JPH02213182A - Manufacture of diffraction grating - Google Patents

Manufacture of diffraction grating

Info

Publication number
JPH02213182A
JPH02213182A JP3395389A JP3395389A JPH02213182A JP H02213182 A JPH02213182 A JP H02213182A JP 3395389 A JP3395389 A JP 3395389A JP 3395389 A JP3395389 A JP 3395389A JP H02213182 A JPH02213182 A JP H02213182A
Authority
JP
Japan
Prior art keywords
diffraction grating
substrate
points
phase shift
lights
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3395389A
Other languages
Japanese (ja)
Inventor
Akira Takamori
高森 晃
Naoki Takenaka
直樹 竹中
Yukio Toyoda
幸雄 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3395389A priority Critical patent/JPH02213182A/en
Publication of JPH02213182A publication Critical patent/JPH02213182A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable formation of a phase shift diffraction grating by a simple resist process, by applying a resist on a substrate provided with steps by etching in a part wherein a phase shift is desired to be caused and by forming a diffraction grating pattern on the resist by a two-beam interference exposure method. CONSTITUTION:Only an area wherin a phase shift is desired to be cuased is etched to provide steps on a substrate by an ordinary technique of photolithography, and a photoresist 2 is applied thereon. The semiconductor substrate 1 is inclined by an angle psi10 from the direction vertical to the central axis 5 and two parallel laser beams of an incident angle theta are applied from above to execute interference exposure. When it is assumed that 0-points 6 in the figure are points to which the optical paths of the laser lights from two directions are equal and at which the lights are intensified, the 0-points on a broken line are points whereat the lights intensity each other in the case when there are no step. At the bottom of the stepped part, the points 7 whereat the lights intensify each other are shifted by a dimension 8 in the direction of the central axis under the condition that the optical paths are not varied. By varying the depth d9 of a groove and the angle a10 of the substrate, accordingly, the amount 8 of the phase shift can be controlled precisely.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は回折格子の製造方法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a method for manufacturing a diffraction grating.

従来の技術 分布帰還型半導体レーザ(以下DFBレーザと呼ぶ)は
素子に内蔵する回折格子の周期で決まるブラッグ波長付
近で単一縦モード即ち単一の波長で発振する。従って波
長分散を有する光ファイバを用いた光通信系忙おいても
長距噛大容量が可能な光源として実用化が進められてh
る。しかしながら、素子内に均一な回折格子を持つDI
Bレーザでは、最小発振しきい利得を与える波長がブラ
ッグ波長と原理的(一致せず、その両側に、近接した2
本の発振可能な縦モード分有しているため。
A conventional distributed feedback semiconductor laser (hereinafter referred to as a DFB laser) oscillates in a single longitudinal mode, that is, at a single wavelength, around the Bragg wavelength determined by the period of a diffraction grating built into the device. Therefore, the practical use of optical fibers that use optical fibers with wavelength dispersion as light sources that can be used over long distances and with large capacity is progressing.
Ru. However, DI with a uniform diffraction grating within the element
In the B laser, the wavelength that provides the minimum oscillation threshold gain is in principle the Bragg wavelength (does not coincide with it, and there are two adjacent wavelengths on both sides).
This is because it has a longitudinal mode that can oscillate.

この2本の縦モードで発振したシ6両モード間の競合に
よる不安定さのため、安定した単一縦モード発振が歩留
)良く得られないという間留点があった。
Due to instability caused by competition between these two longitudinal modes, there was a point where stable single longitudinal mode oscillation could not be obtained with good yield.

そこで、ブラッグ波長と最小しきい利得を与える波長と
を一致させて、すべての素子をブラッグ波長で単一縦モ
ード発振させるために、素子の中央付近で左右の回折格
子の位相をλn/4(λn:素子内を伝搬する光の波長
)だけずらした構造の位相シフト型DFBレーザが提案
されている。
Therefore, in order to make all the elements oscillate in a single longitudinal mode at the Bragg wavelength by matching the Bragg wavelength with the wavelength that gives the minimum threshold gain, the phase of the left and right diffraction gratings is changed to λn/4 ( A phase-shifted DFB laser having a structure shifted by λn: wavelength of light propagating within the device has been proposed.

