JPS62205354A - Lithographic method - Google Patents

Lithographic method

Info

Publication number
JPS62205354A
JPS62205354A JP61049016A JP4901686A JPS62205354A JP S62205354 A JPS62205354 A JP S62205354A JP 61049016 A JP61049016 A JP 61049016A JP 4901686 A JP4901686 A JP 4901686A JP S62205354 A JPS62205354 A JP S62205354A
Authority
JP
Japan
Prior art keywords
photoresist
negative
positive
positive photoresist
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61049016A
Other languages
Japanese (ja)
Inventor
Hajime Imai
元 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61049016A priority Critical patent/JPS62205354A/en
Publication of JPS62205354A publication Critical patent/JPS62205354A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer

Abstract

PURPOSE:To enhance precision and reproducibility of a resist mask by exposing a negative type photoresist formed on a positive type photoresist, and forming a mask made of the CONSTITUTION:The positive type photoresist 2 is applied to a substrate 1, and the negative type photoresist 3 is applied to the photoresist 2. Then, the photoresists 3, 2 are imagewise exposed, and the mask made of the positive type photoresist 2 is obtained by developing the photoresist 2 after development processing of the photoresist 3. At that time, a thickness of the photoresist 2 and the photoresist 3 are controlled to, for example, 300mm and 100mm, respectively, thus permitting a ratio of illumination intensity reaching the photoresist 3 to that reaching the photoresist 2 to be made about 30:1, and a diffraction grating of sufficient depth to be formed by etching on the photoresist 2.

Description

【発明の詳細な説明】 〔概要〕 この発明は、リソグラフィの露光方法で高コントラスト
が得難い場合に、 ポジ型ホトレジスト上にネガ型ホトレジストを積層塗布
して両レジストを露光し、ポジ型レジストよりなるマス
クを形成するflfことにより、ポジ型レジストの露光
量のコントラストを向上する効果を得るものである。
[Detailed Description of the Invention] [Summary] This invention, when it is difficult to obtain high contrast with the exposure method of lithography, coats a negative photoresist in a layered manner on a positive photoresist, exposes both resists, and produces a photoresist made of a positive photoresist. By forming the mask, the effect of improving the contrast of the exposure amount of the positive resist is obtained.

〔産業上の利用分野〕[Industrial application field]

本発明はリソグラフィ方法、特に例えば2光束干渉法な
どの高コントラストが得難い露光方法を適用するリソグ
ラフィ方法の改善に関する。
The present invention relates to an improvement in a lithography method, and particularly to a lithography method that applies an exposure method that is difficult to obtain high contrast, such as two-beam interference method.

例えば分布帰還形(DFB) レーザでは光導波路の界
面に設けた回折格子により帰還が選択的に行われるが、
この回折格子パターンの露光に適用される2光束干渉法
などは一般にコントラストが低くて良好なレジストマス
クが得難く、その改善が要望されている。
For example, in distributed feedback (DFB) lasers, feedback is selectively performed using a diffraction grating provided at the interface of the optical waveguide.
The two-beam interferometry method applied to the exposure of this diffraction grating pattern generally has low contrast, making it difficult to obtain a good resist mask, and improvements are desired.

〔従来の技術〕[Conventional technology]

DFBレーザは例えば第3図の模式側断面図に示す如き
構造を有する。同図において、21はn型インジウム燐
(InP)基板、22は回折格子パターン、23ば厚さ
0.15μm程度のn型インジウムガリウム砒素燐(I
nGaAsP)ガイド層、24は厚さ0.15−程度の
TnGaAsP活性層、25はp型1nPクラッド層、
26はp型InGaAsPコンタクト層、27はp側電
極、28はn側電極である。
The DFB laser has, for example, a structure as shown in the schematic side sectional view of FIG. In the figure, 21 is an n-type indium phosphide (InP) substrate, 22 is a diffraction grating pattern, and 23 is an n-type indium gallium arsenide phosphide (I) with a thickness of about 0.15 μm.
(nGaAsP) guide layer, 24 is a TnGaAsP active layer with a thickness of approximately 0.15 mm, 25 is a p-type 1nP cladding layer,
26 is a p-type InGaAsP contact layer, 27 is a p-side electrode, and 28 is an n-side electrode.

