上させる
ことができる製造方法を提供することを目的とする。
Therefore, the present invention is directed to Cu--Cr--Zr.
A manufacturing method that can further exhibit the characteristics of alloying elements of a series alloy, achieve excellent results with respect to the above characteristics a) to e), and particularly improve the spring limit value, bendability, and conductivity. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】本発明は、(a)重量割
合でCr:0.05〜0.4%、およびZr:0.03
〜0.25%を含有すると共に、残部がCuおよび不可
避的不純物からなる銅合金、(b)Cr:0.05〜
0.4%、Zr:0.03〜0.25%,Zn:0.0
6〜2.0%を含有すると共に、残部がCuおよび不可
避的不純物からなる銅合、あるいはc)Cr:0.05
〜0.4%、Zr:0.03〜0.25%、およびZ
n:0.06〜2.0%を含有し、更にTi,Fe,N
i,Sn,In,Mn,P,MgおよびSiの1種以
上:総量で0.01〜1.0%をも含有すると共に、残
部がCuおよび不可避的不純物からなる電子機器用銅合
金の製造方法において、(イ)700℃以上の温度でか
つ平均結晶粒径が40μmを超えない条件で行う溶体化
処理、(ロ)加工度20〜60%の冷間圧延、(ハ)3
00〜700℃の温度での時効処理、(ニ)加工度30
%以下の冷間圧延、および(ホ)350〜700℃の温
度での歪取焼鈍、からなる工程を順次行うことを特徴と
する電子機器用銅合金の製造方法に関する。以下、本発
明の構成を説明する。まず、本発明の銅合金の組成を説
明する。
According to the present invention, (a) by weight, Cr: 0.05-0.4%, and Zr: 0.03.
.About.0.25% and the balance is Cu and unavoidable impurities, (b) Cr: 0.05
0.4%, Zr: 0.03 to 0.25%, Zn: 0.0
A copper alloy containing 6 to 2.0% and the balance Cu and unavoidable impurities, or c) Cr: 0.05
~ 0.4%, Zr: 0.03-0.25%, and Z
n: 0.06 to 2.0% is contained, and further Ti, Fe, N
One or more of i, Sn, In, Mn, P, Mg and Si: Manufacture of a copper alloy for electronic devices, which contains 0.01 to 1.0% in total and the balance of Cu and inevitable impurities. In the method, (a) solution treatment performed at a temperature of 700 ° C. or higher and under conditions where the average crystal grain size does not exceed 40 μm, (b) cold rolling with a workability of 20 to 60%, (c) 3
Aging treatment at a temperature of 00 to 700 ° C, (d) processing degree of 30
% Cold or less and (e) strain relief annealing at a temperature of 350 to 700 ° C. are sequentially performed, and the invention relates to a method for producing a copper alloy for electronic devices. The configuration of the present invention will be described below. First, the composition of the copper alloy of the present invention will be described.

【0009】Cr Crは、本合金を時効処理したときに単独で母相中に析
出して合金の強度および耐熱性を向上させる作用を発揮
するが、その含有量が0.05%未満では析出が不十分
であるために所望の効果が期待できず、一方0.4%を
超えてCrを含有させると溶体化処理後にも未固溶Cr
が母相中にCr相として残留するようになって導電率お
よび加工性を著しく低下させることから、Cr含有量は
0.05〜0.4%と定めた。
Cr When Cr is aged, the present Cr alone precipitates in the matrix phase to improve the strength and heat resistance of the alloy, but if its content is less than 0.05%, it precipitates. However, the desired effect cannot be expected because the content of Cr is not sufficient.
Remains as a Cr phase in the mother phase, resulting in a significant decrease in conductivity and workability. Therefore, the Cr content was determined to be 0.05 to 0.4%.

【0010】Zr Zrには、時効処理によりCuと化合物を形成して母相
中に析出しこれを強化する作用があるが、その含有量が
0.03%未満では析出が不十分であるために所望の効
果が得られず、一方0.25%を超えてZrを含有させ
ると、溶体化処理後にも未固溶Zrが母相中にZr相と
して残留するようになって導電率および加工性の著しい
低下を招くことから、Zr含有量は0.03〜0.25
%と定めた。
Zr Zr has an action of forming a compound with Cu and precipitating in the matrix phase by aging treatment to strengthen this, but if the content is less than 0.03%, the precipitation is insufficient. However, if Zr is contained in excess of 0.25%, undissolved Zr remains in the mother phase as the Zr phase even after the solution treatment, and the conductivity and processing Zr content is 0.03 to 0.25 because it causes a remarkable decrease in the property.
Defined as%.

