JPS61190368A - Formation of fine pattern - Google Patents

Formation of fine pattern

Info

Publication number
JPS61190368A
JPS61190368A JP60032045A JP3204585A JPS61190368A JP S61190368 A JPS61190368 A JP S61190368A JP 60032045 A JP60032045 A JP 60032045A JP 3204585 A JP3204585 A JP 3204585A JP S61190368 A JPS61190368 A JP S61190368A
Authority
JP
Japan
Prior art keywords
medium
light
exposed
plane
planes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60032045A
Other languages
Japanese (ja)
Inventor
Yoshikazu Hori
義和 堀
Akimoto Serizawa
芹沢 晧元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60032045A priority Critical patent/JPS61190368A/en
Publication of JPS61190368A publication Critical patent/JPS61190368A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70408Interferometric lithography; Holographic lithography; Self-imaging lithography, e.g. utilizing the Talbot effect

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Holo Graphy (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To form plural different gratings optionally by one-time exposure by carrying out exposure by using a spatially periodic intensity distribution formed by interference between two pieces of luminous flux. CONSTITUTION:A laser beam from a laser 1 is expanded in beam diameter by a beam expander 2 and split by a beam splitter 3 into pieces luminous flux 4 and 5. those split pieces of luminous flux 4 and 5 are reflected by reflecting mirrors 6 and 7 to illuminate the surface of a medium 6 to be exposed. Transparent glass plates 9 and 10 are installed at the middle parts of optical paths and part of a surface of the glass surface 10 is etched to form a recessed part 11. consequently, grating having different areas which differ in spatial period are formed on the surface of the medium 8 to be exposed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はホログラフィック露光法により微細パターンを
形成する方法に関するものであり、特に、−回の露光に
より同一基板上に位相の異なる回折格子を形成する方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of forming fine patterns by holographic exposure, and in particular, to forming diffraction gratings with different phases on the same substrate by -times of exposure. It is about the method.

従来の技術 近年、エレクトロニクスや光エレクトロニクスの発展に
伴ない、サブミクロンオーダーの微細加工技術が重要と
なりつつある。特に、光通信分野における送信素子とし
ての半導体レーザには、単一波長発振や波長の安定性が
要求される様になり、サブミクロン周期のグレーティン
グ形状を有する基板を作製し、その上に半導体結晶成長
をさせ、レーザを構成するという技術が定着化しつつあ
る。
BACKGROUND OF THE INVENTION In recent years, with the development of electronics and optoelectronics, microfabrication technology on the submicron order has become important. In particular, single-wavelength oscillation and wavelength stability are now required for semiconductor lasers used as transmitting elements in the field of optical communications. The technology of growing and configuring lasers is becoming established.

この半導体レーザは分布帰還型レーザ(DFBレーザ)
と呼ばれ、共振面を必要としないので、光集積回路にも
採用するのが容易であり、光通信用の光源として主流に
なるものと考えられる。ところが端面反射率を小さくす
る等により、共振面の存在しない様なりFBレーザを構
成すると、グレーティングの空間周期に対応するブラッ
ク波長付近に2つの縦モードで発振する様になり、実用
上大きな問題であった。そこで単−縦モード発振を実現
するために、位相の途中で(%+N)・λ/2(Nは整
数、λはキャビティ内でのレーザの波長)ずれたグレー
ティングを使用する方法が有効である事が判明し、基板
上に位相の異なる回折格子を形成する技術の重要性が高
まってきている。
This semiconductor laser is a distributed feedback laser (DFB laser)
Since it does not require a resonant surface, it can be easily applied to optical integrated circuits, and is expected to become the mainstream light source for optical communications. However, if an FB laser is constructed in such a way that there is no resonant surface, such as by reducing the reflectance of the end face, it will oscillate in two longitudinal modes near the black wavelength corresponding to the spatial period of the grating, which poses a serious problem in practice. there were. Therefore, in order to realize single-longitudinal mode oscillation, it is effective to use a grating whose phase is shifted by (%+N)/λ/2 (N is an integer and λ is the wavelength of the laser in the cavity) in the middle. As a result, the importance of technology for forming diffraction gratings with different phases on a substrate is increasing.

