JPH07166279A - Copper-base alloy excellent in corrosion resistance, punchability, and machinability and production thereof - Google Patents

Copper-base alloy excellent in corrosion resistance, punchability, and machinability and production thereof

Info

Publication number
JPH07166279A
JPH07166279A JP30924193A JP30924193A JPH07166279A JP H07166279 A JPH07166279 A JP H07166279A JP 30924193 A JP30924193 A JP 30924193A JP 30924193 A JP30924193 A JP 30924193A JP H07166279 A JPH07166279 A JP H07166279A
Authority
JP
Japan
Prior art keywords
copper
corrosion resistance
machinability
phase
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30924193A
Other languages
Japanese (ja)
Inventor
Tetsuzo Ogura
哲造 小倉
Yukiya Nomura
幸矢 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30924193A priority Critical patent/JPH07166279A/en
Publication of JPH07166279A publication Critical patent/JPH07166279A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To produce the copper-base alloy by specifying the comosition, in which Ni content is reduced as compared with nickel silver and a specific amount of Mn is added, and also specifying the area percentage of beta-phase comprising in a metallic structure. CONSTITUTION:An alloy ingot consisting of, by weight, 25-40% Zn, 0.1-8% Mn, and the balance copper, is worked into a specific shape. The resultant worked material is annealed at 450-600 deg.C for >=30min and then cold-worked at >=10% draft. The cold worked material is annealed at 350-500 deg.C for >=30min. By this method, the copper-base alloy, where the area percentage of beta-phase comprising in the metallic structure is 5-50% and which has corrosion resistance equal to that of nickel silver and also has punchability and machinability equal to those of brass and is reduced in cost, can be obtained. Moreover, 0.001-2% of one or more elements among Sn, P, Mg, Al, Cr, Fe, Co, Ag, Cd, Sb, Ti, Zr, In, B, Ta, Si, and Pd can be further incorporated into the above copper alloy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、家屋及び自動車等のキ
ー、コイン並びに各種装飾及び建築物等に使用される耐
食性、打抜き加工性及び切削性が優れた銅基合金及びそ
の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper-based alloy having excellent corrosion resistance, punching workability and machinability, which is used for keys and coins of houses and automobiles, various decorations and buildings, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より家屋及び自動車などのキーに
は、黄銅(C2801等)に、Niメッキ又はCrメッキを
施したものが使用されている。これらのメッキ製品には
使用中にメッキ層が剥離又は摩耗しやすく、黄銅素地が
露出して外観が損なわれるという虞れがある。しかも、
人が直接さわるものであるため、露出した部分の黄銅は
容易に腐食される。このため、近時、上記黄銅に替わ
り、メッキを施す必要がない洋白が使用されるようにな
ってきた。洋白は銀白色を呈する銅基合金であり、加工
性及び耐食性が優れているため、無メッキでキー又は各
種の装飾及び建築物などに広く使用されている。
2. Description of the Related Art Conventionally, brass (C2801 etc.) plated with Ni or Cr is used for keys of houses and automobiles. In these plated products, the plated layer is likely to be peeled off or worn during use, and there is a risk that the brass base is exposed and the appearance is impaired. Moreover,
The exposed brass is easily corroded because it is directly touched by a person. For this reason, recently, nickel-white, which does not require plating, has been used in place of the brass. Nickel white is a silver-based copper-based alloy and is excellent in workability and corrosion resistance, and is widely used for keys or various decorations and buildings without plating.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、洋白は
JIS C7351又はC7521に規定されているようにNi含有量
が高いため、耐食性が優れている反面、打抜き加工性及
び切削性が劣り、またコストが高いという問題点があ
る。
[Problems to be Solved by the Invention]
Since the Ni content is high as specified in JIS C7351 or C7521, the corrosion resistance is excellent, but the punching workability and machinability are inferior and the cost is high.

【0004】本発明はかかる問題点に鑑みてなされたも
のであって、耐食性はNiを高濃度で含有する洋白と同
等でありながら、黄銅と同程度の打抜き加工性及び切削
性を有し、更にNi含有量の低減により著しいコスト低
減を可能とした耐食性、打抜き加工性及び切削性が優れ
た銅基合金及びその製造方法を提供することを目的とす
る。
The present invention has been made in view of the above problems, and has corrosion resistance equivalent to nickel white containing a high concentration of Ni, but has punching workability and machinability comparable to those of brass. Another object of the present invention is to provide a copper-based alloy having excellent corrosion resistance, punching workability and machinability, which enables significant cost reduction by reducing the Ni content, and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明に係る耐食性、打
抜き加工性及び切削性が優れた銅基合金は、Zn:25乃
至40重量%、Ni:6乃至12重量%、Mn:0.1乃至8重
量%を含有し、残部が銅及び不可避的不純物からなり、
金属組織中に占めるβ相の面積割合が5乃至50%である
ことを特徴とする。なお、上記元素に加えて、Sn、
P、Mg、Al、Cr、Fe、Co、Ag、Cd、S
b、Ti、Zr、In、B、Ta、Si及びPbからな
る群から選択された1種又は2種以上の元素を総量で0.
001乃至2重量%含有してもよい。
The copper-based alloy excellent in corrosion resistance, punching workability and machinability according to the present invention is Zn: 25 to 40% by weight, Ni: 6 to 12% by weight, Mn: 0.1 to 8%. % By weight, the balance consisting of copper and inevitable impurities,
The area ratio of the β phase in the metal structure is 5 to 50%. In addition to the above elements, Sn,
P, Mg, Al, Cr, Fe, Co, Ag, Cd, S
b, Ti, Zr, In, B, Ta, Si, and Pb, the total amount of one or more elements selected from the group consisting of 0 or more.
It may be contained in an amount of 001 to 2% by weight.

【0006】本発明に係る耐食性、打抜き加工性及び切
削性が優れた銅基合金の製造方法は、Zn:25乃至40重
量%、Ni:6乃至12重量%、Mn:0.1乃至8重量%を
含有し、残部が銅及び不可避的不純物からなる合金鋳塊
を所定の形状に加工する工程と、この加工材を450乃至6
00℃の温度で30分間以上焼鈍する第1の焼鈍工程と、焼
鈍後の加工材を10%以上の加工率で冷間加工する工程
と、この冷間加工材を350乃至500℃の温度で30分間以上
焼鈍する第2の焼鈍工程と、を有することを特徴とす
る。なお、前記合金鋳塊には、前記元素に加えて、S
n、P、Mg、Al、Cr、Fe、Co、Ag、Cd、
Sb、Ti、Zr、In、B、Ta、Si及びPbから
なる群から選択された少なくとも1種の元素を総量で0.
001乃至2重量%含有していてもよい。また、前記第2の
焼鈍工程の後に、30%以下の加工率で冷間加工を施して
もよい。
The method for producing a copper-based alloy excellent in corrosion resistance, punching workability and machinability according to the present invention, uses Zn: 25 to 40% by weight, Ni: 6 to 12% by weight, Mn: 0.1 to 8% by weight. A step of processing an alloy ingot containing the balance of copper and unavoidable impurities into a predetermined shape, and 450 to 6
The first annealing step of annealing for 30 minutes or more at a temperature of 00 ° C, the step of cold working the worked material after annealing at a working rate of 10% or more, and the cold working material at a temperature of 350 to 500 ° C. A second annealing step of annealing for 30 minutes or more. In addition to the above elements, the alloy ingot contains S
n, P, Mg, Al, Cr, Fe, Co, Ag, Cd,
The total amount of at least one element selected from the group consisting of Sb, Ti, Zr, In, B, Ta, Si and Pb is 0.
It may be contained in an amount of 001 to 2% by weight. Further, after the second annealing step, cold working may be performed at a working rate of 30% or less.

