JPS62224947A - Compound semiconductor integrated circuit - Google Patents

Compound semiconductor integrated circuit

Info

Publication number
JPS62224947A
JPS62224947A JP6736186A JP6736186A JPS62224947A JP S62224947 A JPS62224947 A JP S62224947A JP 6736186 A JP6736186 A JP 6736186A JP 6736186 A JP6736186 A JP 6736186A JP S62224947 A JPS62224947 A JP S62224947A
Authority
JP
Japan
Prior art keywords
layer wiring
gate electrode
layer
wiring
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6736186A
Other languages
Japanese (ja)
Inventor
Fumiaki Katano
片野 史明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6736186A priority Critical patent/JPS62224947A/en
Publication of JPS62224947A publication Critical patent/JPS62224947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To form a second layer wiring having no leak by a method wherein the side surfaces of a gate electrode are formed in such a way as to make an angle of nearly 90 deg. with the surface of a substrate and the side surfaces of a first layer wiring are formed in such a way as to make an acute angle with the substrate surface. CONSTITUTION:A first layer wiring 14 is formed of a tungsten layer of 4,000Angstrom , the same thickness as that of a gate electrode 13. The side surfaces 15 of the first layer are wiring are formed in such a way as to form an acute angle with a semi-insulative gallium-arsenic substrate 11. Metal 41 for a second layer wiring is left behind an interlayer insulating film 29 in a gate electrode part 23, but the parts of shadows are not formed on the interlayer insulating film in the first layer wiring part. Therefore, no leak is generated between a second layer wiring 25 and another second layer wiring 26. There is a possibility that the metal for a second layer wiring is left on parts 28 in the gate electrode part, but the metal for a second layer wiring is not left on parts 29. Therefore, no leak is generated between a second layer wiring 27 and the second wiring layer 26. Moreover, by forming the side surfaces 16 of the gate electrode in such a way as to become vertical to the substrate surface, the efficiency of the field-effect transistor can be accurately controlled.

Description

【発明の詳細な説明】 化合物半導体を動作層として用いた電界効果トランジス
タを基本素子として用いた集積回路は、シリコン集積回
路よりも高速動作が可能であり、現在開発が進められて
いる。
DETAILED DESCRIPTION OF THE INVENTION Integrated circuits using field effect transistors as basic elements using compound semiconductors as active layers are capable of faster operation than silicon integrated circuits, and are currently being developed.

化合物半導体の1つであるガリウム砒素を動作層とする
電界効果トランジスタは、ゲート電極が金属層で形成さ
れているため、その金属層が第1層配線にも用いられて
いる。ゲート電極の長さは電界効果トランジスタの性能
を決める重要な要素であり、その寸法精度を良くするた
めにゲート電極の形成にはドライエッヂング法が用いら
れ、ゲート電極金属層の側面は基板表面とほぼ90°の
角度をなすように形成されている。この金属層は、同時
に、第11層配線として用いられているので、第1層配
線の側面も基板表面とほぼ90°の角度をなして形成さ
れてしまう。
In a field effect transistor whose operating layer is gallium arsenide, which is one of compound semiconductors, the gate electrode is formed of a metal layer, so the metal layer is also used for the first layer wiring. The length of the gate electrode is an important factor that determines the performance of a field effect transistor, and in order to improve its dimensional accuracy, a dry etching method is used to form the gate electrode, and the sides of the gate electrode metal layer are aligned with the substrate surface. It is formed to form an angle of approximately 90°. Since this metal layer is also used as the 11th layer wiring, the side surfaces of the 1st layer wiring are also formed at an angle of approximately 90° with the substrate surface.

(解決しようとする問題点) 集積回路を形成するには、さらに、層間絶縁膜を被着し
、その」二に第2層配線を形成しなければならない。と
ころが、第3図の1折面構造図に示すように第1層配線
32の側面が基板31の表面と90°の角度をなしてい
ると、層間絶縁膜33のかげに第2層配線用金属34が
残ってしまい、これが第2層配線間のリークの原因とな
ることがあった。
(Problems to be Solved) In order to form an integrated circuit, it is necessary to further deposit an interlayer insulating film and form a second layer wiring on top of it. However, if the side surface of the first layer wiring 32 forms an angle of 90 degrees with the surface of the substrate 31 as shown in the one-fold structural diagram of FIG. 34 remains, which may cause leakage between the second layer wirings.

