JPH02132873A - Formation of diffraction grating and distributed feedback type semiconductor laser - Google Patents

Formation of diffraction grating and distributed feedback type semiconductor laser

Info

Publication number
JPH02132873A
JPH02132873A JP63286139A JP28613988A JPH02132873A JP H02132873 A JPH02132873 A JP H02132873A JP 63286139 A JP63286139 A JP 63286139A JP 28613988 A JP28613988 A JP 28613988A JP H02132873 A JPH02132873 A JP H02132873A
Authority
JP
Japan
Prior art keywords
layer
diffraction grating
pattern
polyimide
etched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63286139A
Other languages
Japanese (ja)
Inventor
Naoki Takenaka
直樹 竹中
Atsushi Shibata
淳 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63286139A priority Critical patent/JPH02132873A/en
Publication of JPH02132873A publication Critical patent/JPH02132873A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To manufacture a phase shifting diffraction grating which is uniform throughout the whole face and excellent in reproducibility by a method wherein a surface flattened layer is formed as a first layer on a semiconductor substrate or an epitaxial growth layer on a semiconductor substrate. CONSTITUTION:Polyimide 2 is applied onto an InP substrate 1, Si 3 is evaporated thereon, positive type photoresist 4 is applied to form a resist pattern 4A, and the Si 3 is etched using the resist pattern 4A as a mask to form an Si pattern 3A. Then, the polyimide 2 is etched using a part of the Si pattern 3A as a mask to obtain a polyimide pattern 2A. In succession, the etched part of the polyimide 2 is covered with an SiO2 protective film 6, then the rest part if obliquely etched, the protective film 6 is removed, and then the InP substrate 1 is etched using the polyimide pattern 2A as a mask to form a phase shifting diffraction grating 100.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光通信用光源として用いられる分布帰還型半導
体レーザの作製に不可欠な回折格子の作成方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a diffraction grating that is essential for producing a distributed feedback semiconductor laser used as a light source for optical communications.

従来の技術 分布帰還型半導体レーザ(以下、DFBレーザと称す)
は素子に内蔵する回折格子の周期で決まるプラッグ波長
付近で単一縦モードすなわち単一の波長で発振する。こ
のため波長分散を有する光ファイバを用いた光通信系に
おいても長距離大容量伝送が可能な光源として実用化が
進められている。ところが、素子内に均一な回折格子を
持つDFBレーザでは、最小しきい値利得を与える波長
がプヲッグ波長と原理的に一致せず、その両側K近接し
た2本の発振可能な縦モードを有しているため、この2
本の縦モードで発振したシ、両モード間の競合による不
安定さのため、安定した単一縦モード発振が歩留シ良く
得られないという問題があった。
Conventional technology Distributed feedback semiconductor laser (hereinafter referred to as DFB laser)
oscillates in a single longitudinal mode, that is, at a single wavelength, near the plug wavelength determined by the period of the diffraction grating built into the element. For this reason, it is being put into practical use as a light source capable of long-distance, large-capacity transmission even in optical communication systems using optical fibers having wavelength dispersion. However, in a DFB laser that has a uniform diffraction grating within the element, the wavelength that provides the minimum threshold gain does not coincide with the Puwogg wavelength in principle, and there are two longitudinal modes that can oscillate close to each other on both sides. Because of this, these two
There was a problem in that stable single longitudinal mode oscillation could not be obtained with a good yield due to instability caused by competition between the two longitudinal modes.

そこで、ブラッグ波長と最少しきい値利得を与える波長
とを一致させて、すべての素子をブラッグ波長で単一縦
モード発振させるために、素子の中央付近で左右の回折
格子の位相をλn/4(λn:素子内を伝搬する光の波
長)だけずらした構造の位相シフト型DFBL/−ザが
提案されている。ところが1次の回折格子の場合、λ/
4 シフト回折格子を作成するには左右の回折格子の凹
凸を反転させる必要がちシ、全面にわたって均一な回折
格子を作成する工程と比較して、一般に複雑な作成工程
を必要とする。位相シフト回折格子の作成方法として、
たとえば、エレクトロニクスレターズ誌第20巻4号、
1008〜101o頁(1984年11月22日発行)
記載のポジ型およびネガ型の7ォトレジストの逆感光性
を利用した干渉露光法が知られている。
Therefore, in order to make all the elements oscillate in a single longitudinal mode at the Bragg wavelength by matching the Bragg wavelength with the wavelength that gives the minimum threshold gain, the phase of the left and right diffraction gratings is changed to λn/4 near the center of the element. A phase-shift type DFBL has been proposed that has a structure shifted by (λn: wavelength of light propagating within the element). However, in the case of a first-order diffraction grating, λ/
4. To create a shifted diffraction grating, it is necessary to reverse the unevenness of the left and right diffraction gratings, which generally requires a more complicated creation process than the process of creating a uniform diffraction grating over the entire surface. As a method for creating a phase shift diffraction grating,
For example, Electronics Letters Vol. 20 No. 4,
Pages 1008-101o (published November 22, 1984)
An interference exposure method that utilizes the reverse photosensitivity of the positive type and negative type 7 photoresists described above is known.