【0007】[0007]

【作用】本願発明者等は、前述した従来技術の有する問
題点を解決すべく種々実験研究を行った。その結果、洋
白よりもNi含有量を低減させることによる耐食性の不
足分は、Mnを所定量添加することによって補うことが
可能であることが判明した。また、打抜き加工性及び切
削性を向上させるためには、β相を析出させることが有
効であることが判明した。しかし、β相は腐食されやす
いという性質がある。そこで、本願発明者等は、β相の
割合と打抜き加工性及び切削性との関係を調べた。その
結果、金属組織中に占めるβ相の面積の割合を5乃至50
重量%とすることによって、実用上差し支えない程度の
耐食性を有すると共に、良好な打抜き加工性及び切削性
を有する銅基合金を得ることができるとの知見を得た。
また、β相の結晶粒径を5μm以下とすることにより、
耐食性、打抜き加工性及び切削性がより一層向上し、α
相の結晶粒径を10μm以下とすると、耐食性、打抜き加
工性及び切削性の向上効果を更に高めることができる。
本願発明は、このような実験結果に基づいてなされたも
のである。
The inventors of the present application have conducted various experimental studies in order to solve the above-mentioned problems of the prior art. As a result, it was found that the insufficient corrosion resistance due to the lower Ni content than that of nickel silver can be compensated by adding a predetermined amount of Mn. Further, it has been found that precipitation of β phase is effective for improving punching workability and machinability. However, the β phase has a property of being easily corroded. Therefore, the inventors of the present application investigated the relationship between the proportion of β phase and punching workability and machinability. As a result, the ratio of the area of β phase in the metal structure is 5 to 50.
It has been found that a copper-based alloy having a corrosion resistance of practically acceptable level and good punching workability and machinability can be obtained by setting the content by weight.
Further, by setting the crystal grain size of the β phase to 5 μm or less,
Corrosion resistance, punching workability and machinability are further improved.
When the crystal grain size of the phase is 10 μm or less, the effects of improving corrosion resistance, punching workability and machinability can be further enhanced.
The present invention has been made based on such experimental results.

【0008】次に、本発明に係る耐食性、打抜き加工性
及び切削性が優れた銅基合金における各成分の添加理由
及び組成限定理由について説明する。
Next, the reason for adding each component and the reason for limiting the composition in the copper-based alloy excellent in corrosion resistance, punching workability and machinability according to the present invention will be explained.

【0009】Zn:25乃至40重量% Znは、機械的強度の向上に寄与すると共に、打抜き加
工性及び切削性の向上に寄与する。Zn含有量が25重量
%未満の場合は、強度向上に対するZnの寄与が小さ
く、打抜き加工性及び切削性に寄与し得るβ相の割合を
5%以上にすることが困難である。逆に、Zn含有量が4
0重量%を超えると、β相の割合を50%以下に抑えるこ
とが困難になって耐食性が劣化すると共に、冷間加工性
の劣化を招来する。従って、Zn含有量は25乃至40重量
%とする。
Zn: 25 to 40 wt% Zn contributes not only to improving mechanical strength but also to improving punching workability and machinability. When the Zn content is less than 25% by weight, the contribution of Zn to the strength improvement is small, and the proportion of β phase that can contribute to punching workability and machinability is set.
It is difficult to increase it to 5% or more. Conversely, if the Zn content is 4
If it exceeds 0% by weight, it becomes difficult to suppress the proportion of β phase to 50% or less, the corrosion resistance deteriorates, and the cold workability deteriorates. Therefore, the Zn content is 25 to 40% by weight.

【0010】Ni:6乃至12重量% Niは、機械的性質及び耐食性向上のために6重量%以
上の添加が必要である。しかし、Niを12重量%を超え
て添加しても、これらの特性に対する効果が飽和すると
共に、打抜き加工性及び切削性の劣化、更に熱間及び冷
間加工性の劣化をも招き、コストの増加も著しくなる。
従って、Ni含有量は6乃至12重量%とする。
Ni: 6 to 12 wt% Ni needs to be added in an amount of 6 wt% or more in order to improve mechanical properties and corrosion resistance. However, even if Ni is added in an amount of more than 12% by weight, the effects on these characteristics are saturated, and the punching workability and machinability are deteriorated, and the hot and cold workability are deteriorated. The increase will also be significant.
Therefore, the Ni content is 6 to 12% by weight.

【0011】Mn:0.1乃至8重量% Mnは、機械的性質及び耐食性を向上させると共に、前
記Niとの協働作用により銅基合金を高級感のある淡い
色調にする効果を有する。Mn含有量が0.1重量%未満
では、機械的性質及び耐食性向上に対する効果が小さ
く、Mnを8.0重量%を超えて含有しても熱間及び冷間
加工性の低下を招く。従って、Mn含有量は0.1乃至8.0
重量%とする。
Mn: 0.1 to 8 wt% Mn has the effect of improving the mechanical properties and corrosion resistance, and also having the effect of making the copper-based alloy have a high-grade, light-colored tone by the cooperative action with Ni. When the Mn content is less than 0.1% by weight, the effect on improving the mechanical properties and the corrosion resistance is small, and even when Mn exceeds 8.0% by weight, the hot and cold workability are deteriorated. Therefore, the Mn content is 0.1 to 8.0
Weight%

