JPH0461331B2 - - Google Patents

Info

Publication number
JPH0461331B2
JPH0461331B2 JP14582685A JP14582685A JPH0461331B2 JP H0461331 B2 JPH0461331 B2 JP H0461331B2 JP 14582685 A JP14582685 A JP 14582685A JP 14582685 A JP14582685 A JP 14582685A JP H0461331 B2 JPH0461331 B2 JP H0461331B2
Authority
JP
Japan
Prior art keywords
diffraction grating
region
photoresist film
substrate
beam interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14582685A
Other languages
Japanese (ja)
Other versions
JPS627002A (en
Inventor
Shigeyuki Akiba
Katsuyuki Uko
Juichi Matsushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP14582685A priority Critical patent/JPS627002A/en
Publication of JPS627002A publication Critical patent/JPS627002A/en
Publication of JPH0461331B2 publication Critical patent/JPH0461331B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、2光束干渉露光を用いて周期的な凹
凸から成る回折格子を製造する方法に係わり、特
に、隣接する二つの領域において回折格子の凹凸
の位相がシフトしている構造を有する回折格子の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method of manufacturing a diffraction grating consisting of periodic irregularities using two-beam interference exposure. The present invention relates to a method of manufacturing a diffraction grating having a structure in which the phase of the concave and convex portions is shifted.

(従来技術とその問題点) 周期的な凹凸から成る回折格子は、所望の波長
の光のみを反射あるいは通過させるため、光通信
の分野においてはフイルタとしてあるいは分布帰
還形半導体レーザ(以下、「DFBレーザ」と略記
する)の内部等に用いられている。
(Prior art and its problems) Diffraction gratings consisting of periodic concavities and convexities reflect or pass only light of a desired wavelength, so they are used as filters or distributed feedback semiconductor lasers (hereinafter referred to as "DFB") in the field of optical communication. It is used inside a laser (abbreviated as "laser").

その中で、発光領域またはその近傍に回折格子
を有するDFBレーザは、単一軸モードの光を発
することから、光通信の光源として脚光を浴び、
従来から種々の提案がある。特に最近では、回折
格子の中央部付近で凹凸の位相をシフトした方が
さらに安定な単一モード動作を行うものとして注
目されている。このようなDFBレーザの発振波
長は回折格子の凹凸の周期Λで決定され、さらに
安定な動作は回折格子の製作精度に依存する。従
つて、回折格子の製作精度がDFBレーザの特性
を左右することになる。
Among these, DFB lasers, which have a diffraction grating in or near the light emitting region, have attracted attention as a light source for optical communications because they emit light in a single-axis mode.
There have been various proposals in the past. Particularly recently, shifting the phase of the asperities near the center of the diffraction grating has attracted attention as a way to achieve more stable single mode operation. The oscillation wavelength of such a DFB laser is determined by the period Λ of the unevenness of the diffraction grating, and stable operation also depends on the manufacturing precision of the diffraction grating. Therefore, the manufacturing precision of the diffraction grating influences the characteristics of the DFB laser.

凹凸の位相がシフトした構造を有する回折格子
の従来の製造方法を述べる前に、まず凹凸の位相
がシフトしない構造の回折格子の製造方法につい
て説明する。
Before describing a conventional manufacturing method of a diffraction grating having a structure in which the phase of the asperities is shifted, a method for manufacturing a diffraction grating having a structure in which the phase of the asperities is not shifted will be described first.

第1図は従来の2光束干渉露光法による一様な
回折格子の製造の原理図である。波長λ0なる例え
ばHe−Cdレーザ光3をハーフミラー4で2つに
分波し、各々の分波光3はミラー5で反射させ、
その分波光3の合成波を図示のように基板1の上
に例えばポジタイプのフオトレジスト膜2を塗布
した結晶表面に照射したときに生じる干渉パター
ンにより露光し、現像とエツチングを行えば回折
格子を形成することができる。ここで、凹凸の周
期Λははレーザ光3の入射角をαとすれば、 Λ=λ0/2sinα ……(1) で求められる。
FIG. 1 is a diagram showing the principle of manufacturing a uniform diffraction grating by a conventional two-beam interference exposure method. For example, a He-Cd laser beam 3 with a wavelength λ 0 is split into two by a half mirror 4, and each split beam 3 is reflected by a mirror 5.
As shown in the figure, the synthesized wave of the split light 3 is irradiated onto the surface of a crystal coated with, for example, a positive type photoresist film 2 on the substrate 1, and an interference pattern is generated.The diffraction grating is then exposed by the interference pattern that is generated, and then developed and etched. can be formed. Here, the period Λ of the unevenness is determined by Λ=λ 0 /2sinα (1), where α is the incident angle of the laser beam 3.