本発明の目的は、この問題点を解決した化合物半導体集
積回路を提供することにある。
An object of the present invention is to provide a compound semiconductor integrated circuit that solves this problem.

(問題点を解決するための手段) 本発明は、電界効果トランジスタのゲート電極と第1層
配線が同一材料で形成された化合物半導体集積回路にお
いて、ゲート電極の側面が基板表面とほぼ90°の角度
をなし、第1層配線の側面が基板表面と鋭角をなすこと
を特徴とする化合物半導体集積回路である。
(Means for Solving the Problems) The present invention provides a compound semiconductor integrated circuit in which the gate electrode of a field effect transistor and the first layer wiring are formed of the same material, in which the side surface of the gate electrode is at approximately 90 degrees with the substrate surface. The compound semiconductor integrated circuit is characterized in that the side surface of the first layer wiring forms an acute angle with the substrate surface.

(作用) 本発明においては、同一材料で形成されたゲート電極部
と第1層配線部の側面が基板表面となす角度が異なって
いることが重要な点であり、第1層配線部の側面が基板
表面と鋭角をなしているために、層間絶縁膜のかげに第
2層配線用金属が残らず、リークのない第2層配線が形
成できる。
(Function) In the present invention, it is important that the side surfaces of the gate electrode section and the first layer wiring section formed of the same material have different angles with the substrate surface. Since it forms an acute angle with the substrate surface, no metal for the second layer wiring remains behind the interlayer insulating film, and a leak-free second layer wiring can be formed.

(実施例) 以下、図面に従って本発明の詳細な説明する。第1図(
a)は本発明の一実施例を説明するための平面図である
。第1図(a)において、11は半絶縁性ガリウム砒素
基板、12はn型ガリウム砒素動作層、13はゲート電
極で、例えば厚さ4000人のタングステン層で形成さ
れ、電圧を印加することによりn型GaAs動作層12
の実効的厚さを変化させる。また、14は第1層配線で
、ゲート電極と同じ厚さ4000人のタングステン層で
形成されている。第1図(b)は第1図(a)の一点鎖
線すにおける断面図、すなわち第1層配線の断面図であ
り、配線の側面15が半絶縁性ガリウム砒素基板の表面
に対して鋭角をなしていることを示している。第1図(
C)は第1図(a)の一点鎖線Cにおける1折面図、す
なわちゲート電極の1祈面図であり、ゲート電極の側面
16が半絶縁性ガリウム砒素基板の表面に対して90°
の角度をなしていることを示している。第2図(a)は
第1図(a)の状態から、層間絶縁膜を被着した後、ド
ライエツチング法により第2層配線を形成した状態を示
す平面図で、23がゲート電極、24が第1層配線、2
5,26.27が第2層配線である。この状態における
一点鎖線すにおける断面図が第2図(b)であり、一点
鎖線Cにおける断面図が第2図(e)である。第2図(
e)に示すようにゲート電極部では層間絶縁膜29のか
げに第2層配線用金属41が残っているが、第1層配線
部では、第2図(b)に示すように層間絶縁膜にかげの
部分ができないので第2層配線25と他の第2層配線2
6の間にリークが生じない。また、ゲート電極部では第
2図(a)の28で示した部分に第2層配線用金属が残
る可能性があるわけであるが、29で示した部分には第
2層配線用金属が残らないため、第2層配線27と他の
第2層配線26の間にリークは生じない。また、ゲート
電極の側面16を基板表面に対して垂直にすることによ
って電界効果トランジスタの性能が精度よく制御できる
。倒れることが多いが、この場合、ゲーI・電極の側面
が基板表面に対して垂直に形成されていないと、マスク
としての作用を十分に果たさず、ゲート電極下にもシリ
コンイオンが注入されてしまう。
(Example) Hereinafter, the present invention will be described in detail with reference to the drawings. Figure 1 (
a) is a plan view for explaining one embodiment of the present invention. In FIG. 1(a), 11 is a semi-insulating gallium arsenide substrate, 12 is an n-type gallium arsenide operating layer, and 13 is a gate electrode, which is formed of, for example, a tungsten layer with a thickness of 4000 μm, and when a voltage is applied, n-type GaAs operating layer 12
change the effective thickness of the Further, 14 is a first layer wiring, which is formed of a tungsten layer having the same thickness as the gate electrode and having a thickness of 4000 nm. FIG. 1(b) is a cross-sectional view taken along the dashed line in FIG. 1(a), that is, a cross-sectional view of the first layer wiring, in which the side surface 15 of the wiring forms an acute angle with respect to the surface of the semi-insulating gallium arsenide substrate. It shows what you are doing. Figure 1 (
C) is a 1-fold view taken along the dashed line C in FIG.
This shows that it forms an angle of . FIG. 2(a) is a plan view showing a state in which a second layer wiring is formed by a dry etching method after depositing an interlayer insulating film from the state shown in FIG. 1(a), and 23 is a gate electrode, 24 is the first layer wiring, 2
5, 26, and 27 are second layer wirings. A cross-sectional view along the dashed-dotted line in this state is shown in FIG. 2(b), and a cross-sectional view along the dashed-dotted line C is shown in FIG. 2(e). Figure 2 (
As shown in e), the second layer wiring metal 41 remains behind the interlayer insulating film 29 in the gate electrode part, but in the first layer wiring part, the interlayer insulating film 29 remains as shown in FIG. 2(b). Since there is no shaded area, the second layer wiring 25 and other second layer wiring 2
No leakage occurs between 6 and 6. Furthermore, in the gate electrode part, there is a possibility that the metal for the second layer wiring remains in the part indicated by 28 in FIG. 2(a), but the metal for the second layer wiring remains in the part indicated by 29. Since no trace remains, no leakage occurs between the second layer wiring 27 and other second layer wirings 26. Further, by making the side surface 16 of the gate electrode perpendicular to the substrate surface, the performance of the field effect transistor can be controlled with high precision. In this case, if the sides of the gate I electrode are not formed perpendicular to the substrate surface, it will not function well as a mask, and silicon ions will be implanted even under the gate electrode. Put it away.

