JPS6039848A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6039848A
JPS6039848A JP14653683A JP14653683A JPS6039848A JP S6039848 A JPS6039848 A JP S6039848A JP 14653683 A JP14653683 A JP 14653683A JP 14653683 A JP14653683 A JP 14653683A JP S6039848 A JPS6039848 A JP S6039848A
Authority
JP
Japan
Prior art keywords
film
metal
tungsten
layer
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14653683A
Other languages
Japanese (ja)
Inventor
Yoshitaka Tsunashima
綱島 祥隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14653683A priority Critical patent/JPS6039848A/en
Publication of JPS6039848A publication Critical patent/JPS6039848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To connect a high melting-point metal and a second metallic layer positively by selectively etching a metallic oxide formed on the high melting- point metallic layer by an aqueous solution, etc. containing ammonia and exposing the metal. CONSTITUTION:A polycrystalline silicon gate electrode 4 and a gate oxide film 3 are formed on a P type silicon substrate 1 through a photoetching method, and arsenic ions are implanted to shape N<+> diffusion layers 5. The surfaces are coated with a SiO2 film, a SiO2 film 6 is left on the side wall of a gate through reactive ion etching (RIE), tungsten films 7 are formed on a source and a drain and a gate electrode, and the surfaces are coated with a SiO2 film 8. Connecting holes 101-103 are formed through RIE while using a resist film 9 as a mask for shaping the connecting holes, and a resist is removed by an oxygen plasma incinerator. Tungsten oxides 11 are formed on the surfaces of the tungsten films 7 at that time. Only the tungsten oxides 11 are etched selectively and removed by using an aqueous solution containing ammonia, and aluminum layers 12 as second metallic wiring layers are formed.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、半導体装置の四ノ造法に係り tjケに高融
点金属をち−む多層金E4配線11ヶ造の半導体装置に
おける配線)¥411]の接続技術に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to four methods for manufacturing a semiconductor device. ¥411] related to connection technology.

〔従来技術とその間m点〕[Conventional technology and m points in between]

近年、半導体年杼1回路の高集積化に対する期待が高1
っている。高集積化に伴ない、必然的に素子寸法は、小
さくなる必要かifi+す、拡¥1.層はより浅く、耐
蝕14:、より細くなる傾向にある。素子寸法を小さく
すれは、当然電気抵抗は高くなり、素子の反応速度が遅
(’l−)’Cしまう。現在、1(幻S−DRAM等の
ゲート配Iv!には、多結晶シリコンを使用しているも
のが多いが、より低抵抗材料である金属シリサイド、あ
るいは高融点金属が代わりに使用される傾向にある。
In recent years, expectations for higher integration of semiconductor circuits have risen to 1.
ing. With higher integration, element dimensions inevitably need to become smaller or larger. The layers tend to be shallower and thinner. As the element size is made smaller, the electrical resistance naturally becomes higher and the reaction speed of the element becomes slower ('l-)'C. Currently, polycrystalline silicon is often used for the gate wiring Iv! of 1 (phantom S-DRAM), but there is a tendency for metal silicide, which is a lower resistance material, or high-melting point metal to be used instead. It is in.