【0011】Zn Znは、半田の耐熱剥離性を向上させる作用を有してい
るため必要により添加される成分であるが、その含有量
が0.06%未満では前記作用による所望の効果が得ら
れず、一方2.0%を超えてZnを含有させると導電率
並びに応力緩和特性が劣化することから、Zn含有量は
0.06〜2.0%と定めた。
Zn Zn is a component that is added as necessary because it has the function of improving the heat-resistant peeling property of solder, but if the content is less than 0.06%, the desired effect due to the above-mentioned action is obtained. However, if the Zn content exceeds 2.0%, the conductivity and the stress relaxation property deteriorate, so the Zn content was set to 0.06 to 2.0%.

【0012】Ti,Fe,Ni,Sn,In,Mn,
P,MgおよびSi これらの成分は、何れも合金の導電性を大きく低下させ
ずに析出強化や固溶強化により向上させる作用を有して
おり、従って必要により1種または2種以上の添加がな
されるが、その含有量が総量で0.01%未満であると
前記作用による所望の効果が得られず、一方、総量で
l.0%を超える含有量になると合金の導電性および加
工性を著しく劣化する。このため、単独添加あるいは2
種以上の場合添加がなされるTi,Fe,Ni,Sn,
In,Mn,P,MgおよびSiの含有量は総量で0.
01〜1.0%と定めた。続いて、上記組成の銅合金の
製造工程を説明する。
Ti, Fe, Ni, Sn, In, Mn,
Each of P, Mg and Si has the effect of improving the conductivity of the alloy by precipitation strengthening or solid solution strengthening without significantly deteriorating the conductivity of the alloy. Therefore, if necessary, one or more of them may be added. However, if the total content is less than 0.01%, the desired effect due to the above-described action cannot be obtained, while the total content is less than 0.01%. If the content exceeds 0%, the conductivity and workability of the alloy will be significantly deteriorated. For this reason, single addition or 2
Ti, Fe, Ni, Sn, which are added in the case of more than one kind,
The total content of In, Mn, P, Mg and Si is 0.
It was set to 01 to 1.0%. Then, the manufacturing process of the copper alloy of the said composition is demonstrated.

【0013】溶体化処理 溶体化処理は、Cr、ZrおよびTi等を母相中に固溶
することにより、後の時効処理で高強度の材料を得るた
めである。溶体化処理温度が高いほうがCr、Zrおよ
びTi等のマトリックス中へ固溶量が増し、時効後の強
度が高くなる。従って溶体化処理温度を700℃以上と
することにより高強度を確保する。溶体化処理温度が高
温になりかつ又は処理時間が長くなると結晶粒が粗大化
する。溶体化処理後の平均結晶粒径が40μmを超える
と最終曲げ加工を受けたときに曲げ部に肌あれが発生す
るため平均結晶粒径を40μm以下に制限する必要があ
る。また、溶体化処理の際、冷却速度は速いほど高強度
が得られやすく、具体的には水冷を行うことが望まし
い。
Solution Treatment The solution treatment is to obtain a high-strength material in the subsequent aging treatment by solid-solving Cr, Zr, Ti and the like in the matrix phase. When the solution treatment temperature is higher, the amount of solid solution increases in the matrix of Cr, Zr, Ti, etc., and the strength after aging becomes higher. Therefore, high strength is secured by setting the solution treatment temperature to 700 ° C. or higher. When the solution treatment temperature becomes high and / or the treatment time becomes long, the crystal grains become coarse. If the average crystal grain size after solution treatment exceeds 40 μm, roughening occurs in the bent portion when the final bending process is performed, so it is necessary to limit the average crystal grain size to 40 μm or less. Further, in the solution treatment, the higher the cooling rate, the higher the strength is likely to be obtained. Specifically, it is desirable to perform water cooling.