【0012】Sn、P、Mg、Al、Cr、Fe、C
o、Ag、Cd、Sb、Ti、Zr、In、B、Ta、
Si及びPbからなる群から選択された少なくとも1種
の元素:0.001乃至2.0重量% Sn、P、Mg、Al、Cr、Fe、Co、Ag、C
d、Sb、Ti、Zr、In、B、Ta、Si及びPb
からなる群から選択された少なくとも1種の元素を添加
することにより、銅基合金の機械的特性が向上する。こ
のため、必要に応じてこれらの元素のうちの1種又は2
種以上の元素を添加してもよい。しかし、これらの元素
の総計の添加量が0.001重量%未満の場合は、上述の効
果を十分に得ることができない。一方、これらの元素の
総計の含有量が2.0重量%を超えると、熱間及び冷間加
工性が劣化する。従って、Sn、P、Mg、Al、C
r、Fe、Co、Ag、Cd、Sb、Ti、Zr、I
n、B、Ta、Si及びPbからなる群から選択された
少なくとも1種の元素を添加する場合は、その添加量を
0.001乃至2.0重量%とすることが好ましい。
Sn, P, Mg, Al, Cr, Fe, C
o, Ag, Cd, Sb, Ti, Zr, In, B, Ta,
At least one selected from the group consisting of Si and Pb
Element: 0.001 to 2.0 wt% Sn, P, Mg, Al, Cr, Fe, Co, Ag, C
d, Sb, Ti, Zr, In, B, Ta, Si and Pb
Addition of at least one element selected from the group consisting of improves the mechanical properties of the copper-based alloy. Therefore, if necessary, one or two of these elements may be used.
One or more elements may be added. However, if the total addition amount of these elements is less than 0.001% by weight, the above effect cannot be sufficiently obtained. On the other hand, if the total content of these elements exceeds 2.0% by weight, hot and cold workability deteriorate. Therefore, Sn, P, Mg, Al, C
r, Fe, Co, Ag, Cd, Sb, Ti, Zr, I
When adding at least one element selected from the group consisting of n, B, Ta, Si and Pb, the addition amount is
It is preferably 0.001 to 2.0% by weight.

【0013】なお、Sn、P、Fe及びCoには、上述
した機械的特性の向上効果の外に、銅基合金の耐食性を
向上させるという効果があり、Mg、B及びPbには、
打抜き加工性及び切削性を向上させる効果がある。ま
た、Mg、Al、Cr、Zr及びTiには、銅基合金の
熱間加工性を向上させるという効果がある。
Note that Sn, P, Fe and Co have the effect of improving the corrosion resistance of the copper-based alloy in addition to the effect of improving the mechanical properties described above, and Mg, B and Pb include
It has the effect of improving punching workability and machinability. Further, Mg, Al, Cr, Zr and Ti have the effect of improving the hot workability of the copper-based alloy.

【0014】ところで、打抜き加工性及び切削性を向上
させるためには、前述の如く、β相を析出させることが
必要であるが、耐食性を損なわずにその効果を高めるた
めには、β相を微細且つ均一に分散させることが必要で
ある。本願発明者等は、β相の微細且つ均一な分散を実
現するための方法についても検討を行った。その結果、
焼鈍を複数回に分けて行うことにより、β相を微細且つ
均一に析出させることができるとの知見を得た。以下、
本発明に係る銅基合金の製造方法について説明する。
By the way, in order to improve the punching workability and the machinability, it is necessary to precipitate the β phase as described above. However, in order to enhance the effect without impairing the corrosion resistance, the β phase is added. It is necessary to disperse finely and uniformly. The inventors of the present application also studied a method for realizing fine and uniform dispersion of β phase. as a result,
It was found that the β phase can be finely and uniformly precipitated by performing the annealing in multiple times. Less than,
The method for producing a copper-based alloy according to the present invention will be described.

【0015】本発明方法においては、先ず、上述した各
元素を含有する合金鋳塊を熱間及び冷間加工して所定の
形状に成形した後、450乃至600℃の温度で30分間以上の
焼鈍(第1の焼鈍)を行う。この第1の焼鈍により再結
晶が起こり、組織を均質化させることができる。この場
合に、焼鈍温度が450℃未満の場合は、再結晶が不十分
となり、組織が不均一になって耐食性が劣化するだけで
なく、最終製品の強度が大きくなって打抜き加工性及び
切削性が劣化する。一方、焼鈍温度が600℃を超える
と、結晶粒が粗大化し、後述する第2の焼鈍を施して
も、β相の微細且つ均一な分散が困難となり、所期の目
標特性を得ることができない。また、焼鈍時間が30分間
未満の場合も、再結晶及び組織の均質化が十分に行われ
ず、耐食性が劣化する。従って、第1の焼鈍工程におけ
る焼鈍温度は450乃至600℃であり、焼鈍時間は30分間以
上であることが必要である。
In the method of the present invention, first, an alloy ingot containing each element described above is hot-worked and cold-worked into a predetermined shape, and then annealed at a temperature of 450 to 600 ° C. for 30 minutes or more. (First annealing) is performed. By this first annealing, recrystallization occurs and the structure can be homogenized. In this case, if the annealing temperature is less than 450 ℃, not only recrystallization becomes insufficient, the structure becomes non-uniform and the corrosion resistance deteriorates, and the strength of the final product increases and the punching workability and machinability are increased. Deteriorates. On the other hand, if the annealing temperature exceeds 600 ° C., the crystal grains become coarse, and even if the second annealing described below is performed, it becomes difficult to disperse the β phase finely and uniformly, and the desired target properties cannot be obtained. . Also, when the annealing time is less than 30 minutes, recrystallization and homogenization of the structure are not sufficiently performed, and the corrosion resistance deteriorates. Therefore, it is necessary that the annealing temperature in the first annealing step is 450 to 600 ° C. and the annealing time is 30 minutes or more.

【0016】次に、この第1の焼鈍後に、加工率が10%
以上の冷間加工を実施する。この冷間加工は、組織に加
工歪みを導入するために行うものであり、後述する第2
の焼鈍工程においては、この冷間加工により導入した加
工歪みに沿ってβ相が析出する。冷間加工工程における
加工率が10%未満の場合は、加工歪み量が不足し、また
加工歪みの均一な導入が困難となるため、第2の焼鈍工
程でβ相を均一且つ微細に析出させることができなくな
る。従って、第1の焼鈍工程後に実施する冷間加工にお
いては、加工率を10%以上とすることが必要である。
Next, after the first annealing, the working rate is 10%.
The above cold working is carried out. This cold working is performed in order to introduce a working strain to the structure,
In the annealing step of, the β phase is precipitated along with the processing strain introduced by this cold working. If the working ratio in the cold working process is less than 10%, the amount of working strain is insufficient and it is difficult to introduce the working strain uniformly. Therefore, the β phase is uniformly and finely precipitated in the second annealing process. Can't do it. Therefore, in the cold working performed after the first annealing step, it is necessary to set the working rate to 10% or more.