従来、配線間の導辿をとるための接続孔は、溶液による
エツチングにより行なわれていたが、素子寸法が小びく
なり、微細加工が必須になって来て1つ・す、よりバク
ーン変換差の少ない反応性イオンエッヂンク(RIE)
技術が盛んに使用され始めている。写真蝕刻法によりバ
ターニングされたレジスト表面をマスクとし゛C1高融
点金川であるタングステンあるいは七リブナン上の杷M
: 14に]〆絞孔をRIEによってル成1−る場合、
RIICによるダメージにより、上記レジスト膜の表面
1XtS分が変質する現象が生じ/り。この変質したレ
ジストは、有機ン谷質に簡単には溶解し7よくなる。そ
のブζめ、i疋来このレジスト膜を除去する方法として
、酸素フラズマ灰化装置を用いる方法がある。しかし、
この方法を用いると、接続孔部に露出している高融点金
属ノーが酸化はれて、表面が金属酸化物になってしまう
。そのため、その後に形成する第2の金纏層との接触が
とれなくなり、電気的に絶縁してしまい、所望の配線間
の導通が得られない問題か生じる。
Conventionally, connection holes for interconnections were made by etching with a solution, but as device dimensions became smaller and microfabrication became essential, the Bakun transform difference became more important. Reactive ion edging (RIE) with less
The technology is starting to be used extensively. Using the resist surface patterned by photolithography as a mask, loquat M on tungsten, which is C1 high melting point Kanagawa, or seven-ribnan.
: 14] When forming the closing hole by RIE,
Damage caused by RIIC causes a phenomenon in which the surface of the resist film changes in quality by 1XtS. This altered resist is easily dissolved in the organic layer and improved. For this reason, there has been a method of removing this resist film using an oxygen plasma ashing device. but,
If this method is used, the high melting point metal exposed in the connection hole is oxidized and the surface becomes a metal oxide. Therefore, it becomes impossible to make contact with the second metal covering layer that will be formed subsequently, resulting in electrical insulation, resulting in a problem that the desired conduction between the wirings cannot be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した問題点を改善したもので、高融点金
属層と第2の金属層との接続を確実にして、信頼性の高
い半導体装置を実現する製造方法を提供することを目的
とする。
The present invention has been made to improve the above-mentioned problems, and an object of the present invention is to provide a manufacturing method for realizing a highly reliable semiconductor device by ensuring the connection between a high melting point metal layer and a second metal layer. do.

〔発明のR要〕[Requirements for invention]

すなわち本発明は、高融点金属層(タングステンあるい
はモリブテン)上に形成される金属酸化物を、アンモニ
アを含む水溶液により、選択的にエツチングしで、−上
記金属をAN出することをt待機とするものである。
That is, the present invention selectively etches a metal oxide formed on a high melting point metal layer (tungsten or molybdenum) with an aqueous solution containing ammonia, and waits for t to release the metal. It is something.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高融点金属ノーを用いた半?ノ)体素
子において、このt−1,融点金屑と第2の金属層との
接続孔形成に際して、 RIEを用いることができ、そ
の後のレジスト除去工程においては、酸素フラズマ灰化
装置を使うことができる。そのため、微細な接続孔によ
り、確実に高融点金属と第2の金属層との接続が可能と
なる。したがって、素子の高集積化、高速Di11作化
に寄与するところが大きい。
According to the present invention, a semi-conductor using a refractory metal no. (g) In the body element, RIE can be used to form the connection hole between the t-1 melting point metal scrap and the second metal layer, and an oxygen plasma ashing device can be used in the subsequent resist removal process. I can do it. Therefore, the fine connection holes enable reliable connection between the high melting point metal and the second metal layer. Therefore, it greatly contributes to higher integration of elements and higher speed Di11 production.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を適用した実力可倒につき、図面を用いな
がら、詳細に説明ずろ。
Hereinafter, a detailed explanation will be given of the power folding to which the present invention is applied, with reference to the drawings.