なお、第1図(C)のような構造を得るには、例えば、
ホトレジストをマスクとしてSF6とCF4の混合ガス
を用いてリアクティブイオンエツチングによりタングス
テンを加工すればよく、第1図(b)のような構造を得
るには、例えば、ホトレジストをマスクとしてSF6ガ
スを用いてリアクティブイオンエツチングによりタング
ステンを加工すればよい。
In addition, in order to obtain the structure as shown in FIG. 1(C), for example,
Tungsten can be processed by reactive ion etching using a mixed gas of SF6 and CF4 using photoresist as a mask.For example, to obtain the structure shown in Figure 1(b), use SF6 gas using photoresist as a mask. Tungsten can be processed using reactive ion etching.

上記の実施例ではゲート電極及び第1層配線用材料とし
てタングステンを用いたが、他の金属、あるいは金属化
合物あるいはそれらのシリサイドを用いてもよい。また
基板として半絶縁性ガリウム砒素基板を用いたが、他の
化合物半導体基板を用いてもよい。
In the above embodiments, tungsten was used as the material for the gate electrode and the first layer wiring, but other metals, metal compounds, or silicides thereof may also be used. Furthermore, although a semi-insulating gallium arsenide substrate is used as the substrate, other compound semiconductor substrates may be used.

(発明の効果) このように、本発明により得られる化合物半導体集積回
路は、ゲート電極の側面が垂直であるたある。
(Effects of the Invention) As described above, in the compound semiconductor integrated circuit obtained by the present invention, the side surfaces of the gate electrode are vertical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例を説明するための
図で、(a)は平面図、(b)は一点鎖線すにおける1
折面図、(C)は一点鎖線Cにおける断面図である。 図において、11.21は半絶縁性ガリウム砒素基板、
12はn型ガリウム砒素動作層、13.23はゲート電
極、14.24は第1層配線、15は第1層配線の側面
、16はゲート電極の側面、25,26.27は第2層
配線、28は第2層配線用金属の残っている部分、29
は第2層配線用金属の残っていない部分、41は第2層
配線用金属である。 第3図は従来の第1層配線における問題点を説明するた
めの断面図で、31は基板、32は第1層配線、33は
層間絶縁膜、34は第2層配線用金属である。 工::1゛邦;、、、(、:1社長 u、−1!−子p孝ζ狸カリウム2比系11及半  2
  図 21− 津1色チ院1生力゛リウム砒J#薯4反z3 
: ブー)−1γkか z4: 寥1(配襟 25、 z6.、?7 ; 享246cm28: 半2
層配襟珀室系、残v71.3都令21?  :  II
y2/#J髭1#f4’?;Iatnl*11S、?!
−、、之弔/、14I:半24111!鼻TI4金属 33、層間絶縁膜 32、享1層tこギ1、
1 and 2 are diagrams for explaining one embodiment of the present invention, in which (a) is a plan view, and (b) is a 1-point view along the dashed line.
The folded view (C) is a sectional view taken along the dashed line C. In the figure, 11.21 is a semi-insulating gallium arsenide substrate,
12 is the n-type gallium arsenide active layer, 13.23 is the gate electrode, 14.24 is the first layer wiring, 15 is the side surface of the first layer wiring, 16 is the side surface of the gate electrode, 25, 26.27 is the second layer Wiring, 28 is the remaining part of the second layer wiring metal, 29
4 is a portion where no second-layer wiring metal remains, and 41 is a second-layer wiring metal. FIG. 3 is a cross-sectional view for explaining problems in the conventional first layer wiring, in which 31 is a substrate, 32 is a first layer wiring, 33 is an interlayer insulating film, and 34 is a metal for second layer wiring. Engineering::1゛Country;,,,,(,:1 President u, -1!-Child p Takashi ζ Tanuki potassium 2 ratio system 11 and a half 2
Figure 21- Tsu 1 color chiin 1 raw power ゛ium 砒 J# 薯4 z3
: Boo) -1γk or z4: 寥1 (collar size 25, z6., ?7; height 246cm28: half 2
Layered collar system, remaining v71.3 Toei 21? : II
y2/#J mustache 1#f4'? ;Iatnl*11S,? !