上記の様なλ/4位相の異なるグレーティングを形成す
るために、従来はネガタイプのフォトレジストとポジタ
イプのフォトレジストを基板の異なる領域に付着させ、
その後、二束干渉露光法によりホログラフィック露光を
行い、凸部と凹部を反転させる事により上記の様なグレ
ーティングを形成していた。
In order to form gratings with different λ/4 phases as described above, conventionally, negative-type photoresist and positive-type photoresist are deposited on different regions of the substrate.
Thereafter, holographic exposure was performed using a two-bundle interference exposure method, and the above-mentioned grating was formed by reversing the convex portions and concave portions.

ところが、この様な方法では、上記の如く異なる領域に
ポジタイプのレジストとネガタイプのレジストを付着さ
せるために、ホログラフィック露光を行う以前に、少な
くとも、2回のレジスト塗布工程と、露光及び現像工程
が必要であり、しかもネガレジスト領域とポジレジスト
領域の位置合わせを精度良く行う必要があった。またレ
ジストの厚さの制御も重要な問題であった。しかも、こ
の様な方式で形成されるグレーティングは、その空間周
期が発振波長とほぼ等しい。いわゆる1次のグレーティ
ングの作製にしか利用できず、2次のグレーティングへ
の応用や、任意に位相を変化させる事は不可能であった
However, in such a method, in order to attach a positive type resist and a negative type resist to different areas as described above, at least two resist coating steps and an exposure and development step are performed before performing holographic exposure. Moreover, it was necessary to precisely align the negative resist area and the positive resist area. Controlling the thickness of the resist was also an important issue. Moreover, the grating formed by such a method has a spatial period approximately equal to the oscillation wavelength. It could only be used to make so-called first-order gratings, and it was impossible to apply it to second-order gratings or change the phase arbitrarily.

発明が解決しようとする問題点 本発明は上記の様な問題1点を解決し、−回の露光で、
位相の任意に異なる複数のグレーティングを形成するも
のである。
Problems to be Solved by the Invention The present invention solves one problem as described above, and by - exposure times,
A plurality of gratings having arbitrarily different phases are formed.

問題点を解決するだめの手段 本発明は、二光束干渉法によるホログラフィック露光方
法を用い、二光束のうちの少なくとも−光束を、表面の
一部に凹部又は凸部或は屈折率の異なる領域が形成され
た光透過性の媒体を通過させるものであり、被露光媒体
上に、二光束が干渉しあって形成される空間周期的な強
度分布を用いて露光を行う事を特徴とする微細パターン
の形成方法を用いる事により前記の問題を解決するもの
である。
Means for Solving the Problems The present invention uses a holographic exposure method based on two-beam interference method, and directs at least one of the two light beams to a part of the surface using a concave or convex portion or an area with a different refractive index. It passes through a light-transmitting medium with a light beam formed on it, and is characterized by performing exposure using a spatially periodic intensity distribution formed by the interference of two light beams on the medium to be exposed. The above problem is solved by using a pattern forming method.

また、本発明は、第1の平面に対し、一定の角度を有し
て設置された第2及び第3の少なくとも2つの平面を有
する光透過性の媒体で、かつ第2及び第3の平面のうち
の少なくとも一方の表面の一部に、凹部又は凸部或は屈
折率の異なる領域が形成された第1の媒体に、上記第2
.第3の平面から同時に一定径以上の光束のレーザ光線
が入射され、該第1及び第2の平面で屈折して該第1の
媒体を透過する光が、前記vg1平面の近傍に設けられ
た第2の媒体の表面で干渉し合い形成される空間周期的
な光強度分布を用いて、露光を行う事を特徴とするホロ
グラフィック露光方法による微細パターンの形成方法に
より、更に容易に前記の問題を解決するものである。
Further, the present invention provides a light-transmitting medium having at least two planes, a second and a third plane, which are arranged at a certain angle with respect to the first plane, and The first medium has a concave portion, a convex portion, or a region having a different refractive index formed on a portion of at least one surface of the second medium.
.. Laser beams of a certain diameter or more are simultaneously incident from a third plane, and light is refracted at the first and second planes and transmitted through the first medium, provided in the vicinity of the vg1 plane. A method for forming a fine pattern using a holographic exposure method, which is characterized by performing exposure using a spatially periodic light intensity distribution formed by interference on the surface of a second medium, can more easily solve the above problem. This is to solve the problem.