【0014】冷間圧延 本発明においては、溶体化処理後に冷間圧延を行うこと
により、加工硬化と、次の時効工程での析出物の析出を
促進することにより、高強度を得る。第1回目の冷間圧
延は20〜60%の加工度で行う。冷間圧延の加工度を
20%以上とするのは、20%未満では上述の効果が不
十分となり、所望の強度が得られないためである。ま
た、加工度を60%以下とするのは、60%を超えると
最終製品の曲げ加工の際、曲げ部に肌荒れが発生するた
めである。冷間圧延後の硬さはHv130〜160の範
囲内であることが好ましい。
Cold rolling In the present invention, high strength is obtained by promoting work hardening and precipitation of precipitates in the subsequent aging step by performing cold rolling after the solution treatment. The first cold rolling is performed at a workability of 20 to 60%. The workability of cold rolling is set to 20% or more because if the content is less than 20%, the above-described effect becomes insufficient and desired strength cannot be obtained. In addition, the reason why the workability is 60% or less is that when the workability exceeds 60%, roughening occurs in the bent portion during bending of the final product. The hardness after cold rolling is preferably in the range of Hv 130 to 160.

【0015】時効処理 時効処理は、強度および導電性を向上させるために本C
u−Cr−Zr系合では必要である。時効処理温度を3
00〜700℃とする理由は、300℃未満では時効処
理に時間がかかり経済的ではなく、700℃を超える
と、CrおよびZrが固溶してしまい、時効硬化型の合
金と特徴である強度および導電性が得られないためであ
る。時効処理後の硬さはHv160〜190の範囲内で
あることが好ましい。
The aging aging treatment, this in order to improve the strength and conductivity C
Required for u-Cr-Zr system. Aging treatment temperature is 3
The reason for setting the temperature to 00 to 700 ° C. is that it is not economical because the aging treatment is time-consuming and is less than 300 ° C., and if it exceeds 700 ° C., Cr and Zr are solid-dissolved, which is a characteristic of the age hardening alloy This is because conductivity cannot be obtained. The hardness after the aging treatment is preferably in the range of Hv160 to 190.

【0016】2回目冷間圧延 本発明においては時効処理後冷間圧延を行うことによ
り、加工硬化をもたらし、又前段の時効処理で生成した
析出物の微細化を図りさらに著しい強度上昇を起こさせ
る。この際の加工度を30%以下とするのは、30%を
超えると、最終製品の曲げ加工の際曲げ部に肌荒れが発
生するためである。第2回冷間圧延後の硬さはHv17
0〜200の範囲内にあることが好ましい。
Second Cold Rolling In the present invention, cold rolling after aging treatment brings about work hardening, and further refines the precipitate formed in the preceding aging treatment to further increase the strength significantly. . The reason why the workability at this time is 30% or less is that if the workability exceeds 30%, roughening occurs in the bent portion during bending of the final product. The hardness after the second cold rolling is Hv17.
It is preferably in the range of 0 to 200.

【0017】歪取焼鈍 本発明においては、以上の加工および熱処理状態からば
ね性を向上させかつ延性を回復させるために、350〜
700℃で歪取焼鈍を行う。歪取焼鈍温度を350℃〜
700℃とした理由は、350℃未満では十分なばね性
と延性が得られないためであり、700℃を超えると析
出物の再固溶が生じ、強度が著しく低下するためであ
る。
In the present invention, in order to improve the spring property and recover the ductility from the above-mentioned working and heat treatment conditions, the strain relief annealing should be carried out in the range of 350-350.
Strain relief annealing is performed at 700 ° C. The strain relief annealing temperature is 350 ° C to
The reason for setting the temperature to 700 ° C. is that sufficient spring properties and ductility cannot be obtained at temperatures lower than 350 ° C., and if it exceeds 700 ° C., re-dissolution of precipitates occurs and the strength remarkably decreases.