一方、レーザの中央で回折格子の位相がシフト
した構造を有する回折格子を製造する方法とし
て、コンピユータ制御を用いた電子ビーム走査露
光がある。この方法は、回折格子の溝に相当する
部分に順次電子ビームを走査して照射することに
より露光するものであるが、回折格子の周期Λが
大きい場合には適用できるが、凹凸の周期Λが結
晶中の光の波長λの半分である1次の回折格子の
ように周期Λが小さい場合(約2000Å)には、解
像度の限界に達し、製造が実質上困難となつてし
まう。また、電子ビーム露光法は個別順次走査で
あるから、回折格子パターンの全面を走査し終え
るまでにかなりの時間を必要とし、これを大量生
産工程に適用することは困難である。
On the other hand, as a method for manufacturing a diffraction grating having a structure in which the phase of the diffraction grating is shifted at the center of the laser, there is electron beam scanning exposure using computer control. This method exposes the portions corresponding to the grooves of the diffraction grating by sequentially scanning and irradiating them with an electron beam. This method can be applied when the period Λ of the diffraction grating is large, but when the period Λ of the asperities is When the period Λ is small (approximately 2000 Å), such as in a first-order diffraction grating, which is half the wavelength λ of light in the crystal, the resolution reaches its limit and manufacturing becomes substantially difficult. Furthermore, since the electron beam exposure method involves individual sequential scanning, it takes a considerable amount of time to finish scanning the entire surface of the diffraction grating pattern, making it difficult to apply this method to mass production processes.

次に、2光束干渉露光を用いて凹凸の位相が隣
接領域で互いにシフトした構造を有する回折格子
を製造する場合の問題点について説明する。
Next, problems in manufacturing a diffraction grating having a structure in which the phases of concavities and convexities are mutually shifted in adjacent regions using two-beam interference exposure will be described.

第2図は前述した2光束干渉露光により位相が
反転、すなわち180°位相シフトした構造を有する
回折格子を製造した場合の模式図であり、AとB
の領域をメタルマスクを用いて別々に露光する方
法である。同図は領域Aに周期的な凹凸を製造す
る場合を示しており、この時領域Bは厚さt(約
50μm)のメタルマスク6により覆われている。
なお通常フオトレジスト膜2上に〓間d(約数
μm)を設けている。干渉パターンが最も領域B
に近いところを示しているが、同図から明らかな
ようにレーザ光3はメタルマスク6の厚さの影響
により照射されない部分、すなわち凹凸が全く製
造されない領域Cができる。同様に領域Aにメタ
ルマスク6を施して領域Bに2光束干渉露光を行
つても、凹凸が製造されない領域Cができ、全体
としては領域Cの2倍に亘つて凹凸が形成されな
い。
Figure 2 is a schematic diagram of the case where a diffraction grating with a phase inversion, that is, a 180° phase shift, is manufactured by the above-mentioned two-beam interference exposure, and A and B
This is a method in which the regions are exposed separately using a metal mask. The figure shows a case where periodic unevenness is manufactured in region A, and at this time, region B has a thickness t (approximately
50 μm) is covered with a metal mask 6.
Note that a distance d (about several μm) is usually provided on the photoresist film 2. The interference pattern is most in area B.
As is clear from the figure, a region C is created where the laser beam 3 is not irradiated due to the influence of the thickness of the metal mask 6, that is, a region C where no unevenness is formed. Similarly, even if a metal mask 6 is applied to region A and two-beam interference exposure is performed to region B, a region C is formed in which no unevenness is formed, and as a whole, no unevenness is formed over twice as much as in region C.