ところで1次の回折格子の場合、λ/4シフト回折格子
を作成するには左右の回折格子の凹凸を反転させる必要
がある。このようなλ/4シフト型回折格子は均一な回
折格子の作成1屋と比較して一般忙複雑な作成工1を必
要とし、従来はたとえばエレクトロニクスレターズ誌第
20巻4号。
By the way, in the case of a first-order diffraction grating, in order to create a λ/4 shift diffraction grating, it is necessary to reverse the unevenness of the left and right diffraction gratings. Such a λ/4-shift type diffraction grating requires a more complicated fabrication process compared to one fabrication process for a uniform diffraction grating.

1008〜1o1o頁(1984年11月22日発行)
記載のポジおよびネガタイプの7オトレジストの逆、感
光性を利用した干渉露光法が知られている。これは半導
体基板上にポジおよびネガタイプのフォトレジストを隣
接して形成して、従来の2光束干渉露光法によシ両タイ
プのフォトレジストを同時に露光すれば、ポジとネガタ
イプのレジストによって形成される回折格子は互りに凹
凸の反転したものになる。上記以外の位相シフト回折格
子の作成方法として特開昭61−289688号記載の
方法がある。以Fその方法を簡単に説明すると半導体基
板上にフォトl/シストを塗布し、位相を反転させたい
部分にだけ、厚さtの誘電体膜を形成し、半導体基板を
角度ψだけ頑け、上方から水平面に対して入射角θの2
本のレーザビームを照射し干渉露光を行なう。その結果
、誘電体膜を通して7オトレジスト上に露光された回折
格子パターンの位相は誘電体膜のない部分のフォトレジ
スト上の回折格子パターンの位相とずれを生じる。
Pages 1008-1o1o (published November 22, 1984)
An interference exposure method that utilizes the inverse photosensitivity of the positive and negative type 7 photoresists described above is known. This is achieved by forming positive and negative type photoresists adjacent to each other on a semiconductor substrate and exposing both types of photoresists simultaneously using the conventional two-beam interference exposure method. The diffraction grating has concavities and convexities that are inverses of each other. As a method for producing a phase shift diffraction grating other than the above, there is a method described in Japanese Patent Application Laid-Open No. 61-289688. The following is a simple explanation of the method: Apply photol/cyst onto a semiconductor substrate, form a dielectric film with a thickness of t only in the areas where the phase is to be reversed, and hold the semiconductor substrate at an angle of ψ. 2 of the angle of incidence θ from above to the horizontal plane
Interference exposure is performed by irradiating the book with a laser beam. As a result, the phase of the diffraction grating pattern exposed on the photoresist through the dielectric film is out of phase with the phase of the diffraction grating pattern on the photoresist in the portion where the dielectric film is not present.

その位相差は、誘電体膜の厚さt、屈折率nおよび頑き
角ψによって制御する。
The phase difference is controlled by the thickness t of the dielectric film, the refractive index n, and the stiffness angle ψ.

発明が解決しようとする課題 しかし、上記の従来技術では、2種類のレジスト塗布工
程をしたシ、厚さを正確に制御した誘電体膜の形成が必
要になυ、工程が複雑になるという欠点がある。
Problems to be Solved by the Invention However, the above-mentioned conventional technology has disadvantages in that it requires two types of resist coating processes, requires the formation of a dielectric film whose thickness is accurately controlled, and the process becomes complicated. There is.

本発明は簡単なレジストエ浬で位相シフト回折格子と同
等の効果を得る方法=ti供するものである。
The present invention provides a method of obtaining an effect equivalent to that of a phase shift diffraction grating using simple resist etching.

課題を解決するだめの手段 回折格子を形成しようとする半導体基板上の位相シフト
をさせたい部分に、エツチングによって段差を設けた基
板上にレジストを塗布し1通常の三光束干渉露光法によ
ってレジスト上に回折格子パターンを形成する。
The only way to solve the problem is to apply a resist onto a semiconductor substrate on which a phase shift is to be made, on which a diffraction grating is to be formed, on which a step is formed by etching.1. form a diffraction grating pattern.