【0018】なお、本発明の工程、製造条件の規定は、
平均結晶粒径を40μm以下に調整する溶体化処理以降
の工程に関してのものであり、それ以前の工程、製造条
件は任意のものでかまわない。すなわち、前記の溶体化
処理以前に主としてインゴット減面のため行う溶体化処
理、熱間圧延、中間焼鈍、冷間圧延といった工程につい
てなんら規定しない。しかしながら、熱間圧延などによ
り結晶粒が粗大化しているときは冷間圧延あるいは冷間
圧延と中間焼鈍の組合わせにより平均結晶粒径を、溶体
化処理直前に40μm以下に調整することが必要であ
る。
The process and manufacturing conditions of the present invention are defined as follows.
This is related to the steps after the solution heat treatment for adjusting the average crystal grain size to 40 μm or less, and the steps and manufacturing conditions before that may be arbitrary. That is, the steps such as solution treatment, hot rolling, intermediate annealing, and cold rolling which are mainly performed for reducing the ingot surface before the solution treatment are not specified. However, when the crystal grains are coarsened by hot rolling or the like, it is necessary to adjust the average crystal grain size to 40 μm or less immediately before solution treatment by cold rolling or a combination of cold rolling and intermediate annealing. is there.

【0019】[0019]

【作用】[Action]

(a)本発明においては上述のようにCrおよびZrの
固溶と時効が十分に起こるように合金組成と製造条件を
定め、また時効処理により十分硬化させた後に比較的軽
加工度の冷間圧延を行うことにより強度を上昇させた。 (b)合金組成を上述のように限定するとともに、時効
処理により析出反応を十分に起こさせることにより応力
緩和率を小さくした。 (c)CrとZrの時効が十分に起こる様な合金組成と
製造条件を定めることにより良好な導電率が得られた。 (d)本発明の組成の銅合金を溶体化処理した後の平均
結晶粒度40μm以下に制限し、後続の2回の冷間圧延
の加工度を比較的おだやかなものとすると、冷間圧延・
時効状態ですぐれた曲げ性が実現される。 (e)CrとZrの析出が十分に起こる様に合金組成と
製造条件を定め、さらに最適な歪取焼鈍を施すことによ
りばね限界値を高くできる。
(A) In the present invention, as described above, the alloy composition and manufacturing conditions are determined so that solid solution and aging of Cr and Zr occur sufficiently, and after sufficiently hardening by aging treatment, cold working with a relatively light workability is performed. The strength was increased by rolling. (B) The alloy composition was limited as described above, and the stress relaxation rate was reduced by sufficiently causing the precipitation reaction by the aging treatment. (C) Good electrical conductivity was obtained by setting the alloy composition and manufacturing conditions so that the aging of Cr and Zr sufficiently occurred. (D) If the average grain size of the copper alloy having the composition of the present invention after solution treatment is limited to 40 μm or less and the workability of the subsequent two cold rolling operations is made to be relatively mild, cold rolling
Excellent bendability is achieved in the aging state. (E) The spring limit value can be increased by determining the alloy composition and manufacturing conditions so that precipitation of Cr and Zr sufficiently occurs, and further performing optimum strain relief annealing.

【0020】[0020]

【実施例】続いて、本発明の効果を、特に好ましい組成
範囲を示す実施例により更に具体的に説明する。まず、
電気銅あるいは無酸素銅を主原料とし、銅クロム母合
金、銅ジルコニウム母合金、亜鉛、チタン、ニッケル、
スズ、インジウム、マンガン、マグネシウムおよび銅リ
ン母合金を副原料とし、高周波溶解炉にて図1、2の表
に示す各種成分組成の銅合金を真空中あるいはAr雰囲
気中で溶製し、厚さ30mmのインゴットに鋳造した。
次に、これら各インゴットを熱間加工あるいは冷間加工
により所定の厚さにした後、表中の平均結晶粒径に調整
するための溶体化処理(850℃×1〜10分)、1回
目の冷間圧延、時効処理、最終の冷間圧延、歪取焼鈍を
表1に示す条件で順次行い、0.25mmの板とした。
EXAMPLES Next, the effects of the present invention will be described more specifically with reference to examples showing particularly preferable composition ranges. First,
Mainly made of electrolytic copper or oxygen-free copper, copper chromium master alloy, copper zirconium master alloy, zinc, titanium, nickel,
Using tin, indium, manganese, magnesium and copper-phosphorus master alloys as auxiliary materials, copper alloys of various composition shown in the tables of FIGS. It was cast into a 30 mm ingot.
Next, after making each of these ingots a predetermined thickness by hot working or cold working, solution treatment (850 ° C. × 1 to 10 minutes) for adjusting the average crystal grain size in the table, the first time Cold rolling, aging treatment, final cold rolling, and strain relief annealing were sequentially performed under the conditions shown in Table 1 to obtain a 0.25 mm plate.