例えば、回折格子の凹凸の周期Λを2400Åと
し、He−Cdレーザの波長λ0を3250Åとすれば、
入射角αは α=sin-1(λ0/2Λ)=sin-1(3250/4800)43〔
度〕 となり、マスクの厚さtを50μmとし〓間をdと
すれば、周期的な凹凸が製造されない領域Cは C=(t+d)tanαt・tanα=47〔μm〕 となる。
For example, if the period Λ of the unevenness of the diffraction grating is 2400 Å, and the wavelength λ 0 of the He-Cd laser is 3250 Å, then
The angle of incidence α is α=sin -10 /2Λ)=sin -1 (3250/4800)43 [
If the mask thickness t is 50 μm and the gap is d, then the region C where no periodic unevenness is produced is C=(t+d)tanαt·tanα=47 μm.

従つて、2回の2光束干渉露光にり、凹凸が形
成されない領域Cの2倍の領域は94〔μm〕とな
り、発光領域の全体長が通常数百〔μm〕程度で
あることから、DFBレーザの動作電流が大きく
なり、また単一波長動作も不安定となる。この解
決策として、メタルマスク6の厚さtを薄くした
り、メタルマスク6の内側端の上面エツジに傾斜
を設ければ若干改善ができるが、やはり凹凸が形
成されない領域Cができる。
Therefore, by performing the two-beam interference exposure twice, the area that is twice the area C where no unevenness is formed is 94 [μm], and since the total length of the light-emitting region is usually about several hundred [μm], the DFB The operating current of the laser increases, and single wavelength operation also becomes unstable. As a solution to this problem, a slight improvement can be made by reducing the thickness t of the metal mask 6 or by providing a slope at the upper surface edge of the inner end of the metal mask 6, but this still results in a region C where no unevenness is formed.

さらに、第3図、第4図は位相シフター板7を
用いてA領域とB領域を一度に2光束干渉露光す
る従来法であるが、位相シフター板7の平面度,
厚さの均一性が問題になるばかりでなく、所望の
回折格子の周期Λに応じて位相シフター板7の段
差を調整する必要がある。ここで、第3図では、
ホトレジスト膜2と位相シフター板7との間〓d
により、また第4図の例では位相シフター板7か
ら基板1に到達するまでの光の回折効果により、
それぞれA領域とB領域の境界付近には回折格子
が形成されなくなる。
Furthermore, although FIGS. 3 and 4 show a conventional method in which a phase shifter plate 7 is used to expose areas A and B at a time by two-beam interference, the flatness of the phase shifter plate 7,
Not only is the uniformity of the thickness a problem, but it is also necessary to adjust the step of the phase shifter plate 7 according to the desired period Λ of the diffraction grating. Here, in Figure 3,
Between the photoresist film 2 and the phase shifter plate 7〓d
In the example shown in FIG. 4, due to the diffraction effect of the light from the phase shifter plate 7 to the substrate 1,
Diffraction gratings are no longer formed near the boundaries of regions A and B, respectively.

以上のように、周期的な凹凸の位相がシフトし
ている構造の回折格子を従来のように、メタルマ
スクや位相シフターを用いて精度よく製造するこ
とは困難であつた。
As described above, it has been difficult to accurately manufacture a diffraction grating having a structure in which the phase of periodic asperities is shifted using a metal mask or a phase shifter as in the past.

(発明の目的と特徴) 本発明は、上述した従来技術の欠点を解消する
ためになされたもので、電子ビーム露光に比べて
簡便でかつ量産性に優れた2光束干渉露光を用い
て、周期的な凹凸の位相が反転する構造の回折格
子を実現することのできる回折格子の製造方法を
提供することを目的としている。
(Objects and Features of the Invention) The present invention has been made to solve the above-mentioned drawbacks of the prior art. It is an object of the present invention to provide a method for manufacturing a diffraction grating that can realize a diffraction grating having a structure in which the phases of concave and convex portions are inverted.