【0017】次いで、350乃至500℃の温度で30分間以上
の焼鈍(第2の焼鈍)を行う。この第2の焼鈍工程にお
いては、上述の冷間加工により導入された加工歪みに沿
ってβ相が析出する。しかし、第2の焼鈍工程における
焼鈍温度が350℃未満の場合は、β相を均一に析出させ
ることが困難である。焼鈍温度が350℃未満の場合であ
っても、焼鈍時間を例えば10時間以上とすることにより
β相を均一に析出させることができる可能性はあるが、
このような長時間の焼鈍は、生産性が著しく低下するた
め実用的でない。一方、焼鈍温度が500℃を超えると、
導入された加工歪みが完全に回復するため、β相の析出
はα相の結晶粒界に起こりやすくなる。従って、β相を
均一且つ微細に析出させることが困難となる。また、焼
鈍時間が30分間未満の場合も、β相の均一な析出が困難
となる。従って、第2の焼鈍工程における焼鈍温度は35
0乃至500℃とし、焼鈍時間は30分間以上とすることが必
要である。
Then, annealing (second annealing) is performed at a temperature of 350 to 500 ° C. for 30 minutes or more. In the second annealing step, the β phase precipitates along the processing strain introduced by the cold working described above. However, if the annealing temperature in the second annealing step is less than 350 ° C, it is difficult to uniformly precipitate the β phase. Even if the annealing temperature is less than 350 ° C, there is a possibility that the β phase can be uniformly precipitated by setting the annealing time to, for example, 10 hours or more,
Such long annealing is not practical because the productivity is significantly reduced. On the other hand, if the annealing temperature exceeds 500 ° C,
Since the introduced work strain is completely recovered, β-phase precipitation easily occurs at the α-phase grain boundaries. Therefore, it becomes difficult to precipitate the β phase uniformly and finely. Also, if the annealing time is less than 30 minutes, it becomes difficult to uniformly precipitate the β phase. Therefore, the annealing temperature in the second annealing step is 35
It is necessary that the temperature is 0 to 500 ° C. and the annealing time is 30 minutes or more.

【0018】このようにして、β相が均一且つ微細に分
散し耐食性、打抜き加工性及び切削性が優れた銅基合金
を得ることができる。なお、第2の焼鈍後に、製品強度
を調整するために仕上げ冷間加工を施してもよい。但
し、仕上げ冷間加工における加工率が30%を超えると、
製品強度が高くなりすぎて切削性が劣化する。このた
め、仕上げ冷間加工を施す場合は、加工率を30%以下と
する。
In this way, it is possible to obtain a copper-based alloy in which the β phase is uniformly and finely dispersed and which is excellent in corrosion resistance, punching workability and machinability. After the second annealing, finish cold working may be performed to adjust the product strength. However, if the processing rate in finish cold working exceeds 30%,
Product strength becomes too high and machinability deteriorates. For this reason, when performing finish cold working, the working rate is 30% or less.

【0019】[0019]

【実施例】以下、本発明の実施例についてその比較例と
比較して説明する。クリプトル炉を用いて、下記表1に
示す組成の銅合金を、大気中で木炭被覆下にて溶解及び
鋳造し、厚さが50mm、幅が75mm、長さが180mmの鋳塊を
得た。この鋳塊の表面及び裏面を切削した後、800℃の
温度で厚さが15mmまで熱間圧延した。次に、グラインダ
ーにより酸化スケールを除去した後、冷間圧延及び焼鈍
を行って、最終的に板厚が2.8mmの板材を作製した。ま
た、応力腐食割れ試験用に板厚が0.5mmの板材を作製し
た。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. Using a Cryptor furnace, copper alloys having the compositions shown in Table 1 below were melted and cast in the atmosphere under charcoal coating to obtain an ingot having a thickness of 50 mm, a width of 75 mm, and a length of 180 mm. After cutting the front and back surfaces of this ingot, hot rolling was performed at a temperature of 800 ° C. to a thickness of 15 mm. Next, after removing the oxide scale with a grinder, cold rolling and annealing were performed to finally produce a plate material having a plate thickness of 2.8 mm. A plate material having a thickness of 0.5 mm was prepared for the stress corrosion cracking test.

【0020】[0020]

【表1】 [Table 1]

【0021】これらの板材を用いて、引張試験、硬さ試
験、結晶粒度測定、塩水噴霧試験、応力腐食割れ試験、
打抜き加工試験及び切削加工試験を実施して、実施例及
び比較例の合金の特性を調べた。但し、引張試験には、
圧延方向に採取したJIS 5号試験片を用いた。硬さは、
マイクロビッカース硬度計で荷重を5kgにして測定し
た。結晶粒度は、JIS H0501の比較法に準じ、α相及び
β相について測定した。また、金属組織中に占めるβ相
の面積割合も調べた。塩水噴霧試験は、JIS Z2371に準
じて行った。
Using these plate materials, tensile test, hardness test, grain size measurement, salt spray test, stress corrosion cracking test,
A punching test and a cutting test were carried out to examine the properties of the alloys of Examples and Comparative Examples. However, for the tensile test,
A JIS No. 5 test piece sampled in the rolling direction was used. The hardness is
The load was measured with a micro Vickers hardness meter at 5 kg. The crystal grain size was measured for α phase and β phase according to the comparison method of JIS H0501. Moreover, the area ratio of the β phase in the metal structure was also examined. The salt spray test was performed according to JIS Z2371.

【0022】応力腐食割れ試験は、トンプソン(D.H.Th
ompson)の方法により行った。即ち、所定寸法の試験片
(板材)の両端に穴を穿設し、この試験片をループ状に
曲げ、前記穴に銅線を通して両端部を接触させて固定し
た。その後、前記銅線を解いて試験片の両端間の距離
(L1)を測定した。また、銅線で試験片の両端部を接
触させたまま、試験片を一定時間アンモニア蒸気に曝露
した後、前記銅線を解いて試験片の両端間の距離(L
2)を測定した。そして、下記数式1により応力緩和率
を求めた。
The stress corrosion cracking test is conducted by Thompson (DHTh
Ompson) method. That is, holes were bored at both ends of a test piece (plate material) having a predetermined size, the test piece was bent into a loop, and a copper wire was passed through the hole so that both ends were in contact and fixed. Then, the copper wire was unwound to measure the distance (L1) between both ends of the test piece. In addition, the test piece was exposed to ammonia vapor for a certain period of time while keeping both ends of the test piece in contact with the copper wire, and then the copper wire was unwound to remove the distance (L
2) was measured. Then, the stress relaxation rate was calculated by the following mathematical formula 1.

【0023】[0023]

【数1】 応力緩和率(%)={(L1−L2)/L1}×100 この応力緩和率が50%となる50%応力緩和時間により、
応力腐食割れ試験の結果を示した。
## EQU1 ## Stress relaxation rate (%) = {(L1-L2) / L1} × 100 By the 50% stress relaxation time at which this stress relaxation rate becomes 50%,
The results of the stress corrosion cracking test are shown.