作用 均一で再現性の良い位相シフト回折格子を製作するには
、一種Jvフォトレジストを用いる方が良い。本発明は
単一の7オトレジストを用いて基板上の凹部と凸部で回
折格子の位相をシフトさせるものである。その具体的な
作用を図2を用いて説明する。通常のフォトリソグラフ
ィー技術を用い1位相シフトさせたい領域のみをエツチ
ング。
In order to fabricate a phase shift diffraction grating with uniform action and good reproducibility, it is better to use a type of Jv photoresist. The present invention uses a single 7-photoresist to shift the phase of a diffraction grating between concave and convex portions on a substrate. The specific effect will be explained using FIG. 2. Etch only the area where you want to shift the phase by one level using normal photolithography technology.

基板に図2に示すような段差を設けた後に、フォトレジ
スト2を塗布する。半導体基板1を中心軸6に垂直な方
向から角度ψ10だけ傾け、上方から入射角θの2本の
平行レーザビーム光を照射し干渉露光を行なう。図中の
0点6で2方向からのレーザ光の光路長が等しく、光が
強められる点であると仮定する。破aとの0点は段差が
ない場合の光が強め合う点である。段差の底部において
は光の強め合う点7は光路長が変化しないという条件か
ら中心軸の方向にずれる。段差の深さ9をdとした場合
段差底部では、光の強め合う点は基板表面に沿った方向
に対して δ=d t&nψ  ・・・・・・・・・・・・(1)
式だけ回折格子の位相がシフトする。
After providing a step on the substrate as shown in FIG. 2, a photoresist 2 is applied. The semiconductor substrate 1 is tilted by an angle ψ10 from a direction perpendicular to the central axis 6, and two parallel laser beams having an incident angle θ are irradiated from above to perform interference exposure. Assume that the optical path lengths of the laser beams from the two directions are equal at point 0 6 in the figure, and this is the point where the light is intensified. The 0 point with break a is the point where the light intensifies each other when there is no step. At the bottom of the step, the point 7 where the light intensifies is shifted in the direction of the central axis due to the condition that the optical path length does not change. When the depth 9 of the step is d, at the bottom of the step, the point where the light intensifies is δ=d t&nψ in the direction along the substrate surface (1)
The phase of the diffraction grating is shifted by the equation.

したがって、溝の深さd9と基板の煩き角α1゜を変え
ることによって1位相シフト凌8を精密に制御すること
ができる。
Therefore, by changing the depth d9 of the groove and the angle α1° of the substrate, it is possible to precisely control one phase shift 8.

実施例 以下に本発明の実施例を図面を用いて詳、ralK説明
する。
EXAMPLES Below, examples of the present invention will be explained in detail with reference to the drawings.

第1図は本発明の回折格子の製造方法?その工浬順に説
明する図である。(IL)ではXnP半導体基板1上に
膜厚5000人のネガ型フォトレジスト(段差形成用)
2を塗布し、通常の水銀灯を用いたマスク露光によって
、凹部に相当する部分のレジストを除く。(b)では残
されたレジストをマスクにし。
Fig. 1 shows the manufacturing method of the diffraction grating of the present invention? It is a diagram explaining the process in order. (IL) is a negative photoresist (for step formation) with a film thickness of 5000 on the XnP semiconductor substrate 1.
2 is applied, and the resist in the portions corresponding to the recesses is removed by mask exposure using an ordinary mercury lamp. In (b), the remaining resist is used as a mask.

25゛CのH2SO,: H,02: H20=4 :
 1 : 1の混合溶液でエツチングし、段差の深さd
を3600人とする。(0)では段差を設けた基板上に
膜厚700人のネガ型フォトレジスト(回折格子形成用
)3を−71に塗布した後にfil)において、基板を
中心軸5に対し垂直な方向から20’だけ頃けた状態で
H2SO at 25°C: H,02: H20=4:
Etch with a 1:1 mixed solution, and the depth of the step is d.
3,600 people. In (0), after coating a negative photoresist (for forming a diffraction grating) 3 with a film thickness of 700 mm on a substrate with steps, the substrate is 20 mm thick from the direction perpendicular to the central axis 5. 'Only in a state of collapse.

波長3260人のHa −Cd  レーザ光を用いて。Using a Ha-Cd laser beam with a wavelength of 3260.

2光線の入射角が中心軸に対して43.7°となるよう
にして干渉露光を行なう。露光後の現像により(e)の
レジストパターンを得る。このレジストパターンをマス
クとして、飽和臭素水: H,PO4:H20=2:1
:15をエツチング液として。
Interference exposure is performed so that the angle of incidence of the two light beams is 43.7° with respect to the central axis. The resist pattern (e) is obtained by development after exposure. Using this resist pattern as a mask, saturated bromine water: H, PO4:H20=2:1
:15 as etching solution.