【0021】そして、得られた板材から各種の試験片を
採取して材料試験を行い、電子機器材料としての特性を
評価した。なお、評価した特性は、強度、伸び、導電
性、ばね性、曲げ性、応力緩和特性および半田熱剥離性
である。強度および伸びは引張り試験により測定し、導
電性は導電率(%IACS)を求めた。また、ばね性に
ついてはばね限界値(Kb)を測定した。曲げ性につい
ては、W曲げ試験機によって曲げ加工を施し、その曲げ
部を目視観察することにより肌荒れの程度および割れの
有無を調査して評価した。なお、評価結果は、 ○:肌荒れおよび割れの発生なし ×:肌荒れまたは割れが発生 で表示した。
Then, various test pieces were sampled from the obtained plate material and a material test was conducted to evaluate the characteristics as a material for electronic equipment. The evaluated properties are strength, elongation, conductivity, spring property, bendability, stress relaxation property, and solder heat peeling property. The strength and elongation were measured by a tensile test, and the conductivity was determined by the conductivity (% IACS). As for the spring property, the spring limit value (Kb) was measured. The bendability was evaluated by performing bending with a W bending tester and visually observing the bent portion to examine the degree of skin roughness and the presence or absence of cracks. In addition, the evaluation results are indicated by ◯: no skin roughness and cracking occurred, X: skin roughness or cracking occurred.

【0022】応力緩和特性については、短冊状試験片の
一端を固定すると共に他端に応力を負荷して曲げ応力を
加え、この状態で150℃に1000時間保持した後、
応力を解放した際にもなお残留する歪測定した。
Regarding the stress relaxation characteristics, one end of a strip-shaped test piece was fixed and a stress was applied to the other end to apply a bending stress, and this state was maintained at 150 ° C. for 1000 hours,
The strain that remained when the stress was released was measured.

【0023】半田耐熱剥離性の調査は、素材に5μm厚
の半田(90%Sn−10%Pb)メッキを施した後、
150℃の高温槽に1000時間まで保持し、この間1
00時間毎に取り出して90°曲げ往復1回を施して半
田剥離の開始時間を調べる方法によった。なお1000
時間まで剥離のなかったものは調査結果を「1000
h」と表示した。
The heat-resistant peeling property of the solder was investigated by plating the material with a solder (90% Sn-10% Pb) having a thickness of 5 μm.
Hold in a high temperature tank at 150 ° C for up to 1000 hours, during which 1
It was taken out every 00 hours and subjected to 90 ° bending reciprocation once to examine the start time of solder peeling. 1000
If the peeling did not occur until the time, the investigation result was "1000.
h ”was displayed.

【0024】これらの調査結果を図3、4の表に示す。
これらの表に示される結果からは次のことが明らかであ
る。即ち、本発明合金1〜16は、いずれも強度、導電
性、曲げ性、応力緩和特性が共に優れており、また、そ
の他の特性についても十分に良好な評価が得られるもの
である。
The results of these investigations are shown in the tables of FIGS.
From the results shown in these tables, the following is clear. That is, all of the alloys 1 to 16 of the present invention are excellent in strength, conductivity, bendability, and stress relaxation characteristics, and sufficiently good evaluations of other characteristics can be obtained.