【0024】打抜き加工試験は、ポンチ径が10mm、ダイ
ス径が10.10mmの金型を用い、万能試験機にて5mm/分
の打抜き速度で行った。そして、打抜きブランクの2次
剪断発生状況で打抜き加工性を評価した。
The punching test was carried out using a die having a punch diameter of 10 mm and a die diameter of 10.10 mm with a universal testing machine at a punching speed of 5 mm / min. Then, the punching workability was evaluated in the secondary shearing occurrence state of the punching blank.

【0025】切削加工試験は、直径が2.5mmのエンドミ
ルにより回転数が2000rpm、送り速度が100mm/分、切削
深さが1mmの条件で実施した。この切削加工試験は、潤
滑油を用いない促進試験とし、3mの長さに切削した後の
供試材のバリ発生状況を観測した。そして、切削加工性
は、切削溝単位長さ当たりのバリ(1mm長さ以上のも
の)の本数で評価した。これらの試験結果を、下記表
2,3にまとめて示す。
The cutting test was carried out by an end mill having a diameter of 2.5 mm under the conditions of a rotation speed of 2000 rpm, a feed rate of 100 mm / min, and a cutting depth of 1 mm. This cutting test was an accelerated test that did not use lubricating oil, and the burrs were observed on the test material after cutting to a length of 3 m. The machinability was evaluated by the number of burrs (having a length of 1 mm or more) per unit length of cutting groove. The results of these tests are summarized in Tables 2 and 3 below.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】この表2,3から明らかなように、実施例
1〜9の合金はいずれも機械的特性が優れていると共
に、耐食性、打抜き加工性及び切削性についても、総合
的に優れている。実施例1は、β相の割合が他の実施例
に比して少なく、打抜き加工性及び切削加工性は他の実
施例ほど優れていないものの、耐食性は良好である。実
施例2〜4はこの順でβ相の割合が多くなっており、β
相の割合が多いものほど耐食性が低いが、逆に打抜き加
工性及び切削性はβ相の割合が多いものほど向上してい
る。実施例5,6は、実施例3と比較してβ相の割合が
略等しいものの、β相の結晶粒径が小さくなっており、
その結果、耐食性及び切削性が実施例3よりも向上して
いる。また、実施例7〜9は、実施例6と比較して、α
相の結晶粒径が小さくなっており、その結果、耐食性
(特に応力腐食割れ性)が向上している。このように、
実施例1〜9はいずれも耐食性、打抜き加工性及び切削
性が総合的に優れており、特にβ相の粒径が5μm以下
である実施例1,2,5〜9は耐食性及び切削性が極め
て良好である。また、α相の粒径が10μm以下である実
施例8,9は、応力腐食割れ感受性が極めて低い。
As is clear from Tables 2 and 3, all the alloys of Examples 1 to 9 are excellent in mechanical properties, and are also comprehensively excellent in corrosion resistance, punching workability and machinability. . Example 1 has a smaller proportion of β phase than the other examples, and although the punching workability and the machinability are not as excellent as those of the other examples, the corrosion resistance is good. In Examples 2 to 4, the proportion of β phase increases in this order, and β
The corrosion resistance is lower as the proportion of phases is larger, but conversely, the punching workability and the machinability are improved as the proportion of β phases is larger. In Examples 5 and 6, although the proportion of β phase was substantially equal to that in Example 3, the crystal grain size of β phase was small,
As a result, corrosion resistance and machinability are improved as compared with Example 3. In addition, in Examples 7 to 9, as compared with Example 6, α
The crystal grain size of the phase is small, and as a result, the corrosion resistance (particularly stress corrosion cracking resistance) is improved. in this way,
All of Examples 1 to 9 have excellent overall corrosion resistance, punching workability and machinability, and in particular, Examples 1, 2, 5 to 9 in which the β phase grain size is 5 μm or less have corrosion resistance and machinability. Very good. Further, Examples 8 and 9 in which the grain size of the α phase is 10 μm or less have extremely low susceptibility to stress corrosion cracking.

【0029】一方、β相の割合が3%と少ない比較例1
は、耐食性は優れているものの、打抜き加工性及び切削
性が劣っている。また、β相の割合が多い比較例2は、
打抜き加工性及び切削性は優れるものの、耐食性が劣っ
ている。比較例3(洋白)は、機械的特性、打抜き加工
性及び切削性が劣っている。比較例4(黄銅)は機械的
特性及び耐食性が劣っている。
On the other hand, Comparative Example 1 in which the proportion of β phase was as small as 3%
Has excellent corrosion resistance, but has poor punching workability and machinability. In addition, Comparative Example 2 having a large proportion of β phase
Although it has excellent punching workability and machinability, it has poor corrosion resistance. Comparative Example 3 (white silver) is inferior in mechanical properties, punching workability and machinability. Comparative Example 4 (brass) is inferior in mechanical properties and corrosion resistance.

【0030】次に、本発明に係る銅合金の製造方法につ
いて、その比較例と比較して説明する。クリプトル炉を
用いて、下記表4に示す組成の銅合金を、大気中で木炭
被覆下にて溶解及び鋳造し、厚さが50mm、幅が75mm、長
さが180mmの鋳塊を得た。この鋳塊の表面及び裏面を切
削した後、800℃の温度で厚さが15mmまで熱間圧延し
た。次に、グラインダーにより酸化スケールを除去した
後、下記表5に示す条件で冷間圧延及び焼鈍を実施し、
最終的に板厚が2.8mmの板材を作製した。また、応力腐
食割れ試験用に、板厚が0.5mmの板材を作製した。
Next, a method for producing a copper alloy according to the present invention will be described in comparison with its comparative example. Using a Cryptor furnace, copper alloys having the compositions shown in Table 4 below were melted and cast in the atmosphere under charcoal coating to obtain an ingot having a thickness of 50 mm, a width of 75 mm, and a length of 180 mm. After cutting the front and back surfaces of this ingot, hot rolling was performed at a temperature of 800 ° C. to a thickness of 15 mm. Next, after removing the oxide scale with a grinder, cold rolling and annealing were performed under the conditions shown in Table 5 below.
Finally, a plate material having a plate thickness of 2.8 mm was produced. A plate material having a thickness of 0.5 mm was prepared for the stress corrosion cracking test.

【0031】これらの板材を用いて、前述の実施例1〜
9及び比較例1〜4と同様の方法により、引張試験、硬
さ試験、結晶粒度測定、塩水噴霧試験、応力腐食割れ試
験、打抜き加工試験及び切削加工試験を実施した。その
結果を、下記表6,7にまとめて示す。
Using these plate materials, the above-mentioned Examples 1 to 1
The tensile test, the hardness test, the grain size measurement, the salt spray test, the stress corrosion cracking test, the punching test and the cutting test were carried out in the same manner as in 9 and Comparative Examples 1 to 4. The results are summarized in Tables 6 and 7 below.