このDFBレーザの発振波長が例えば1.3賜帯域とな
る回折格子パターン22のピッチAは、2次回折光を利
用するとき約0.4μm、1次回折光を利用するとき約
0.2pmとなる。この様にピッチAが小さく露光マス
クの形成が困難な周期的パターンの露光方法としては、
第2図に示す如き2光束干渉法が一般に行われている。
The pitch A of the diffraction grating pattern 22 at which the oscillation wavelength of this DFB laser is, for example, a 1.3-wavelength band, is about 0.4 μm when using second-order diffracted light, and about 0.2 pm when using first-order diffracted light. As an exposure method for such a periodic pattern where the pitch A is small and it is difficult to form an exposure mask,
A two-beam interferometry as shown in FIG. 2 is generally practiced.

同図において、11は半導体基体、12はレジスト膜、
13は例えば波長325nmのへリウムーカドミウム(
He −Cd)レーザ、14.17.18はミラー、1
5はビームエクスパンダ、16はハーフミラ−であり、
レーザ13から出射しビームエクスパンダ15で所要の
大きさの平行光束としたレーザ光をハーフミラ−16で
2方向に分割し、ミラー17.18でレジスト膜12上
に照射して、レジスト膜】2上にこの2光束相互間の光
路長差による縞状の干渉パターンを形成する。
In the figure, 11 is a semiconductor substrate, 12 is a resist film,
13 is, for example, helium-cadmium (with a wavelength of 325 nm).
He-Cd) laser, 14.17.18 is a mirror, 1
5 is a beam expander, 16 is a half mirror,
The laser beam emitted from the laser 13 and made into a parallel beam of the required size by the beam expander 15 is divided into two directions by the half mirror 16, and is irradiated onto the resist film 12 by the mirrors 17 and 18 to form the resist film]2. A striped interference pattern is formed on the top due to the optical path length difference between the two beams.

レジスト膜12には通常ポジタイプのキノンジアジド系
ホトレジスト、例えばシソプレイ社のへZ1350シリ
ーズ等が用いられ、エツチングのためには300 nm
程度の厚さが望ましいが、干渉パターンのコントラスト
を高めことが困難で現像後のレジスト膜12が縞状に分
離する有効な膜厚が制限され、時には100面程度に止
まることがある。更に強度の変化が緩徐であるためにレ
ジスト膜厚、露光及び現像条件の変動によるパターンの
変化が多く現れ、パターン形状の再現性にも問題がある
The resist film 12 is normally a positive type quinone diazide photoresist, such as the He Z1350 series manufactured by Sisoplay Co., Ltd.
Although it is desirable to have a thickness of about 100 nm, it is difficult to increase the contrast of the interference pattern, and the effective thickness at which the resist film 12 after development is separated into stripes is limited, and sometimes remains at about 100 planes. Furthermore, since the intensity changes slowly, there are many changes in the pattern due to changes in the resist film thickness, exposure and development conditions, and there are also problems in the reproducibility of the pattern shape.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

例えばDFBレーザの回折格子パターンに適用される2
光束干渉法などの高コントラストが得難い露光方法によ
って得られているレジストマスクには従来上述の如き問
題が多く、その精度、再現性の向上が強く要望されてい
る。
For example, 2 applied to the diffraction grating pattern of a DFB laser.
Conventionally, resist masks obtained by exposure methods such as beam interferometry, which are difficult to obtain high contrast, have many problems as described above, and there is a strong demand for improvement in their accuracy and reproducibility.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、所要の基板上にポジ型ホトレジストを塗
布し、該ポジ型ホトレジスト上にネガ型ホトレジストを
積層塗布して、該ネガ型ホトレジスト及び該ポジ型ホト
レジストを露光し、該ネガ型ホトレジストの現像後該ポ
ジ型ホトレジストを現像処理して、該ポジ型ホトレジス
トよりなるマスクを形成する本発明によるリソグラフィ
方法により解決される。
The above problem can be solved by applying a positive photoresist onto a desired substrate, coating a negative photoresist on top of the positive photoresist, exposing the negative photoresist and the positive photoresist, and then exposing the negative photoresist to light. This problem is solved by the lithography method according to the present invention, in which the positive photoresist is developed after development to form a mask made of the positive photoresist.

〔作 用〕[For production]

本発明によれば、マスク形成に用いるポジ型ホトレジス
ト上に例えば環化ゴム系のネガ型ホトレジストを積層塗
布し、該ネガ型ホトレジスト及び該ポジ型ホトレジスト
を同時に露光して、該ネガ型ホトレジストの現像後該ポ
ジ型ホトレジストを現像処理する。
According to the present invention, a cyclized rubber-based negative photoresist, for example, is laminated and coated on a positive photoresist used for mask formation, the negative photoresist and the positive photoresist are simultaneously exposed, and the negative photoresist is developed. After that, the positive photoresist is developed.