【0025】これに対して、比較合金は17はCr含有
量が十分でないため強度が劣っており、また比較合金1
8、19はZr,Cr含有量がそれぞれ上限値を超えて
いるため導電性および曲げ性が劣っている。次に、比較
合金20はZn含有量が上限値を超えているため、応力
緩和特性および導電性が劣っている。比較合金21は溶
体化処理後の結晶粒径が上限値を超えているために、比
較合金22は1回目の冷間圧延の加工度が上限値を超え
ているために、また比較合金24は最終の冷間圧延の加
工度が上限値を超えているために曲げ性が劣っている。
比較合金23は1回目の冷間圧延の加工度が加減値を超
えているために、比較合金25は、歪取焼鈍の温度が上
限値を超えているために、強度が劣っている例である。
On the other hand, Comparative Alloy 17 has a poor strength because the Cr content is not sufficient, and Comparative Alloy 1
In Nos. 8 and 19, the Zr and Cr contents exceeded the respective upper limits, and thus the conductivity and bendability were poor. Next, since the Zn content of the comparative alloy 20 exceeds the upper limit, the stress relaxation characteristics and the conductivity are inferior. Comparative alloy 21 has a crystal grain size after solution treatment that exceeds the upper limit value, and comparative alloy 22 has a workability in the first cold rolling that exceeds the upper limit value. Since the workability of the final cold rolling exceeds the upper limit, bendability is poor.
In Comparative Example 23, the workability of the first cold rolling exceeds the adjustable value, and in Comparative Example 25, the temperature of the stress relief annealing exceeds the upper limit value, so that the strength is inferior. is there.

【0026】[0026]

【発明の効果】本発明の製造方法を採用することによ
り、強度、導電性、曲げ性および応力緩和特性の良好な
銅合金を得ることが可能となり、電子機器類の小型化、
薄肉化に大きく寄与し得るなど、産業上極めて有用な効
果がもたらされる。
By adopting the manufacturing method of the present invention, it becomes possible to obtain a copper alloy having good strength, conductivity, bendability and stress relaxation characteristics, and to reduce the size of electronic devices,
An extremely useful effect in industry is brought about, such as being able to greatly contribute to thinning.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明合金の組成ならびに製造条件を示す表で
ある。
FIG. 1 is a table showing the composition and production conditions of the alloy of the present invention.

【図2】比較合金の組成ならびに製造条件を示す表であ
る。
FIG. 2 is a table showing the composition and manufacturing conditions of comparative alloys.

【図3】表1の合金の特性を示す表である。FIG. 3 is a table showing characteristics of the alloys in Table 1.