作用 本発明は、上述のように二光束のうちの一方のΩ 光学長を前記凹部、凸部或は屈折率の異なる領域で変化
させ、その結果、光の干渉し合う位置を空間的に変化さ
せるものである。
As described above, the present invention changes the Ω optical length of one of the two light beams in the concave portions, convex portions, or regions with different refractive indexes, and as a result, the position where the lights interfere with each other is spatially changed. It is something that makes you

本発明によれば、凹部又は凸部或は屈折率の異なる領域
を透過して露光される被露光面上の領域と前記領域を透
過せずに露光される被露光面上の領域における光強度分
布の空間周期構造の位相が互いに士(%十N)・、M2
 (N ;整数)異なりこの基板上に結晶成長がなされ
てDFBレーザが構成される (ここにλは該レーザの
キャビティ内での発振波長である)。
According to the present invention, the light intensity in the region on the exposed surface that is exposed by passing through the concave portions or convex portions or regions with different refractive indexes, and the light intensity in the region on the exposed surface that is exposed without passing through the said region. The phases of the spatial periodic structure of the distribution are mutually equal to each other (%1N)・, M2
(N; integer) A DFB laser is constructed by growing a crystal on this substrate (where λ is the oscillation wavelength within the cavity of the laser).

実施例 本発明方法の第1の実施例を第1図に示す。1は325
0人のHe−Cdレーザで、ビームエクスパンダ2によ
りビーム径が広げられ、ビームスプリッタ3により光束
4と5に分割される。分割された光束4.5は反射鏡、
6.7により反射され、被露光媒体80表面に照射され
る。ところが、光束の途中に、透明なガラス板9及び1
0が設置されており、しかもガラス板1oの表面の一部
はエツチングにより凹部11が形成されている。その結
果、被露光媒体8の表面では、12に示す様な強度分布
が形成され、ガラス板1oの凹部11を透過して露光さ
れる領域13と凹部を透過せずに露光される領域14で
、強度分布の空間周期の位相が変化している。従って被
露光媒体8の表面に、フォトレジストを塗布しておく事
により、この露光の後の現像エツチングにより、空間周
期の位相の異なる領域を有するグレーティングが形成さ
れる。
EXAMPLE A first example of the method of the present invention is shown in FIG. 1 is 325
The beam diameter of the He-Cd laser is expanded by a beam expander 2, and the beam is split into beams 4 and 5 by a beam splitter 3. The divided luminous flux 4.5 is reflected by a reflecting mirror,
6.7 and irradiates the surface of the medium 80 to be exposed. However, there are transparent glass plates 9 and 1 in the middle of the light beam.
Further, a recess 11 is formed in a part of the surface of the glass plate 1o by etching. As a result, an intensity distribution as shown in 12 is formed on the surface of the medium 8 to be exposed, with areas 13 exposed through the recesses 11 of the glass plate 1o and areas 14 exposed without passing through the recesses. , the phase of the spatial period of the intensity distribution is changing. Therefore, by applying a photoresist to the surface of the medium 8 to be exposed, a grating having regions having different phases in the spatial period is formed by development and etching after this exposure.

本発明方法の第2の実施例を第2図に示す。21は32
5oXの発振波長のHe−C(lレーザ光源であり、2
2はビームエクスパンダ、23は平面24゜26.26
を有する石英のプリズム形の媒体であり、屈折率は1.
48である平面26及び26は、平面24に対し44°
の角度を有している。また平面26の表面の一部には、
厚さ1075Xの5in2薄膜27が形成される。この
媒体23の上面より径の拡大されたレーザビーム28が
入射され、透過光により平面24の付近に設置された被
露光媒体29の表面が露光される。なお、媒体29の表
面には厚さ約1000Xのフォトレジストが付着されて
おり、露光後の現像により、約4ooofのグレーティ
ングが形成される。また、薄膜27を透過して露光され
る領域30と他の領域を透過して露光される領域31で
は、光強度の空間分布の位相が5ooXだけ異なる様に
SiO□薄膜27の厚さは設計されている。この厚さに
より位相の制御が可能である。従って現像後は第3図に
示す様に、空間周期の位相の異なるグレーティング状の
レジストパターン30.31が形成される。このレジス
トパターン30.31を■−■半導体よりなる媒体29
の(100)面上に形成し、異方性ケミカルエツチング
又はイオンビームエツチングを行う事により、λ、4の
位相がずれて連結されたグレーティング34.35が形
成される。33は残されたパターン3Q、31を形成す
るレジストである。
A second embodiment of the method of the invention is shown in FIG. 21 is 32
He-C (l laser light source with an oscillation wavelength of 5oX, 2
2 is a beam expander, 23 is a plane 24°26.26
It is a quartz prism-shaped medium with a refractive index of 1.
48, planes 26 and 26 are at 44° to plane 24
It has an angle of Also, on a part of the surface of the plane 26,
A 5in2 thin film 27 with a thickness of 1075X is formed. A laser beam 28 whose diameter has been expanded is incident on the upper surface of the medium 23, and the surface of the medium 29 to be exposed, which is placed near the plane 24, is exposed by the transmitted light. Note that a photoresist with a thickness of about 1000× is attached to the surface of the medium 29, and a grating of about 400× is formed by development after exposure. The thickness of the SiO□ thin film 27 is designed so that the phase of the spatial distribution of light intensity differs by 5ooX between a region 30 exposed through the thin film 27 and a region 31 exposed through another region. has been done. This thickness allows phase control. Therefore, after development, as shown in FIG. 3, grating-like resist patterns 30 and 31 having different spatial periods and phases are formed. This resist pattern 30.31 is
By forming the gratings 34 and 35 on the (100) plane and performing anisotropic chemical etching or ion beam etching, connected gratings 34 and 35 are formed with a phase shift of λ, 4. 33 is a resist forming the remaining patterns 3Q and 31.