本発明の特徴は、基板上の第1の領域にまず第
1の回折格子を形成し、その基板上にネガタイプ
のホトレジスト膜を塗布し、第1の領域を露光し
た後、所要の2光束干渉パターンの位相が第1の
回折格子に対して所定の位相シフトを有するよう
に基板の位置を調整し、その位置調整された干渉
パターンで露光を行い、第2の領域に第2の回折
格子を形成することにある。
The feature of the present invention is that a first diffraction grating is first formed in a first region on a substrate, a negative type photoresist film is applied on the substrate, and after exposing the first region, the required two-beam interference The position of the substrate is adjusted so that the phase of the pattern has a predetermined phase shift with respect to the first diffraction grating, exposure is performed using the adjusted interference pattern, and the second diffraction grating is formed in the second region. It is about forming.

(発明の構成および作用) 以下に図面を用いて本発明を詳細に説明する。(Structure and operation of the invention) The present invention will be explained in detail below using the drawings.

第5図は本発明の実施例である。 FIG. 5 shows an embodiment of the present invention.

(第1の工程) (a) 基板1の上にネガタイプのホトレジスト膜8
を塗布する。
(First step) (a) Negative type photoresist film 8 on the substrate 1
Apply.

(b) 第2の領域を通常のマスク露光法で露光す
る。
(b) Expose the second region using a normal mask exposure method.

(c) レーザ光3により、ホトレジスト膜8の全面
に亘つて2光束干渉露光を行う。
(c) Two-beam interference exposure is performed using the laser beam 3 over the entire surface of the photoresist film 8.

(d) 現像を行うことにより、第1の領域にホトレ
ジスト膜8の回折格子を形成する。
(d) By performing development, a diffraction grating of the photoresist film 8 is formed in the first region.

(e) エツチング等で回折格子パターンを基板1に
形成する。
(e) A diffraction grating pattern is formed on the substrate 1 by etching or the like.

(f) 第1の領域及び第2の領域のホトレジスト膜
8を除去して、第1の領域に第1の回折格子9
を形成する。
(f) The photoresist film 8 in the first region and the second region is removed, and a first diffraction grating 9 is formed in the first region.
form.

(第2の工程) (g) 第1の回折格子9を形成した基板上にネガタ
イプのホトレジスト膜8を塗布する。
(Second Step) (g) A negative type photoresist film 8 is applied onto the substrate on which the first diffraction grating 9 is formed.

(h) 第1の領域のホトレジスト膜8を通常のマス
ク露光法で露光する。
(h) The photoresist film 8 in the first region is exposed using a normal mask exposure method.

(i) メタルマスク6等を用いて、第1の回折格子
9の一部分を2光束干渉露光する。この時、回
折格子上に干渉パターンができるが、その干渉
パターンが凹凸の凹の部分と凸の部分のどちら
かと一致するかによつて干渉パターンの反射光
11(破線)の強さが大きく異なる。従つて、
その反射光を光検出器10でモニタし、干渉パ
ターンと第1の回折格子9との間に所定の位相
シフトが生じるように基板1の位置をピエゾ素
子等を用いて微調する。通常反射光は干渉パタ
ーンの明るい部分と凸の部分が一致した時最も
強くなる。基板1の表面を金属等のように反射
率の高いものにしておくと、その効果は顕著で
ある。例えば、以下に説明するように第1と第
2の領域で回折格子の凹凸が反転したものを製
造する場合には、干渉パターンの明るい部分が
凹の部分と一致するようにすればよい。
(i) A part of the first diffraction grating 9 is subjected to two-beam interference exposure using a metal mask 6 or the like. At this time, an interference pattern is formed on the diffraction grating, and the intensity of the reflected light 11 (dashed line) of the interference pattern varies greatly depending on whether the interference pattern matches the concave or convex portions of the unevenness. . Therefore,
The reflected light is monitored by a photodetector 10, and the position of the substrate 1 is finely adjusted using a piezo element or the like so that a predetermined phase shift occurs between the interference pattern and the first diffraction grating 9. Normally, the reflected light is strongest when the bright part of the interference pattern matches the convex part. If the surface of the substrate 1 is made of a material with high reflectance, such as metal, the effect will be significant. For example, when manufacturing a diffraction grating in which the concave and convex portions are reversed in the first and second regions as described below, the bright portions of the interference pattern may match the concave portions.