【図4】表2の合金の特性を示す表である。FIG. 4 is a table showing the properties of the alloys of Table 2.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量割合で、Cr:0.05〜0.4%
およびZr:0.03〜0.25%を含有すると共に、
残部がCuおよび不可避的不純物からなる電子機器用銅
合金の製造方法において、 (イ)700℃以上の温度でかつ平均結晶粒径が40μ
mを超えない条件で行う溶体化処理、 (ロ)加工度20〜60%の冷間圧延、 (ハ)300〜700℃の温度での時効処理、 (ニ)加工度30%以下の冷間圧延、および (ホ)350〜700℃の温度での歪取焼鈍、からなる
工程を順次行うことを特徴とする電子機器用銅合金の製
造方法。
1. Cr: 0.05-0.4% by weight
And Zr: 0.03 to 0.25%, and
In the method for producing a copper alloy for electronic devices, the balance of which is Cu and inevitable impurities, (a) a temperature of 700 ° C. or higher and an average crystal grain size of 40 μ
Solution treatment performed under conditions not exceeding m, (b) cold rolling with a working degree of 20 to 60%, (c) aging treatment at a temperature of 300 to 700 ° C., (d) cold rolling with a working degree of 30% or less. A method for producing a copper alloy for electronic devices, which comprises sequentially performing the steps of rolling and (e) strain relief annealing at a temperature of 350 to 700 ° C.
【請求項2】 重量割合で、Cr:0.05〜0.4
%、Zr:0.03〜0.25%,Zn:0.06〜
2.0%を含有すると共に、残部がCuおよび不可避的
不純物からなる電子機器用銅合金の製造方法において、 (イ)700℃以上の温度でかつ平均結晶粒径が40μ
mを超えない条件で行う溶体化処理、 (ロ)加工度20〜60%の冷間圧延、 (ハ)300〜700℃の温度での時効処理、 (ニ)加工度30%以下の冷間圧延、および (ホ)350〜700℃の温度での歪取焼鈍、からなる
工程を順次行うことを特徴とする電子機器用銅合金の製
造方法。
2. A weight ratio of Cr: 0.05 to 0.4.
%, Zr: 0.03 to 0.25%, Zn: 0.06 to
In a method for producing a copper alloy for electronic devices, which contains 2.0% and the balance is Cu and inevitable impurities, (a) at a temperature of 700 ° C. or higher and an average crystal grain size of 40 μm.
Solution treatment performed under conditions not exceeding m, (b) cold rolling with a working degree of 20 to 60%, (c) aging treatment at a temperature of 300 to 700 ° C., (d) cold rolling with a working degree of 30% or less. A method for producing a copper alloy for electronic devices, which comprises sequentially performing the steps of rolling and (e) strain relief annealing at a temperature of 350 to 700 ° C.
【請求項3】 重量割合で、Cr:0.05〜0.4
%、Zr:0.03〜0.25%、およびZn:0.0
6〜2.0%を含有し、更にTi,Fe,Ni,Sn,
In,Mn,P,MgおよびSiの1種以上:総量で
0.01〜1.0%をも含有すると共に、残部がCuお
よび不可避的不純物からなる電子機器用銅合金の製造方
法において、 (イ)700℃以上の温度でかつ平均結晶粒径が40μ
mを超えない条件で行う溶体化処理、 (ロ)加工度20〜60%の冷間圧延、 (ハ)300〜700℃の温度での時効処理、 (ニ)加工度30%以下の冷間圧延、および (ホ)350〜700℃の温度での歪取焼鈍、からなる
工程を順次行うことを特徴とする電子機器用銅合金の製
造方法。
3. A weight ratio of Cr: 0.05 to 0.4.
%, Zr: 0.03 to 0.25%, and Zn: 0.0
6 to 2.0% of Ti, Fe, Ni, Sn,
One or more of In, Mn, P, Mg, and Si: In a method for producing a copper alloy for electronic devices, which contains 0.01 to 1.0% in total, and the balance of Cu and inevitable impurities, B) At a temperature of 700 ° C or higher and an average crystal grain size of 40μ
Solution treatment performed under conditions not exceeding m, (b) cold rolling with a working degree of 20 to 60%, (c) aging treatment at a temperature of 300 to 700 ° C., (d) cold rolling with a working degree of 30% or less. A method for producing a copper alloy for electronic devices, which comprises sequentially performing the steps of rolling and (e) strain relief annealing at a temperature of 350 to 700 ° C.
JP5234394A 1994-03-23 1994-03-23 Production of copper alloy for electronic equipment Pending JPH07258804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5234394A JPH07258804A (en) 1994-03-23 1994-03-23 Production of copper alloy for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5234394A JPH07258804A (en) 1994-03-23 1994-03-23 Production of copper alloy for electronic equipment

Publications (1)

Publication Number Publication Date
JPH07258804A true JPH07258804A (en) 1995-10-09

Family

ID=12912166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5234394A Pending JPH07258804A (en) 1994-03-23 1994-03-23 Production of copper alloy for electronic equipment

Country Status (1)