本実施例では、プリズムの1平面上にSiO□の薄膜を
形成した凸部を設けた場合を示したが、他の光透過性の
薄膜でも良くまた、エツチング等により凹部を設ける方
法、或は、イオン注入法等により鉛原子等の含まれる領
域を形成する方法にても同様の効果を得る事ができる。
In this embodiment, a convex portion made of a thin film of SiO□ is provided on one plane of the prism, but other light-transmitting thin films may be used. A similar effect can be obtained by forming a region containing lead atoms or the like by ion implantation or the like.

次に前記のホログラフィック露光法によりInP基板上
に形成されλ/4め位相のずれを有して連結されたグレ
ーティングを用いて構成された半導体レーザの実施例を
第4図に示す。41は表面に上記のグレーティング34
 # 35の形成されたn型のInP基板、42は光導
波層のn型工nxGa1−xAs、−yPy(λg =
 1.1μm)、43は光活性層のInx/Ga 1−
x/人S、−y/Py/(λg =  1.3μm  
)、44はP型のInP層、46はP型のInGaAs
層−1する。
Next, FIG. 4 shows an embodiment of a semiconductor laser constructed using gratings formed on an InP substrate by the above-mentioned holographic exposure method and connected with a phase shift of λ/4. 41 is the above grating 34 on the surface
#35 is an n-type InP substrate formed, 42 is an optical waveguide layer n-type layer nxGa1-xAs, -yPy (λg =
1.1 μm), 43 is the photoactive layer Inx/Ga 1-
x/person S, -y/Py/(λg = 1.3 μm
), 44 is a P-type InP layer, and 46 is a P-type InGaAs layer.
Layer -1.

また、46.47は金層電極である。第6図は、本実施
例の分布帰還型の半導体レーザの発振スペクトルである
。完全なシングルモード兇振が得られている。
Moreover, 46.47 is a gold layer electrode. FIG. 6 shows the oscillation spectrum of the distributed feedback type semiconductor laser of this example. Complete single mode vibration is obtained.

発明の効果 本発明は、実施例を用いて説明した様に、容易゛に位相
の異なる2種類以上のグレーティングが形成でき、また
位相の制御も、前記凹凸部の段差やイオン注入量等で制
御でき、分布帰還形の半導体レーザの作製や、遠視野像
の制御の可能なフェーズロックレーザの作製等にも極め
て有用である。
Effects of the Invention As explained using the embodiments, the present invention allows two or more types of gratings with different phases to be easily formed, and the phase can also be controlled by the step difference in the uneven portion, the amount of ion implantation, etc. This method is extremely useful for manufacturing distributed feedback type semiconductor lasers and phase-locked lasers whose far-field pattern can be controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における微細パターンの
形成方法について説明するための図、第2図は本発明の
第2の実施例における微細パターンの形成方法について
説明するための図、第3図は上記形成方法により形成さ
れたホログラフィックパターンの一例の断面図、第4図
は上記形成方法により作製されたグレーティングを用い
た半導体レーザの断面図、第5図は第4図に示した半導
体レーザの発振スペクトルを示す図である。 1・・・・・・レーザ、4.6・・・・・・光束、6.
7・・・・・・反射鏡、8・・・・・・被露光媒体、9
.10・・・・・・ガラス板、11・・・・・・凹部、
34.35・・・・・・グレーティング。 代理人の氏名 弁理士 中 尾 敏 男 ばか1名第 
21!l 第1図 第4図 第3図 第5図 tto     in 慎長(μれ)
FIG. 1 is a diagram for explaining a method of forming a fine pattern in a first embodiment of the present invention, FIG. 2 is a diagram for explaining a method of forming a fine pattern in a second embodiment of the present invention, FIG. 3 is a cross-sectional view of an example of a holographic pattern formed by the above-mentioned forming method, FIG. 4 is a cross-sectional view of a semiconductor laser using a grating manufactured by the above-mentioned forming method, and FIG. FIG. 3 is a diagram showing an oscillation spectrum of a semiconductor laser. 1... Laser, 4.6... Luminous flux, 6.
7...Reflecting mirror, 8...Exposed medium, 9
.. 10...Glass plate, 11...Recessed part,
34.35...Grating. Name of agent Patent attorney Toshio Nakao Baka 1st
21! l Figure 1 Figure 4 Figure 3 Figure 5 To in Shincho (μre)