例えばネガ型ホトレジストに最も多く用いられる環化ゴ
ム系のレジストは光架橋剤としてビスアジド等を含み、
光を照射するとこれが分解し窒素(N2)ガスを放出し
てナイトレンラジカルとなり、ゴムの2重結合と反応し
水素(H2)引抜きによって網目構造を形成して溶剤に
不溶となる。
For example, cyclized rubber resists, which are most commonly used in negative photoresists, contain bisazide as a photocrosslinking agent.
When irradiated with light, it decomposes, releases nitrogen (N2) gas, and becomes nitrene radicals, which react with the double bonds of the rubber and form a network structure by abstracting hydrogen (H2), becoming insoluble in solvents.

この網目構造を形成した状態では光吸収率が光照射前の
レジストの2程度に減少する。従ってネガ型ホトレジス
ト層による光の吸収が入射光強度が大きい位置では速や
かに、入射光強度が小さい位置では緩やかに減少し、ポ
ジ型ホトレジスト層の露光量の強度差はネガ型ホトレジ
スト層上面への入射光の強度差より強調される。
In the state where this network structure is formed, the light absorption rate is reduced to about 2 that of the resist before irradiation with light. Therefore, the absorption of light by the negative photoresist layer rapidly decreases at positions where the intensity of the incident light is high and gradually decreases at positions where the intensity of the incident light is low, and the intensity difference in the exposure amount of the positive photoresist layer is caused by the absorption of light on the top surface of the negative photoresist layer. It is emphasized by the difference in the intensity of the incident light.

〔実施例〕〔Example〕

以下本発明を第1図に模式図を示す実施例により具体的
に説明する。
The present invention will be specifically explained below with reference to an example schematically shown in FIG.

同図において、1は基板、2はポジ型ホトレジスト層、
3はネガ型ホトレジスト層である。本実施例では、ポジ
型ホトレジストにキノンジアジド系のレジスト、例えば
シソプレイ社のAZ1350シリーズを用いてその厚さ
を例えば300nmとし、ネガ型ホトレジストに環化ゴ
ム系のレジスト、例えばコダソク社のKMERを用いて
その厚さを例えば1100nとしている。
In the figure, 1 is a substrate, 2 is a positive photoresist layer,
3 is a negative photoresist layer. In this example, a quinonediazide-based resist, such as the AZ1350 series manufactured by Shisopray Co., Ltd., is used as the positive photoresist, and the thickness thereof is set to 300 nm, and a cyclized rubber-based resist, such as KMER manufactured by Kodasoku Co., Ltd., is used as the negative photoresist. The thickness is, for example, 1100n.

前記ネガ型ホトレジスト層3の上面から2光束干渉法に
よる露光を行うが、2光束干渉法によりネガ型ホトレジ
スト層3の上面に入射する干渉パターンはその照度比が
高々10:1程度である。これに対して、本実施例のポ
ジ型ホトレジスト層2に到達する光の照度比は30:1
程度となり、厚さ3001mのレジストマスクを形成し
て十分な深さの回折格子をエツチング形成することが可
能となった。
Exposure is performed from the upper surface of the negative photoresist layer 3 by the two-beam interference method, and the interference pattern incident on the upper surface of the negative photoresist layer 3 by the two-beam interference method has an illuminance ratio of about 10:1 at most. On the other hand, the illuminance ratio of the light reaching the positive photoresist layer 2 in this example is 30:1.
It became possible to form a resist mask with a thickness of 3001 m and to form a diffraction grating with sufficient depth by etching.