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】[0034]

【表6】 [Table 6]

【0035】[0035]

【表7】 [Table 7]

【0036】この表6,7から明らかなように、実施例
13は第1及び第2の焼鈍における焼鈍温度が他の実施
例よりも高いため、β相がα相の粒界に一部偏析してい
た。しかし、実施例10〜13の合金はいずれも機械的
特性が優れていると共に、耐食性、打抜き加工性及び切
削性も優れている。一方、第1の焼鈍工程における焼鈍
温度が低い比較例5及び焼鈍時間が短い比較例7は、い
ずれも未結晶部分があり、β相の一部がファイバー状に
偏析していた。従って、比較例5,7の合金は、耐食性
が劣ると共に、打抜き加工性及び切削加工性がいずれも
良好でなかった。第1の焼鈍工程における焼鈍温度が高
い比較例6は、α相の結晶粒径が大きくなり、β相がα
相の粒界に偏析するため、耐食性、打抜き加工性及び切
削性がいずれも満足できるものではなかった。中間冷間
加工率が5%と小さい比較例8は、第2の焼鈍後もβ相
の分布が不均一であり、打抜き加工性及び切削性が満足
できるものではなかった。第2の焼鈍工程における焼鈍
温度が低い比較例9及び第2の焼鈍工程における焼鈍時
間が短い比較例11は、いずれもβ相の析出量が少な
く、且つ、分布が不均一であり、打抜き加工性及び切削
性が劣っていた。第2の焼鈍工程における焼鈍温度が高
い比較例10は、β相がα相の粒界に偏析しており、応
力腐食割れ性が良好とはいえず、打抜き加工性及び切削
性も満足できるものではなかった。第2の焼鈍後の冷間
加工率を35%と高くした比較例12は、強度が高いた
め、切削性が劣っている。また、比較例13(洋白)
は、耐食性が優れているが、強度がやや劣ると共に、打
抜き加工性及び切削性も劣っている。更に、比較例14
(黄銅)は、打抜き加工性及び切削性が優れているもの
の、強度がやや劣ると共に、耐食性が大幅に劣ってい
る。
As is clear from Tables 6 and 7, since the annealing temperature in the first and second annealings is higher in Example 13 than in the other Examples, the β phase is partially segregated at the grain boundary of the α phase. Was. However, all of the alloys of Examples 10 to 13 have excellent mechanical properties, as well as excellent corrosion resistance, punching workability and machinability. On the other hand, in Comparative Example 5 in which the annealing temperature in the first annealing step was low and Comparative Example 7 in which the annealing time was short, there were uncrystallized parts, and part of the β phase was segregated into a fiber shape. Therefore, the alloys of Comparative Examples 5 and 7 were inferior in corrosion resistance and were not good in both punching workability and cutting workability. In Comparative Example 6 in which the annealing temperature in the first annealing step was high, the crystal grain size of the α phase was large, and the β phase was α
Because of segregation at the grain boundary of the phase, none of the corrosion resistance, punching workability and machinability was satisfactory. In Comparative Example 8 in which the intermediate cold working ratio was as small as 5%, the β phase distribution was non-uniform even after the second annealing, and punching workability and machinability were not satisfactory. In Comparative Example 9 in which the annealing temperature in the second annealing step is low and Comparative Example 11 in which the annealing time in the second annealing step is short, the precipitation amount of the β phase is small, and the distribution is non-uniform, and the punching process is performed. And machinability were poor. In Comparative Example 10 in which the annealing temperature in the second annealing step is high, the β phase is segregated at the grain boundary of the α phase, stress corrosion cracking property is not good, and punching workability and machinability are also satisfactory. Was not. Comparative Example 12 in which the cold working rate after the second annealing was increased to 35% was inferior in machinability because of its high strength. In addition, Comparative Example 13 (white silver)
Has excellent corrosion resistance, but is slightly inferior in strength and inferior in punching workability and machinability. Furthermore, Comparative Example 14
Although (brass) is excellent in punching workability and machinability, it is slightly inferior in strength and inferior in corrosion resistance.

【0037】[0037]

【発明の効果】以上説明したように本発明に係る銅基合
金は、所定量のZn、Ni及びMnを含有すると共に、
金属組織中に占めるβ相の面積割合を所定の範囲内に規
定したから、耐食性、打抜き加工性及び切削性が優れて
いると共に、従来の洋白又は黄銅と比較して機械的特性
が著しく向上している。また、本発明に係る銅基合金
は、洋白と同等又はそれ以上の耐食性を有し、打抜き加
工性及び切削性は黄銅と略同一である。更に、Ni含有
量が低いため、製造コストも比較的低い。このため、本
発明は、各種のキー、コイン並びに装飾及び建築物等に
使用する銅基合金として極めて有用である。
As described above, the copper-based alloy according to the present invention contains predetermined amounts of Zn, Ni and Mn, and
Since the area ratio of β phase occupying in the metallographic structure is specified within the predetermined range, it has excellent corrosion resistance, punching workability and machinability, and significantly improved mechanical properties compared to conventional nickel silver or brass. is doing. Further, the copper-based alloy according to the present invention has corrosion resistance equal to or higher than nickel silver, and punching workability and machinability are substantially the same as brass. Furthermore, since the Ni content is low, the manufacturing cost is relatively low. Therefore, the present invention is extremely useful as a copper-based alloy used for various keys, coins, decorations, buildings and the like.