Claims (2)

【特許請求の範囲】[Claims] (1)二光束干渉法によるホログラフィック露光方法を
用い、上記二光束のうちの少なくとも一光束を、表面の
一部に凹部又は凸部或は屈折率の異なる領域が形成され
た光透過性の媒体を通過させ、被露光媒体上に、上記二
光束が干渉しあって形成される空間周期的な強度分布を
用いて露光を行う事を特徴とする微細パターンの形成方
法。
(1) Using a holographic exposure method using a two-beam interference method, at least one of the two beams is transferred to a light-transmitting material having concave or convex portions or areas with different refractive indexes formed on a part of the surface. A method for forming a fine pattern, characterized by passing the light through a medium and exposing the medium using a spatially periodic intensity distribution formed by the interference of the two light beams.
(2)第1の平面に対し、一定の角度を有して設置され
た第2及び第3の少なくとも2つの平面を有し光透過性
の媒体で、かつ、上記第2及び第3の平面のうちの少な
くとも一方の表面の一部に凹部又は凸部或は屈折率の異
なる領域が形成された第1の媒体に、上記第2、第3の
平面から同時に一定径以上の光束のレーザ光線を入射し
、上記第1及び第2の平面で屈折して上記第1の媒体を
透過する光が、上記第1平面の近傍に設けられた第2の
媒体の表面で干渉し合い形成される空間周期的な光強度
分布を用いて、上記第2媒体表面に露光を行う事を特徴
とする微細パターンの形成方法。
(2) A light-transmitting medium having at least two planes, a second and a third plane, installed at a certain angle with respect to the first plane, and the second and third planes are arranged at a certain angle with respect to the first plane. A laser beam having a luminous flux of a certain diameter or more is simultaneously applied from the second and third planes to a first medium in which a concave portion or a convex portion or a region with a different refractive index is formed in a part of the surface of at least one of the medium. is incident, is refracted by the first and second planes, and is transmitted through the first medium, which is formed by interference on the surface of the second medium provided near the first plane. A method for forming a fine pattern, characterized in that the surface of the second medium is exposed to light using a spatially periodic light intensity distribution.
JP60032045A 1985-02-20 1985-02-20 Formation of fine pattern Pending JPS61190368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60032045A JPS61190368A (en) 1985-02-20 1985-02-20 Formation of fine pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60032045A JPS61190368A (en) 1985-02-20 1985-02-20 Formation of fine pattern

Publications (1)

Publication Number Publication Date
JPS61190368A true JPS61190368A (en) 1986-08-25

Family

ID=12347890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60032045A Pending JPS61190368A (en) 1985-02-20 1985-02-20 Formation of fine pattern

Country Status (1)