26℃で20fi間エツチングする。エツチング後マス
クレジストをレジストばくり液を用いて除去し、(f)
Dような基板上の位相シフト回折格子パターンを得る。
Etch for 20fi at 26°C. After etching, remove the mask resist using a resist remover, (f)
Obtain a phase-shift grating pattern on the substrate as shown in D.

本実施例では1回折格子の周期A は2500人となり、1.55μyrL帯のDFBレー
ザに必要な1次回折格子の周期罠なっている。
In this embodiment, the period A of the first diffraction grating is 2,500, which is the period trap of the first-order diffraction grating necessary for the DFB laser in the 1.55 μyrL band.

また1段差上部と底部の回折格子のシフト量は(1)式
より1000人となる。したがって、基板の表面に沿っ
た方向に上部と底部では凹凸が反転した状態になってお
り(第1図の10)、λ/4シフト型DFBレーザ用の
回折格子が得られる。
Further, the shift amount of the diffraction gratings at the top and bottom portions with a one-step difference is 1000 from equation (1). Therefore, the unevenness is reversed at the top and bottom in the direction along the surface of the substrate (10 in FIG. 1), and a diffraction grating for a λ/4 shift DFB laser is obtained.

なお1段差の深さdと基板の傾き角ψを変化させること
Kより1回折格子の77ト量は自由に開開することがで
きる。
Note that by changing the depth d of one step and the inclination angle ψ of the substrate, one diffraction grating can be freely opened and opened by 77 degrees.

この段差のある位相シフト回折格子基板を用いてDFB
レーザの結晶成長を行なう場合、活性層下部のガイド層
成長時に、この段差(・ま平坦化されるので、レーザ素
子の特性に影響を与えることはない。
DFB using this phase shift diffraction grating substrate with steps.
When performing laser crystal growth, this step is flattened during the growth of the guide layer below the active layer, so it does not affect the characteristics of the laser device.

発明の効果 以とのように、半導体基板上に段差を設けることにより
、単一のフォトレジストを用いた従来の三光束干渉露光
法と同様:9工程手順で位相シフト回折格子を形成する
ことができる。段差を設けるエツチングの際の深さ開開
が比較的容易なため。
Effects of the Invention As described below, by providing steps on a semiconductor substrate, a phase-shifted diffraction grating can be formed in nine steps, similar to the conventional three-beam interference exposure method using a single photoresist. can. Because it is relatively easy to open and open the depth when etching to create a step.

位相シフト量の再現咥、制御注にすぐれていることがわ
かった。
It was found that the reproduction and control of the amount of phase shift are excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実座例である回折格子の・製造方法
を工程Sに説明する図、第2図・准段差基板上の位相シ
フト回折格子の製造方法の原理を説明する図である。 1・・・・・半導体基板、2・・・・フォトレジスト(
段差形成用)、3・・・・・フォトレジスト(回折格子
形成用)、4・・・・・・回折格子、5・・・・中心、
袖、6・・・・・・段差がない、場合の光が強め合う点
、7・・・・・段差底部で光が強め合う点、8・・・・
・位相シフト量δ9・・・・段差の深さd、1o・・・
・・基板の、頃き角ψ。 代理人の氏名 弁理士 粟 野 市 孝 ほか1名第1
図 (υ I−・主S隼暮姫 乙3−・フォトしシズト
Figure 1 is a diagram explaining the manufacturing method of a diffraction grating, which is an actual example of the present invention, in step S, and Figure 2 is a diagram explaining the principle of the manufacturing method of a phase shift diffraction grating on a semi-stepped substrate. be. 1... Semiconductor substrate, 2... Photoresist (
(for step formation), 3... photoresist (for diffraction grating formation), 4... diffraction grating, 5... center,
Sleeves, 6... The point where there is no step, the light intensifies each other, 7... The point where the light intensifies each other at the bottom of the step, 8...
・Phase shift amount δ9...Depth of step d, 1o...
...The rolling angle ψ of the board. Name of agent: Patent attorney Takashi Awano and 1 other person 1st
Figure (υ I-・Lord S Hayakure Himetsu 3-・Photo Shizuto