第1図(d1本本発明一実施例としてMOSFETの製
造工程を示す工程断面図である。すなわち、6〜8Ωの
P型ゾリニfン基板1をLoCos工程に従って熱酸化
し、フィールド酸化膜2を形成シフ、写真蝕刻法により
、素子領域をつくる。11)び、熱酸化して、素子領域
内に厚さ400Aの酸化膜を形成し、その上にLPCV
D法により、3000Xの多結晶シリコン膜を積層させ
た後、写真蝕刻法により、多結晶シリコンゲート電極4
.およびゲート酸化膜3を形成する。この構造のt−1
:、ヒ素を加速電圧40 KeVでドーズ11f、 3
 X 1015GFrL2イオン注入した後、6()0
’Q 、 180分の熱処理を行ない、浅いn″拡散層
5を形成する。
FIG. 1 (d1) is a process cross-sectional view showing the manufacturing process of a MOSFET as an embodiment of the present invention. That is, a P-type zolinium substrate 1 of 6 to 8 Ω is thermally oxidized according to the LoCos process, and a field oxide film 2 is formed. 11) Then, thermal oxidation is performed to form an oxide film with a thickness of 400A in the element region, and on top of that, an oxide film of LPCV is formed.
After laminating a 3000X polycrystalline silicon film by the D method, a polycrystalline silicon gate electrode 4 is formed by photolithography.
.. and gate oxide film 3 is formed. t-1 of this structure
:, arsenic at an acceleration voltage of 40 KeV and a dose of 11f, 3
After X 1015GFrL2 ion implantation, 6()0
A heat treatment is performed for 180 minutes to form a shallow n'' diffusion layer 5.

、yらにCVD法により、5i02膜で彷い、反応性イ
オンエツチングにより、ゲート側壁に5iOz膜6を残
す(a)。この構造のまま、CM)法によや、ソースド
レイン上、およびゲート電極上にタングステン膜7を選
択的に形成する。この−ヒにプラズマ已■法によりS 
to 2膜8を被せて、fj 00 ’(3@処刊!を
行ない、5i02膜8をデンシファイする。この後、レ
ジスト膜9を積層させ、写真蝕刻法でバターニングして
、接続孔形成のマスクVこして、r<rrrにより接続
孔(10+ +102,11):4)を形成する(b)
。この齢、レジスト表面は、変質する。前記レジストを
酸素プラズマ灰化装置で除去する。この工程において、
上記タングステン膜7表面が1背比され、タングステン
酸化物11が形成する(c)。
, y et al., a 5iO2 film is formed by CVD, and a 5iOz film 6 is left on the gate sidewalls by reactive ion etching (a). With this structure in place, a tungsten film 7 is selectively formed on the source/drain and gate electrodes using the CM method. In this case, using the plasma method,
To 2 film 8 is covered, and fj 00' (3 @ processing is carried out!) to densify the 5i02 film 8. After this, a resist film 9 is laminated and patterned by photolithography to form connection holes. Pass through the mask V and form a connection hole (10+ +102,11):4) with r<rrr (b)
. At this age, the resist surface changes in quality. The resist is removed using an oxygen plasma ashing device. In this process,
The surface of the tungsten film 7 is polished to form a tungsten oxide 11 (c).

アンモニアを含む水溶液を用いて、上記タングステン酸
化物11のみを選択的にエツチングして除去する。次い
で、スパッター法を用いて第2の金属配線層であるアル
ミ層12を形成した後、写真蝕刻法でバターニングした
レジスト層をマスクとして、上記アルミNlzを7’)
t 象の配り形状にリン酸系溶液を用いてエツチングす
るω)。
Using an aqueous solution containing ammonia, only the tungsten oxide 11 is selectively etched and removed. Next, after forming an aluminum layer 12 which is a second metal wiring layer using a sputtering method, using a resist layer patterned by photolithography as a mask, the aluminum Nlz 7') is formed.
t Etch the shape of the elephant using a phosphoric acid solution ω).

以上で、浅い拡散層、多結晶シリコン/タングステング
ー) ’li(極、微細な配線間接続孔で構成されたI
VIO8F’ETが完成する。4rYL来問題と71っ
ていたタングステン/アルミの接続も確実にとることが
でき、なおかつ5寸法的に小さくなり、高集積化、高速
動作化することが可能な楢°造に〃っている。
With the above, the I
VIO8F'ET is completed. The tungsten/aluminum connection, which has been a problem since the 4rYL, can be made reliably, and it is also made of wood, which is smaller in five dimensions and allows for higher integration and higher speed operation.