(第3の工程) (j) メタルマスク等を取り除く。上記の(i)の工程
で調整された状態で2光束干渉露光3を行う。
(Third step) (j) Remove metal mask, etc. Two-beam interference exposure 3 is performed in the state adjusted in step (i) above.

(k) 現像することによりホトレジスト膜8の回折
格子が形成される。
(k) By developing, a diffraction grating of the photoresist film 8 is formed.

(l) ホトレジスト膜8の回折格子をマスクとして
ホトリソグラフイ技術により基板1へのエツチ
ングを行う。
(l) The substrate 1 is etched by photolithography using the diffraction grating of the photoresist film 8 as a mask.

(m) ホトレジスト膜8を取り除くことにより、第
2の領域に第2の回折格子12を形成される。
ここで、第1の回折格子9と第2の回折格子1
2との間には、この場合180°の位相シフトが生
じている。
(m) By removing the photoresist film 8, a second diffraction grating 12 is formed in the second region.
Here, the first diffraction grating 9 and the second diffraction grating 1
In this case, there is a phase shift of 180° between the two.

(発明の効果) 以上の工程から明らかなように、本発明では第
1と第2の領域で任意に位相シフトを有する回折
格子を容易に製造でき、第1の領域と第2の領域
の境界部分で凹凸が形成されないという従来の欠
点は解消できる。従つて、安定でかつ特性の良い
DFBレーザ等に応用ができ、その効果は極めて
大である。また、マスク露光および露光後の現像
工程やホトレジストの塗布等については詳しい具
体的な説明を省いたが、通常のホトリソグラフイ
の技術が用いられる。
(Effects of the Invention) As is clear from the above steps, in the present invention, a diffraction grating having an arbitrary phase shift in the first and second regions can be easily manufactured, and the boundary between the first region and the second region can be easily manufactured. The conventional drawback that unevenness is not formed in some areas can be overcome. Therefore, it is stable and has good characteristics.
It can be applied to DFB lasers, etc., and its effects are extremely large. Further, although detailed specific explanations regarding mask exposure, post-exposure development steps, photoresist coating, etc. are omitted, ordinary photolithography techniques are used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の2光束干渉露光の原理説明図、
第2図、第3図、第4図は位相シフト回折格子を
2光束干渉露光で製造する場合の従来例の模式
図、第5図は本発明による位相シフト回折格子の
製造工程を説明するための断面図である。 1……基板、2……ポジタイプのホトレジスト
膜、3……He−Cdレーザ光、4……ハーフミラ
ー、5……ミラー、6……メタルマスク、7……
位相シフター板、8……ネガタイプのホトレジス
ト膜、9……第1の回折格子、10……光検出
器、11……干渉パターンの反射光、12……第
2の回折格子。
Figure 1 is a diagram explaining the principle of conventional two-beam interference exposure.
2, 3, and 4 are schematic diagrams of conventional examples in which a phase shift diffraction grating is manufactured by two-beam interference exposure, and FIG. 5 is for explaining the manufacturing process of a phase shift diffraction grating according to the present invention. FIG. 1...Substrate, 2...Positive photoresist film, 3...He-Cd laser beam, 4...Half mirror, 5...Mirror, 6...Metal mask, 7...
Phase shifter plate, 8... Negative photoresist film, 9... First diffraction grating, 10... Photodetector, 11... Reflected light of interference pattern, 12... Second diffraction grating.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上の全面にネガタイプのホトレジスト膜
を塗布し第1の回折格子を形成すべき第1の領域
以外の第2の領域に全面露光をするとともに前記
第1の領域と前記第2の領域に2光束干渉露光を
行つて現像することにより前記第1の領域に前記
ホトレジスト膜の回折格子が形成され前記第2の
領域には全面に亘つて前記ホトレジスト膜が形成
されるようにし前記第1の領域と前記第2の領域
に形成された前記ホトレジスト膜を利用してエツ
チングを行うことにより前記第1の領域に前記第
1の回折格子を形成する第1の工程と、該第1の
工程を行つた前記基板上にネガタイプのホトレジ
スト膜を塗布し前記第1の領域の該ホトレジスト
膜を露光した後所要の2光束干渉パターンが前記
第1の回折格子に対して所定の位相シフトを有す
るように該基板と該2光束干渉パターンとの相対
位置を調整する第2の工程と、該調整された前記
2光束干渉パターンで該基板上の少なくとも前記
第1の領域以外の第2の領域上の該ホトレジスト
膜を露光し前記第2の領域に対して現像とエツチ
ングをそれぞれ行うことにより前記第2の領域に
前記第1の回折格子に対して位相シフトした第2
の回折格子を形成する第3の工程とを含む位相シ
フト回折格子の製造方法。
1. A negative type photoresist film is applied to the entire surface of the substrate, and a second region other than the first region in which the first diffraction grating is to be formed is exposed to light, and the first region and the second region are exposed to light. By performing two-beam interference exposure and developing, the diffraction grating of the photoresist film is formed in the first region, and the photoresist film is formed over the entire surface of the second region. a first step of forming the first diffraction grating in the first region by etching using the photoresist film formed in the first region and the second region; After applying a negative type photoresist film on the substrate and exposing the photoresist film in the first region, a desired two-beam interference pattern has a predetermined phase shift with respect to the first diffraction grating. a second step of adjusting the relative position between the substrate and the two-beam interference pattern; and a second step of adjusting the relative position of the substrate and the two-beam interference pattern; By exposing the photoresist film and performing development and etching on the second region, a second diffraction grating having a phase shift with respect to the first diffraction grating is formed on the second region.
a third step of forming a diffraction grating.
JP14582685A 1985-07-04 1985-07-04 Production of phase shifting diffraction grating Granted JPS627002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14582685A JPS627002A (en) 1985-07-04 1985-07-04 Production of phase shifting diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14582685A JPS627002A (en) 1985-07-04 1985-07-04 Production of phase shifting diffraction grating