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に段差を設ける工程と、前記基板上
にフォトレジストを塗布する工程と、前記基板表面に入
射角の異なる2本の同一波長レーザ光を照射し前記フォ
トレジストを干渉露光する工程と、前記フォトレジスト
を現像し周期的レジストパターンを形成する工程と、前
記周期的レジストをエッチングマスクとして前記半導体
基板をエッチングする工程とを少くとも備えたことを特
徴とする回折格子の製造方法。
(1) A step of providing a step on a semiconductor substrate, a step of applying a photoresist on the substrate, and an interference exposure of the photoresist by irradiating the surface of the substrate with two laser beams of the same wavelength with different incident angles. a step of developing the photoresist to form a periodic resist pattern; and a step of etching the semiconductor substrate using the periodic resist as an etching mask. .
(2)請求項1記載の製造方法により製造した回折格子
を内蔵する分布帰還型半導体レーザ。
(2) A distributed feedback semiconductor laser incorporating a diffraction grating manufactured by the manufacturing method according to claim 1.
JP3395389A 1989-02-14 1989-02-14 Manufacture of diffraction grating Pending JPH02213182A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3395389A JPH02213182A (en) 1989-02-14 1989-02-14 Manufacture of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3395389A JPH02213182A (en) 1989-02-14 1989-02-14 Manufacture of diffraction grating

Publications (1)

Publication Number Publication Date
JPH02213182A true JPH02213182A (en) 1990-08-24

Family

ID=12400859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3395389A Pending JPH02213182A (en) 1989-02-14 1989-02-14 Manufacture of diffraction grating

Country Status (1)

Country Link
JP (1) JPH02213182A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042188A (en) * 1990-04-19 1992-01-07 Toshiba Corp Laser element and manufacture thereof
JPH06338658A (en) * 1993-05-31 1994-12-06 Nec Corp Formation of semiconductor fine configuration, manufacture of inp diffraction grating, and manufacture of distributed feedback type laser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370477A (en) * 1986-09-12 1988-03-30 Toshiba Corp Manufacture of phase shift type diffraction grating
JPH02196202A (en) * 1989-01-25 1990-08-02 Anritsu Corp Formation of phase shift type diffraction grating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6370477A (en) * 1986-09-12 1988-03-30 Toshiba Corp Manufacture of phase shift type diffraction grating
JPH02196202A (en) * 1989-01-25 1990-08-02 Anritsu Corp Formation of phase shift type diffraction grating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH042188A (en) * 1990-04-19 1992-01-07 Toshiba Corp Laser element and manufacture thereof
JPH06338658A (en) * 1993-05-31 1994-12-06 Nec Corp Formation of semiconductor fine configuration, manufacture of inp diffraction grating, and manufacture of distributed feedback type laser

Similar Documents

Publication Publication Date Title
US4806454A (en) Method for the formation of a diffraction grating
US5386433A (en) Semiconductor laser including periodic structures with different periods for producing a single wavelength of light
JPS61190368A (en) Formation of fine pattern
JPH06201909A (en) Production of diffraction grating
EP0566886B1 (en) Method of producing diffraction grating
US5221429A (en) Method of manufacturing phase-shifted diffraction grating
JPH02213182A (en) Manufacture of diffraction grating
JPH01224767A (en) Formation of resist pattern
JP2527833B2 (en) Method of manufacturing diffraction grating
JP2735589B2 (en) Manufacturing method of diffraction grating
JPH0461331B2 (en)
JPH04186829A (en) Manufacture of semiconductor device
JPS6370477A (en) Manufacture of phase shift type diffraction grating
JPS6218503A (en) Manufacture of diffraction grating
JPS62164001A (en) Production of diffraction grating
JPS62109386A (en) Manufacture of diffraction grating of dfb laser
JPH01225189A (en) Manufacture of diffraction grating
JPH10326746A (en) Method of forming mask pattern
JPH02132873A (en) Formation of diffraction grating and distributed feedback type semiconductor laser
JPH04356001A (en) Production of diffraction grating
JPS6381885A (en) Manufacture of phase shift type deflection lattice
JPS62165392A (en) Manufacture of diffraction grating
JPS61193104A (en) Manufacture of diffraction grating
JPH0213945B2 (en)
JPH04239791A (en) Fabrication of diffraction grating