本5I:施例では、zvlO8FE’l’への応用を示
L7たが、高融点<T2 fjEであるタンクステンあ
るい(l:I: =4ユリブデン」二の!5縁層に抗続
孔をあけ、第2の金k)6層と接続をとる二1ニ程てお
いて、IjIEとr1′2化プラズマ灰化装置ケ用いる
半導体装1i′I−の製造法でられば、本発明を応用「
ることかできる。
Book 5I: In the example, application to zvlO8FE'l' was shown L7, but tanksten or (l:I: =4 uribdenum) with high melting point If the manufacturing method of the semiconductor device 1i'I- using IjIE and r1'2 plasma ashing device is made by opening the second gold k)6 layer and connecting it with the second gold layer, the present invention can be applied. Apply “
I can do that.

ムノ、上の様に、本発明を用いf+、 C1: 、高融
点金属配線を用い1、第2の金属配線との薊ト実l接続
をもつ、イ、;頼性の高い素子の高集積化、高速dif
7作化がi]能となる。
As mentioned above, using the present invention, f+, C1: using high-melting point metal wiring, 1, having a cross-section connection with the second metal wiring, A; high integration of highly reliable elements. , high speed dif
The seventh production became i] Noh.

【図面の簡単な説明】[Brief explanation of the drawing]

:411ン+1&よ、小発明の一実施例として陣)SF
ETLI′)1゛2造工程忙簡略化して示す二り根回面
図である。 ■ ・Pへリシリコン基板、2・・フィールドIIυ化
’+”\、3・・・ゲ−ト1賀化膜、4・・・多脂晶ノ
リニJンゲート「:上極、Fi −n 拡故層、6 ・
−・S t(’、)211il巳P 、 7.、・タン
グステン層、8・・・酸化1函、9・・・レジストル′
へ、10.10+、102.L(1+<・・・接続孔、
11・・・タングステン酸化物、12・・アルミ配線。 第 1 図
:411n+1&yo, as an example of a small invention) SF
ETLI') 1-2 is a simplified two-root circuit diagram showing the manufacturing process. ■ ・P heli-silicon substrate, 2...Field IIυ conversion'+"\, 3...Gate 1-layer film, 4...Polylipid crystal Norini J gate": Upper electrode, Fi-n expansion Layer, 6 ・
-・S t(',)211il庳P, 7. , tungsten layer, 8... 1 box of oxide, 9... resist'
to, 10.10+, 102. L(1+<...connection hole,
11...Tungsten oxide, 12...Aluminum wiring. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)不純物拡散層が形成された半導体基板上に1層目
の金属配線層を形成する工程と、上記金属配線層上に絶
縁膜を堆積させる工程と、前記絶縁膜に、写真蝕刻法に
よりパターニングしたレジスト膜をマスクとして、反応
性イオンエツチング技術により金属配線層間の接続孔を
形成する工程と、次いで上記レジスト膜を酸素プラズマ
灰化装置で除去する工程と、前記金属配線膜上に酸素プ
ラズマ灰化工程で形成される金属酸化膜を、金属と金r
3酸化物とのエツチングの選択比の大きさは溶剤でエツ
チングする工程と、その後2層目の金属配(2)第1の
金属配#層は、タングステンまたはモリブデンであり、
第1の金属配線層上の金属酸化膜をエツチングする溶剤
は、アンモニアを含む水
(1) A step of forming a first metal wiring layer on a semiconductor substrate on which an impurity diffusion layer is formed, a step of depositing an insulating film on the metal wiring layer, and a step of depositing an insulating film on the insulating film by photolithography. Using the patterned resist film as a mask, a step of forming connection holes between metal wiring layers by reactive ion etching technology, a step of removing the resist film with an oxygen plasma ashing device, and a step of removing the resist film with oxygen plasma on the metal wiring film. The metal oxide film formed in the ashing process is
The selectivity of etching with trioxide is determined by the step of etching with a solvent and the subsequent second metal layer (2) where the first metal layer is tungsten or molybdenum;
The solvent for etching the metal oxide film on the first metal wiring layer is water containing ammonia.
JP14653683A 1983-08-12 1983-08-12 Manufacture of semiconductor device Pending JPS6039848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14653683A JPS6039848A (en) 1983-08-12 1983-08-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14653683A JPS6039848A (en) 1983-08-12 1983-08-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6039848A true JPS6039848A (en) 1985-03-01