-,,Condolence/,14I:Half 24111! Nose TI4 metal 33, interlayer insulating film 32, 1st layer T saw 1,

Claims (1)

【特許請求の範囲】[Claims] 電界効果トランジスタのゲート電極と第1層配線が同一
材料で形成された化合物半導体集積回路において、ゲー
ト電極の側面が基板表面とほぼ90°の角度をなし、第
1層配線の側面が基板表面と鋭角をなすことを特徴とす
る化合物半導体集積回路。
In a compound semiconductor integrated circuit in which the gate electrode of a field effect transistor and the first layer wiring are formed of the same material, the side surface of the gate electrode forms an approximately 90° angle with the substrate surface, and the side surface of the first layer wiring forms an angle of approximately 90° with the substrate surface. A compound semiconductor integrated circuit characterized by an acute angle.
JP6736186A 1986-03-27 1986-03-27 Compound semiconductor integrated circuit Pending JPS62224947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6736186A JPS62224947A (en) 1986-03-27 1986-03-27 Compound semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6736186A JPS62224947A (en) 1986-03-27 1986-03-27 Compound semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS62224947A true JPS62224947A (en) 1987-10-02

Family

ID=13342797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6736186A Pending JPS62224947A (en) 1986-03-27 1986-03-27 Compound semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS62224947A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994439A (en) * 1982-11-22 1984-05-31 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994439A (en) * 1982-11-22 1984-05-31 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US4599790A (en) Process for forming a T-shaped gate structure
JPS615580A (en) Manufacture of semiconductor device
JPS62224947A (en) Compound semiconductor integrated circuit
US20070187798A1 (en) Semiconductor device and method of manufacturing the same
US5888894A (en) Method for reducing stray conductive material near vertical surfaces in semiconductor manufacturing processes
JPS63114130A (en) Method for interelement separation
JPS6039848A (en) Manufacture of semiconductor device
JPS5815934B2 (en) How to use hand tools
JPS61105868A (en) Semiconductor device
US3923562A (en) Process for producing monolithic circuits
JPS60245176A (en) Manufacture of mis type field effect transistor
JPH02302034A (en) Manufacture of semiconductor device
JPS59208784A (en) Manufacture of semiconductor device
JPS6390171A (en) Manufacture of field effect transistor
JPS5994439A (en) Semiconductor device and manufacture thereof
JPS63304646A (en) Formation of superconductor thin film pattern
JPS6058644A (en) Semiconductor device
JPS60120574A (en) Manufacture of field effect transistor
JPH065562A (en) Formation of semiconductor thin film
JPH0653493A (en) Semiconductor device
JPS63102353A (en) Semiconductor device
KR100400255B1 (en) Method for forming gate oxide of merged semiconductor device
JPH0828538B2 (en) Method for forming superconducting thin film pattern
JPH0387030A (en) Multilayer interconnection
JPS61179577A (en) Semiconductor device and manufacture thereof