なおネガレジストパターンがポジ型ホトレジスト層2上
に残置された状態でポジ型ホトレジストの現像が行われ
るが、この現像の際に攪拌を十分に行うことによりネガ
レジストパターン及び未露光ポジレジストの剥離を容易
、確実に実施される。
Note that the positive photoresist is developed with the negative resist pattern remaining on the positive photoresist layer 2, but by sufficiently stirring during this development, the negative resist pattern and the unexposed positive resist can be peeled off. Easy and reliable implementation.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、高コントラストが得
難い露光条件下で厚く、切れが良いレジストマスクを形
成することが可能となり、例えばDFBレーザ等の種々
の装置の製造に大きい効果が得られる。
As described above, according to the present invention, it is possible to form a thick and sharp resist mask under exposure conditions in which it is difficult to obtain high contrast, and a great effect can be obtained in the manufacture of various devices such as, for example, DFB lasers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の模式図、 第2図は2光束干渉法の模式図、 第3図はDFBレーザの模式側断面図である。 図において、 1は基板、 2はポジ型ホトレジスト層、 3はネガ型ホトレジスト層を示す。 尖先例の禮入町 裕 1 園 DFBトープめネ賦イ貝゛I比午面■4第 3 目 FIG. 1 is a schematic diagram of an embodiment of the present invention, Figure 2 is a schematic diagram of the two-beam interference method. FIG. 3 is a schematic side sectional view of the DFB laser. In the figure, 1 is the board, 2 is a positive photoresist layer; 3 indicates a negative photoresist layer. Reiiri-cho, an example of a tip Yu 1 garden DFB taupe shellfish I Higo surface■4 3rd

Claims (1)

【特許請求の範囲】 1)所要の基板上にポジ型ホトレジストを塗布し、該ポ
ジ型ホトレジスト上にネガ型ホトレジストを積層塗布し
て、該ネガ型ホトレジスト及び該ポジ型ホトレジストを
露光し、該ネガ型ホトレジストの現像後該ポジ型ホトレ
ジストを現像処理して、該ポジ型ホトレジストよりなる
マスクを形成することを特徴とするリソグラフィ方法。 2)前記ネガ型ホトレジストが環化ゴム系ホトレジスト
であることを特徴とする特許請求の範囲第1項記載のリ
ソグラフィ方法。
[Claims] 1) Apply a positive photoresist on a required substrate, apply a layered layer of negative photoresist on the positive photoresist, expose the negative photoresist and the positive photoresist, and apply the negative photoresist to light. 1. A lithography method comprising the step of developing a positive photoresist after developing the mold photoresist to form a mask made of the positive photoresist. 2) The lithography method according to claim 1, wherein the negative photoresist is a cyclized rubber photoresist.
JP61049016A 1986-03-06 1986-03-06 Lithographic method Pending JPS62205354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049016A JPS62205354A (en) 1986-03-06 1986-03-06 Lithographic method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049016A JPS62205354A (en) 1986-03-06 1986-03-06 Lithographic method

Publications (1)

Publication Number Publication Date
JPS62205354A true JPS62205354A (en) 1987-09-09

Family

ID=12819336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049016A Pending JPS62205354A (en) 1986-03-06 1986-03-06 Lithographic method

Country Status (1)

Country Link
JP (1) JPS62205354A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275031A1 (en) * 2000-04-18 2003-01-15 Obducat Aktiebolag A substrate for and a process in connection with the product of structures

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275031A1 (en) * 2000-04-18 2003-01-15 Obducat Aktiebolag A substrate for and a process in connection with the product of structures
JP2004513504A (en) * 2000-04-18 2004-04-30 オブドゥカト アクティエボラーグ Substrate related to structure and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US4885231A (en) Phase-shifted gratings by selective image reversal of photoresist
CA2023510C (en) Single wavelength oscillating semiconductor laser device and method for manufacturing diffraction grating
JP2936187B2 (en) Method of forming resist pattern
JPS61190368A (en) Formation of fine pattern
JPS62278508A (en) Manufacture of diffraction grating
JPS62205354A (en) Lithographic method
JP2527833B2 (en) Method of manufacturing diffraction grating
JPS60136278A (en) Pattern formation
JPS58154285A (en) Manufacture of diffraction grating
JPS6033505A (en) Manufacture of diffraction grating
JPS6310891B2 (en)
JPH0817703A (en) Pattern formation method
JPH04186829A (en) Manufacture of semiconductor device
JPH0461331B2 (en)
JPS6032383A (en) Manufacture of periodic structure
JPH05343806A (en) Manufacture of phase-shifting diffraction
JPH02193103A (en) Manufacture of diffraction grating
JPS6370477A (en) Manufacture of phase shift type diffraction grating
JPS61292924A (en) Formation of resist pattern
JPH02213182A (en) Manufacture of diffraction grating
JPS60196701A (en) Production of diffraction grating
JPH01126606A (en) Production of diffraction grating
JPS6351637A (en) Mask forming method
JPS61189503A (en) Manufacture of diffraction grating
JPH0590129A (en) Method of forming diffraction grating