Publications (2)

Publication Number Publication Date
JPS627002A JPS627002A (en) 1987-01-14
JPH0461331B2 true JPH0461331B2 (en) 1992-09-30

Family

ID=15394013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14582685A Granted JPS627002A (en) 1985-07-04 1985-07-04 Production of phase shifting diffraction grating

Country Status (1)

Country Link
JP (1) JPS627002A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792528A (en) * 1994-06-17 1998-08-11 Atomic Energy Corporation Of South Africa Limited Process for the production of plastic components for containing and/or transporting fluids
WO2019103871A1 (en) * 2017-11-21 2019-05-31 Applied Materials, Inc. Method of fabrication of waveguide combiners
KR102562250B1 (en) 2017-11-29 2023-08-02 어플라이드 머티어리얼스, 인코포레이티드 Method of direct etching fabrication of waveguide combiners

Also Published As

Publication number Publication date
JPS627002A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
EP0188919B1 (en) A method for the formation of a diffraction grating
US5340637A (en) Optical device diffraction gratings and a photomask for use in the same
US6200711B1 (en) Phase mask for manufacturing diffraction grating, and method of manufacture
JPH06201909A (en) Production of diffraction grating
US4826291A (en) Method for manufacturing diffraction grating
EP0566886B1 (en) Method of producing diffraction grating
JPH0461331B2 (en)
US5221429A (en) Method of manufacturing phase-shifted diffraction grating
EP0490320B1 (en) A method for producing a diffraction grating
JPH03238454A (en) Production of mask for interference exposing
JP2527833B2 (en) Method of manufacturing diffraction grating
JPH0323884B2 (en)
JPH0374804B2 (en)
JPS627001A (en) Production of diffraction grating
JPH0374805B2 (en)
JPH05343806A (en) Manufacture of phase-shifting diffraction
JPS6398608A (en) Manufacture of diffraction grating
JPH052201B2 (en)
WO2005048338A1 (en) A method and a semiconductor substrate for transferring a pattern from a phase mask to a substrate
JPH02213182A (en) Manufacture of diffraction grating
JPH07101302B2 (en) Diffraction grating manufacturing method and automask used therefor
JPH02154204A (en) Manufacture of diffraction grating
JPH01225189A (en) Manufacture of diffraction grating
JPH04239791A (en) Fabrication of diffraction grating
JPH052142B2 (en)