Country Link
JP (1) JPS61190368A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368992A (en) * 1992-04-23 1994-11-29 Mitsubishi Denki Kabushiki Kaisha Method of producing diffraction grating
JP2004504634A (en) * 2000-07-19 2004-02-12 エーエスエムエル ユーエス,インコーポレイテッド Method of characterizing an optical system using a holographic reticle
JP2005534050A (en) * 2002-07-22 2005-11-10 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing photoresist structure
US7161684B2 (en) 2000-02-15 2007-01-09 Asml Holding, N.V. Apparatus for optical system coherence testing
US7242464B2 (en) 1999-06-24 2007-07-10 Asml Holdings N.V. Method for characterizing optical systems using holographic reticles
US7440078B2 (en) 2005-12-20 2008-10-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and maskless exposure units
US7443514B2 (en) 2006-10-02 2008-10-28 Asml Holding N.V. Diffractive null corrector employing a spatial light modulator
US7561252B2 (en) 2005-12-29 2009-07-14 Asml Holding N.V. Interferometric lithography system and method used to generate equal path lengths of interfering beams
JP2009278136A (en) * 2004-08-25 2009-11-26 Seiko Epson Corp Method of manufacturing microstructure
US7751030B2 (en) 2005-02-01 2010-07-06 Asml Holding N.V. Interferometric lithographic projection apparatus
US8264667B2 (en) 2006-05-04 2012-09-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and other exposure
US8934084B2 (en) 2006-05-31 2015-01-13 Asml Holding N.V. System and method for printing interference patterns having a pitch in a lithography system
JP2016154203A (en) * 2014-04-25 2016-08-25 住友電工デバイス・イノベーション株式会社 Semiconductor laser element and semiconductor laser element manufacturing method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368992A (en) * 1992-04-23 1994-11-29 Mitsubishi Denki Kabushiki Kaisha Method of producing diffraction grating
US7242464B2 (en) 1999-06-24 2007-07-10 Asml Holdings N.V. Method for characterizing optical systems using holographic reticles
US7804601B2 (en) 1999-06-24 2010-09-28 Asml Holding N.V. Methods for making holographic reticles for characterizing optical systems
US7161684B2 (en) 2000-02-15 2007-01-09 Asml Holding, N.V. Apparatus for optical system coherence testing
JP2004504634A (en) * 2000-07-19 2004-02-12 エーエスエムエル ユーエス,インコーポレイテッド Method of characterizing an optical system using a holographic reticle
JP2005534050A (en) * 2002-07-22 2005-11-10 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for manufacturing photoresist structure
JP2009278136A (en) * 2004-08-25 2009-11-26 Seiko Epson Corp Method of manufacturing microstructure
US7751030B2 (en) 2005-02-01 2010-07-06 Asml Holding N.V. Interferometric lithographic projection apparatus
US7440078B2 (en) 2005-12-20 2008-10-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and maskless exposure units
US7561252B2 (en) 2005-12-29 2009-07-14 Asml Holding N.V. Interferometric lithography system and method used to generate equal path lengths of interfering beams
US8264667B2 (en) 2006-05-04 2012-09-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method using interferometric and other exposure
US8934084B2 (en) 2006-05-31 2015-01-13 Asml Holding N.V. System and method for printing interference patterns having a pitch in a lithography system
US7443514B2 (en) 2006-10-02 2008-10-28 Asml Holding N.V. Diffractive null corrector employing a spatial light modulator
JP2016154203A (en) * 2014-04-25 2016-08-25 住友電工デバイス・イノベーション株式会社 Semiconductor laser element and semiconductor laser element manufacturing method

Similar Documents

Publication Publication Date Title
EP0188919B1 (en) A method for the formation of a diffraction grating
US5340637A (en) Optical device diffraction gratings and a photomask for use in the same
JPS61190368A (en) Formation of fine pattern
CA2023510C (en) Single wavelength oscillating semiconductor laser device and method for manufacturing diffraction grating
JPH06201909A (en) Production of diffraction grating
JP2629671B2 (en) Holographic exposure method
US5221429A (en) Method of manufacturing phase-shifted diffraction grating
JPH08255947A (en) Semiconductor laser and fabrication thereof
JP2735589B2 (en) Manufacturing method of diffraction grating
JPH0461331B2 (en)
JPH03238454A (en) Production of mask for interference exposing
JPH02213182A (en) Manufacture of diffraction grating
JP2527833B2 (en) Method of manufacturing diffraction grating
JPS6360587A (en) Manufacture of semiconductor laser
JPH05343806A (en) Manufacture of phase-shifting diffraction
JP3112153B2 (en) Grating fabrication method
JPH01225189A (en) Manufacture of diffraction grating
JP2965023B2 (en) Multi-wavelength distributed feedback semiconductor laser array and method of manufacturing the same
JPS63153508A (en) Production of diffraction grating
JPH03268383A (en) Formation method of diffraction grating and semiconductor laser element using same
JPH0697600A (en) Formation of diffraction grating
JPH11109156A (en) Optical waveguide, and its manufacture
JPS6217702A (en) Production of diffraction grating
JPH052142B2 (en)
JPS62245204A (en) Production of diffraction grating