Country Link
JP (1) JPH07258804A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344163A (en) * 2004-06-02 2005-12-15 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic equipment
JP2006336068A (en) * 2005-06-01 2006-12-14 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic devices
EP1873272A1 (en) * 2005-04-15 2008-01-02 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
US7338631B2 (en) 2004-04-14 2008-03-04 Mitsubishi Shindoh Co., Ltd. Copper alloy and method of manufacturing the same
JP2009132965A (en) * 2007-11-30 2009-06-18 Hitachi Cable Ltd Copper alloy material for electrical and electronic parts
WO2012141047A1 (en) * 2011-04-15 2012-10-18 株式会社小松ライト製作所 Thermal protector and battery using same
JP5668814B1 (en) * 2013-08-12 2015-02-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
CN108048687A (en) * 2017-12-12 2018-05-18 中国西电集团公司 A kind of chromium-zirconium-copper magnesium quaternary alloy wire rod and its manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485200B2 (en) 2004-04-14 2009-02-03 Mitsubishi Shindoh Co., Ltd. Copper alloy and method of manufacturing the same
US7338631B2 (en) 2004-04-14 2008-03-04 Mitsubishi Shindoh Co., Ltd. Copper alloy and method of manufacturing the same
KR100845987B1 (en) * 2004-04-14 2008-07-11 미쓰비시 신도 가부시키가이샤 Copper alloy for electrical and electronic equipments having excellent durability and flexibility
JP4646192B2 (en) * 2004-06-02 2011-03-09 古河電気工業株式会社 Copper alloy material for electrical and electronic equipment and method for producing the same
JP2005344163A (en) * 2004-06-02 2005-12-15 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic equipment
KR100958560B1 (en) * 2005-04-15 2010-05-17 제이에프이 세이미츠 가부시키가이샤 Alloy material for dissipating heat from semiconductor device and method for production thereof
EP1873272A4 (en) * 2005-04-15 2008-09-24 Jfe Prec Corp Alloy material for dissipating heat from semiconductor device and method for production thereof
EP1873272A1 (en) * 2005-04-15 2008-01-02 Jfe Precision Corporation Alloy material for dissipating heat from semiconductor device and method for production thereof
US7955448B2 (en) 2005-04-15 2011-06-07 Jfe Precision Corporation Alloy for heat dissipation of semiconductor device and semiconductor module, and method of manufacturing alloy
JP2006336068A (en) * 2005-06-01 2006-12-14 Furukawa Electric Co Ltd:The Copper alloy for electrical and electronic devices
JP2009132965A (en) * 2007-11-30 2009-06-18 Hitachi Cable Ltd Copper alloy material for electrical and electronic parts
WO2012141047A1 (en) * 2011-04-15 2012-10-18 株式会社小松ライト製作所 Thermal protector and battery using same
JP5148023B2 (en) * 2011-04-15 2013-02-20 株式会社小松ライト製作所 Thermal protector and battery using the same
JP5668814B1 (en) * 2013-08-12 2015-02-12 三菱マテリアル株式会社 Copper alloy for electronic and electrical equipment, copper alloy sheet for electronic and electrical equipment, parts for electronic and electrical equipment, terminals and bus bars
JP2015036433A (en) * 2013-08-12 2015-02-23 三菱マテリアル株式会社 Copper alloy for electronic/electric apparatus, copper alloy sheet for electronic/electric apparatus, component for electronic/electric apparatus, terminal and bus bar
US10392680B2 (en) 2013-08-12 2019-08-27 Mitsubishi Materials Corporation Copper alloy for electric and electronic devices, copper alloy sheet for electric and electronic devices, component for electric and electronic devices, terminal, and bus bar
CN108048687A (en) * 2017-12-12 2018-05-18 中国西电集团公司 A kind of chromium-zirconium-copper magnesium quaternary alloy wire rod and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3803981B2 (en) Method for producing copper alloy having high strength and high conductivity
TWI502086B (en) Copper alloy sheet and method for producing same
JP5320642B2 (en) Copper alloy manufacturing method and copper alloy
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
JP4177104B2 (en) High-strength copper alloy excellent in bending workability, manufacturing method thereof, and terminal / connector using the same
WO2002012583A1 (en) Silver containing copper alloy
JP4653240B2 (en) Copper alloy materials and electrical / electronic parts for electrical / electronic equipment
JP2011508081A (en) Copper-nickel-silicon alloy
JP3383615B2 (en) Copper alloy for electronic materials and manufacturing method thereof
CN1086207C (en) Grain refined tin brass
JP2004315940A (en) Cu-Ni-Si ALLOY AND ITS PRODUCTION METHOD
JP2000073130A (en) Copper alloy sheet excellent in press punchability
US5853505A (en) Iron modified tin brass
JPH07166279A (en) Copper-base alloy excellent in corrosion resistance, punchability, and machinability and production thereof
JP3511648B2 (en) Method for producing high-strength Cu alloy sheet strip
US5882442A (en) Iron modified phosphor-bronze
JP2790238B2 (en) Method for producing titanium copper alloy excellent in bending property and stress relaxation property
JPH07258804A (en) Production of copper alloy for electronic equipment
JP2005133185A (en) Deposition type copper alloy heat treatment method, deposition type copper alloy, and raw material thereof
KR100513943B1 (en) Copper and copper alloy, and method for production of the same
JPH10195562A (en) Copper alloy for electrical and electronic equipment, excellent in blanking workability, and its production
JPH1143731A (en) High strength copper alloy excellent in stamping property and suitable for silver plating
JPH0987814A (en) Production of copper alloy for electronic equipment
JPH0718355A (en) Copper alloy for electronic appliance and its production
JP2004269962A (en) High strength copper alloy