【0038】また、本発明に係る銅基合金の製造方法に
よれば、銅基合金中にβ相を微細且つ均一に分散析出さ
せることができて、耐食性、打抜き加工性及び切削性が
優れた上述の銅基合金を製造することができる。
Further, according to the method for producing a copper-based alloy of the present invention, the β phase can be finely and uniformly dispersed and precipitated in the copper-based alloy, and the corrosion resistance, punching workability and machinability are excellent. The copper-based alloy described above can be manufactured.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 Zn:25乃至40重量%、Ni:6乃至12
重量%、Mn:0.1乃至8重量%を含有し、残部が銅及び
不可避的不純物からなり、金属組織中に占めるβ相の面
積割合が5乃至50%であることを特徴とする耐食性、打
抜き加工性及び切削性が優れた銅基合金。
1. Zn: 25 to 40% by weight, Ni: 6 to 12
%, Mn: 0.1 to 8% by weight, the balance consisting of copper and unavoidable impurities, and the area ratio of the β phase in the metal structure is 5 to 50%, corrosion resistance, punching -Based alloy with excellent workability and machinability.
【請求項2】 Zn:25乃至40重量%、Ni:6乃至12
重量%、Mn:0.1乃至8重量%を含有し、更にSn、
P、Mg、Al、Cr、Fe、Co、Ag、Cd、S
b、Ti、Zr、In、B、Ta、Si及びPbからな
る群から選択された少なくとも1種の元素を0.001乃至2
重量%含有し、残部が銅及び不可避的不純物からなり、
金属組織中に占めるβ相の面積割合が5乃至50%である
ことを特徴とする耐食性、打抜き加工性及び切削性が優
れた銅基合金。
2. Zn: 25 to 40% by weight, Ni: 6 to 12
% By weight, Mn: 0.1 to 8% by weight, and Sn,
P, Mg, Al, Cr, Fe, Co, Ag, Cd, S
0.001 to 2 of at least one element selected from the group consisting of b, Ti, Zr, In, B, Ta, Si and Pb.
% By weight, the balance consisting of copper and unavoidable impurities,
A copper-based alloy excellent in corrosion resistance, punching workability and machinability, characterized in that the area ratio of β phase in the metal structure is 5 to 50%.
【請求項3】 前記β相の結晶粒径が5μm以下である
ことを特徴とする請求項1又は2に記載の耐食性、打抜
き加工性及び切削性が優れた銅基合金。
3. The copper-based alloy having excellent corrosion resistance, punching workability and machinability according to claim 1, wherein the β phase has a crystal grain size of 5 μm or less.
【請求項4】 α相の結晶粒径が10μm以下であること
を特徴とする請求項3に記載の耐食性、打抜き加工性及
び切削性が優れた銅基合金。
4. The copper-based alloy having excellent corrosion resistance, punching workability and machinability according to claim 3, wherein the α-phase crystal grain size is 10 μm or less.
【請求項5】 Zn:25乃至40重量%、Ni:6乃至12
重量%、Mn:0.1乃至8重量%を含有し、残部が銅及び
不可避的不純物からなる合金鋳塊を所定の形状に加工す
る工程と、この加工材を450乃至600℃の温度で30分間以
上焼鈍する第1の焼鈍工程と、焼鈍後の加工材を10%以
上の加工率で冷間加工する工程と、この冷間加工材を35
0乃至500℃の温度で30分間以上焼鈍する第2の焼鈍工程
と、を有することを特徴とする耐食性、打抜き加工性及
び切削性が優れた銅基合金の製造方法。
5. Zn: 25 to 40% by weight, Ni: 6 to 12
%, Mn: 0.1 to 8% by weight, the step of processing an alloy ingot having the balance of copper and unavoidable impurities into a predetermined shape, and the processed material at a temperature of 450 to 600 ° C. for 30 minutes or more. The first annealing step of annealing, the step of cold working the worked material after annealing at a working rate of 10% or more, and the cold working material
A second annealing step of annealing at a temperature of 0 to 500 ° C. for 30 minutes or more, and a method for producing a copper-based alloy having excellent corrosion resistance, punching workability and machinability.
【請求項6】 Zn:25乃至40重量%、Ni:6乃至12
重量%、Mn:0.1乃至8重量%を含有し、更にSn、
P、Mg、Al、Cr、Fe、Co、Ag、Cd、S
b、Ti、Zr、In、B、Ta、Si及びPbからな
る群から選択された少なくとも1種の元素を0.001乃至2
重量%含有し、残部が銅及び不可避的不純物からなる合
金鋳塊を所定の形状に加工する工程と、この加工材を45
0乃至600℃の温度で30分間以上焼鈍する第1の焼鈍工程
と、焼鈍後の加工材を10%以上の加工率で冷間する工程
と、この冷間加工材を350乃至500℃の温度で30分間以上
焼鈍する第2の焼鈍工程と、を有することを特徴とする
耐食性、打抜き加工性及び切削性が優れた銅基合金の製
造方法。
6. Zn: 25 to 40% by weight, Ni: 6 to 12
% By weight, Mn: 0.1 to 8% by weight, and Sn,
P, Mg, Al, Cr, Fe, Co, Ag, Cd, S
0.001 to 2 of at least one element selected from the group consisting of b, Ti, Zr, In, B, Ta, Si and Pb.
A step of processing an alloy ingot having a content of wt% and the balance of copper and unavoidable impurities into a predetermined shape, and
A first annealing step, in which the material is annealed at a temperature of 0 to 600 ° C for 30 minutes or more, a step of cold working the worked material after annealing at a working rate of 10% or more, and a temperature of this cold worked material of 350 to 500 And a second annealing step in which the copper-based alloy is annealed for 30 minutes or more.
【請求項7】 前記第2の焼鈍工程の後に、30%以下の
加工率で仕上げ冷間加工を施す工程を有することを特徴
とする請求項5又は6に記載の耐食性、打抜き加工性及
び切削性が優れた銅基合金の製造方法。
7. The corrosion resistance, the punching workability and the cutting according to claim 5, further comprising a step of performing a finish cold working at a working rate of 30% or less after the second annealing step. A method for producing a copper-based alloy having excellent properties.
JP30924193A 1993-12-09 1993-12-09 Copper-base alloy excellent in corrosion resistance, punchability, and machinability and production thereof Pending JPH07166279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30924193A JPH07166279A (en) 1993-12-09 1993-12-09 Copper-base alloy excellent in corrosion resistance, punchability, and machinability and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30924193A JPH07166279A (en) 1993-12-09 1993-12-09 Copper-base alloy excellent in corrosion resistance, punchability, and machinability and production thereof

Publications (1)

Publication Number Publication Date
JPH07166279A true JPH07166279A (en) 1995-06-27

Family

ID=17990631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30924193A Pending JPH07166279A (en) 1993-12-09 1993-12-09 Copper-base alloy excellent in corrosion resistance, punchability, and machinability and production thereof

Country Status (1)