Family

ID=15409864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14653683A Pending JPS6039848A (en) 1983-08-12 1983-08-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6039848A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271547A (en) * 1988-09-06 1990-03-12 Sony Corp Formation of wiring contact
US5100824A (en) * 1985-04-01 1992-03-31 National Semiconductor Corporation Method of making small contactless RAM cell
US5229307A (en) * 1985-01-22 1993-07-20 National Semiconductor Corporation Method of making extended silicide and external contact
US5340762A (en) * 1985-04-01 1994-08-23 Fairchild Semiconductor Corporation Method of making small contactless RAM cell
JP2016208024A (en) * 2015-04-15 2016-12-08 株式会社半導体エネルギー研究所 Electrode and method of manufacturing semiconductor device
EP3534395A1 (en) * 2018-03-02 2019-09-04 Micromaterials LLC Methods for removing metal oxides

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229307A (en) * 1985-01-22 1993-07-20 National Semiconductor Corporation Method of making extended silicide and external contact
US5100824A (en) * 1985-04-01 1992-03-31 National Semiconductor Corporation Method of making small contactless RAM cell
US5340762A (en) * 1985-04-01 1994-08-23 Fairchild Semiconductor Corporation Method of making small contactless RAM cell
JPH0271547A (en) * 1988-09-06 1990-03-12 Sony Corp Formation of wiring contact
JP2016208024A (en) * 2015-04-15 2016-12-08 株式会社半導体エネルギー研究所 Electrode and method of manufacturing semiconductor device
US11004727B2 (en) 2015-04-15 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating electrode and semiconductor device
US11791201B2 (en) 2015-04-15 2023-10-17 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating electrode and semiconductor device
EP3534395A1 (en) * 2018-03-02 2019-09-04 Micromaterials LLC Methods for removing metal oxides
JP2019192906A (en) * 2018-03-02 2019-10-31 マイクロマテリアルズ エルエルシー Methods for removing metal oxides

Similar Documents

Publication Publication Date Title
JPH05206451A (en) Mosfet and its manufacture
JPS6039848A (en) Manufacture of semiconductor device
JPS60138971A (en) Manufacture of semiconductor device
JPS5918874B2 (en) hand tai souchi no seizou houhou
JPS5912021B2 (en) Manufacturing method of semiconductor device
JPS6072229A (en) Electrode and wiring structure of semiconductor device
JPS6266679A (en) Manufacture of semiconductor device
JPS62163341A (en) Patterning method for high melting-point metallic film
JPS62206873A (en) Manufacture of semiconductor device
JPS63284861A (en) Manufacture of semiconductor device
JPH0287621A (en) Manufacture of semiconductor device
JPS59161070A (en) Manufacture of semiconductor device
JPH0653493A (en) Semiconductor device
JPH0444250A (en) Manufacture of semiconductor device
JPS61224414A (en) Manufacture of semiconductor device
JPS6161546B2 (en)
JP2000100962A (en) Manufacture of semiconductor device
JPS5914901B2 (en) Manufacturing method of semiconductor device
JPS61129869A (en) Manufacture of semiconductor device
JPH0923008A (en) Manufacture of field effect semiconductor device
JPH0444226A (en) Manufacture of semiconductor device
JPS62211952A (en) Manufacture of semiconductor device
JPH0297057A (en) Manufacture of semiconductor device
JPS58158968A (en) Manufacture of semiconductor device
JPH0132651B2 (en)