Country Link
JP (1) JPH07166279A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987793A (en) * 1995-09-21 1997-03-31 Kichiyou Shindoushiyo:Kk Improved excellently cuttable white alloy
JPH09189906A (en) * 1996-01-09 1997-07-22 Nitto Denko Corp Optical film and liquid crystal display device
EP0872564A1 (en) * 1997-04-14 1998-10-21 Mitsubishi Shindoh Co., Ltd. Corrosion-resistant high-strength copper based alloy having excellent blankability
WO2000005008A1 (en) * 1998-07-24 2000-02-03 Toto Ltd. Die forging method
EP1035227A1 (en) * 1997-10-24 2000-09-13 Toto Ltd. Brass material, brass tube and their production method
WO2004083471A3 (en) * 2003-03-21 2004-11-18 Swissmetal Boillat Sa Copper-based alloy
EP2278033A1 (en) * 2008-03-09 2011-01-26 Mitsubishi Shindoh Co., Ltd. Silver-white copper alloy and process for producing the same
JP2015514863A (en) * 2012-03-07 2015-05-21 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Copper-nickel-zinc alloy containing silicon
JP2016079479A (en) * 2014-10-20 2016-05-16 三菱マテリアル株式会社 Sputtering target and laminated film
EP2806044B1 (en) 2007-06-28 2017-09-13 Wieland-Werke AG Copper-zinc alloy, method for its manufacture and use
CN108350552A (en) * 2015-11-17 2018-07-31 威兰德-沃克公开股份有限公司 Pack fong and its application
CN108698197A (en) * 2017-01-31 2018-10-23 株式会社霍塔尼 Roll shaft and brush roll for brush roll
EP2467507B1 (en) 2009-08-18 2019-02-27 Aurubis Stolberg GmbH & Co. KG Brass alloy
CN109882861A (en) * 2017-12-06 2019-06-14 江苏赛尔亚环保科技有限公司 A kind of incinerator burner material
KR102196333B1 (en) * 2020-02-18 2020-12-30 신원금속 주식회사 Cu-Ni-Zn Nickel-Silver alloy
KR102403909B1 (en) * 2021-10-26 2022-06-02 주식회사 풍산 Method for preparing copper alloy material with excellent workability and machinability and copper alloy material prepared thereby
WO2024108719A1 (en) * 2022-11-23 2024-05-30 宁波博威合金材料股份有限公司 Low-nickel zinc-cupronickel alloy and preparation method therefor

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0987793A (en) * 1995-09-21 1997-03-31 Kichiyou Shindoushiyo:Kk Improved excellently cuttable white alloy
JPH09189906A (en) * 1996-01-09 1997-07-22 Nitto Denko Corp Optical film and liquid crystal display device
EP0872564A1 (en) * 1997-04-14 1998-10-21 Mitsubishi Shindoh Co., Ltd. Corrosion-resistant high-strength copper based alloy having excellent blankability
EP1035227A4 (en) * 1997-10-24 2003-04-09 Toto Ltd Brass material, brass tube and their production method
EP1035227A1 (en) * 1997-10-24 2000-09-13 Toto Ltd. Brass material, brass tube and their production method
US6464810B1 (en) * 1997-10-24 2002-10-15 Toto Ltd. Brass material, brass tube and their production method
WO2000005008A1 (en) * 1998-07-24 2000-02-03 Toto Ltd. Die forging method
WO2004083471A3 (en) * 2003-03-21 2004-11-18 Swissmetal Boillat Sa Copper-based alloy
JP2006520850A (en) * 2003-03-21 2006-09-14 スイスメタル−ユエムエス・ユジン・メタルリュルジク・スイス・エスア Copper alloy
CN100439537C (en) * 2003-03-21 2008-12-03 瑞士金属-Ums瑞士金属加工有限公司 Copper-based alloy
US9080226B2 (en) 2003-03-21 2015-07-14 Swissmetal Ums Usines Metallurgiques Suisse Sa Copper-based alloy
EP2806044B1 (en) 2007-06-28 2017-09-13 Wieland-Werke AG Copper-zinc alloy, method for its manufacture and use
EP2278033A1 (en) * 2008-03-09 2011-01-26 Mitsubishi Shindoh Co., Ltd. Silver-white copper alloy and process for producing the same
EP2278033A4 (en) * 2008-03-09 2014-06-25 Mitsubishi Shindo Kk Silver-white copper alloy and process for producing the same
EP2467507B1 (en) 2009-08-18 2019-02-27 Aurubis Stolberg GmbH & Co. KG Brass alloy
JP2015514863A (en) * 2012-03-07 2015-05-21 ヴィーラント ウェルケ アクチーエン ゲゼルシャフトWieland−Werke Aktiengesellschaft Copper-nickel-zinc alloy containing silicon
US9738961B2 (en) 2012-03-07 2017-08-22 Wieland-Werke Ag Copper-nickel-zinc alloy containing silicon
US9617629B2 (en) 2012-03-07 2017-04-11 Wieland-Werke Ag Copper-nickel-zinc alloy containing silicon
JP2016079479A (en) * 2014-10-20 2016-05-16 三菱マテリアル株式会社 Sputtering target and laminated film
CN108350552A (en) * 2015-11-17 2018-07-31 威兰德-沃克公开股份有限公司 Pack fong and its application
CN108698197A (en) * 2017-01-31 2018-10-23 株式会社霍塔尼 Roll shaft and brush roll for brush roll
CN108698197B (en) * 2017-01-31 2021-07-30 株式会社霍塔尼 Roller shaft for a brush roller and brush roller
CN109882861A (en) * 2017-12-06 2019-06-14 江苏赛尔亚环保科技有限公司 A kind of incinerator burner material
KR102196333B1 (en) * 2020-02-18 2020-12-30 신원금속 주식회사 Cu-Ni-Zn Nickel-Silver alloy
KR102403909B1 (en) * 2021-10-26 2022-06-02 주식회사 풍산 Method for preparing copper alloy material with excellent workability and machinability and copper alloy material prepared thereby
WO2024108719A1 (en) * 2022-11-23 2024-05-30 宁波博威合金材料股份有限公司 Low-nickel zinc-cupronickel alloy and preparation method therefor

Similar Documents

Publication Publication Date Title
CA2416574C (en) Silver containing copper alloy
EP0175183B1 (en) Copper alloys having an improved combination of strength and conductivity
JP3961529B2 (en) High strength copper alloy
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
US4425168A (en) Copper beryllium alloy and the manufacture thereof
JPH07166279A (en) Copper-base alloy excellent in corrosion resistance, punchability, and machinability and production thereof
MXPA05002640A (en) Age-hardening copper-base alloy and processing.
JP2002180165A (en) Copper based alloy having excellent press blanking property and its production method
CN1327016C (en) Copper base alloy with improved punchin and impacting performance and its preparing method
US4657601A (en) Thermomechanical processing of beryllium-copper alloys
JP2001049369A (en) Copper alloy for electronic material and its production
JP5297855B2 (en) Copper alloy sheet and manufacturing method thereof
US5882442A (en) Iron modified phosphor-bronze
WO1998048068A1 (en) Grain refined tin brass
CA2346635A1 (en) Copper alloy
US5853505A (en) Iron modified tin brass
JPH07258803A (en) Production of titanium-copper alloy excellent in bendability and stress relaxation property
US6059905A (en) Process for treating a copper-beryllium alloy
US4871399A (en) Copper alloy for use as wiring harness terminal material and process for producing the same
JP2886818B2 (en) Method of manufacturing copper alloy for decoration
JPH05311290A (en) Highly corrosion resistant copper-base alloy
JPH0649564A (en) Copper-base alloy excellent in machinability and corrosion resistance
JP2918961B2 (en) High-strength copper alloy with high workability
JPH03104845A (en) Manufacture of high strength phosphor bronze having good bendability
JPH06264166A (en) Copper-base alloy excellent in corrosion resistance, machinability and workability