以下、第3図を参照にして簡単に説明すると、InP 
基板18上に膜厚700人のネガ型フォトレジスト19
を塗布し(a)、次に前記ネガ型フォトレジスト19上
にポジ型フォトレジスト20を塗布し[有])、通常の
りソグラフィ技術を用いてキャビティ長の半分だけをカ
バーするレジストパターン20Aを形成する(C)。そ
して、レジストパターン2OAをマスクとして、硫酸で
ネガ型フォトレジスト19をエッチングしてパターン1
9Aを形成した後、ボジ型フォトレジストパターン20
Aを全面除去し(d)、再びポジ型フォトレジスト21
を全面にわたって膜厚700Aで塗布する(lil)。
Below, a brief explanation will be given with reference to Fig. 3. InP
Negative photoresist 19 with a film thickness of 700 on the substrate 18
(a), and then apply a positive photoresist 20 on the negative photoresist 19, and form a resist pattern 20A covering only half of the cavity length using normal gluing lithography technique. (C). Then, using the resist pattern 2OA as a mask, the negative photoresist 19 is etched with sulfuric acid to form the pattern 1.
9A, a positive photoresist pattern 20 is formed.
A is completely removed (d) and the positive photoresist 21 is applied again.
is coated over the entire surface with a film thickness of 700A (lil).

波長3260人のHe−Cdレーザ光を用いての2光束
干渉露光法により露光後、現像に(f)に示すレジスト
パターン30を得る。さらに、前記レジストパターン3
0をマスクにInP基板18のエッチングを行って後、
ネガ型18および、ポジ型フォトレジストを全面除去し
て、(cr)に示す位相シフト回折格子1oOを作成す
るというものである。
After exposure by a two-beam interference exposure method using a He--Cd laser beam with a wavelength of 3260, a resist pattern 30 shown in (f) is obtained by development. Furthermore, the resist pattern 3
After etching the InP substrate 18 using 0 as a mask,
The negative-type photoresist 18 and the positive-type photoresist are completely removed to create a phase shift grating 1oO shown in (cr).

発明が解決しようとする課題 しかし、上記の従来技術では、2種類の7才トレジスト
を隣接して塗布する工程が必要であシ、さらに、下地の
半導体基板および前記基板上のエピタキシャル成長層表
面の形状によシ全而にわたって均一で、再現性の良い位
相シフト回折格子を作成できないという課題があった。
Problems to be Solved by the Invention However, the above-mentioned conventional technique requires a step of applying two types of 7-year-old resists adjacently, and furthermore, the shape of the underlying semiconductor substrate and the surface of the epitaxial growth layer on the substrate is There was a problem in that it was not possible to create a phase shift diffraction grating that was uniform throughout the entire area and had good reproducibility.

本発明の第1の目的は、半導体基板上および前記基板上
のエピタキシャル成長層全面にわたって均一で再現性の
良い位相シフト回折格子を作成するものである。また第
2の目的は、電流ブロック層内の溝中に活性層を埋込む
構造においても位相シフトDFBレーザ作製を可能にす
るものである。
A first object of the present invention is to create a phase-shifted diffraction grating that is uniform and has good reproducibility over the entire surface of a semiconductor substrate and an epitaxially grown layer on the substrate. A second object is to enable manufacturing of a phase-shifted DFB laser even in a structure in which an active layer is buried in a groove in a current blocking layer.

課題を解決するだめの手段 上記目的を達成するため、本発明の技術的解決手段は、
第1に、半導体基板上にまたは前記基板上のエピタキシ
ャル成長層上に表面平坦化層である第1の層と、前記第
1の層上に中間層である第2の層と、前記第2の層上に
フォトレジストである第3層を形成する工程と、前記第
3の層に周期的レジストパターン形成し、前記レジスト
パターンをマスクとして、第2の層をエッチングする工
程と、前記第2の層上の一部分をマスクして、第3の層
をエッチングする工程と、前記の第3の層のエッチング
された部分を保護膜でおおった後、残りの部分を傾斜ド
ライエッチングする工程と、前記保護膜を除去した後、
第3の層をマスクとして、前記半導体基板または前記基
板上のエピタキシャル成長層をエッチングする工程とを
少なくとも備えたものである。また、第2には、半導体
基板上の電流ブロック層内の溝中のInP  グラッド
層またはInGaAsP導波路層上に直接前記位相シフ
ト回折格子を形成するものである。
Means for Solving the Problems In order to achieve the above object, the technical solution of the present invention is as follows:
First, a first layer that is a surface flattening layer is formed on a semiconductor substrate or an epitaxially grown layer on the substrate, a second layer that is an intermediate layer is formed on the first layer, and a second layer that is an intermediate layer is formed on the first layer. forming a third layer of photoresist on the third layer; forming a periodic resist pattern on the third layer; and etching the second layer using the resist pattern as a mask; etching the third layer while masking a portion on the layer; covering the etched portion of the third layer with a protective film, and then performing inclined dry etching on the remaining portion; After removing the protective film,
The method includes at least a step of etching the semiconductor substrate or an epitaxial growth layer on the substrate using the third layer as a mask. In a second method, the phase shift grating is formed directly on an InP grading layer or an InGaAsP waveguide layer in a groove in a current blocking layer on a semiconductor substrate.

作  用 本発明は第1に、第1の層として表面平坦化6ヤjを形
成することによシ下地の微細な凹凸や複雑に加工された
形状を吸収して第2の層および第3の層を全面にわたっ
て平坦にしている。このため、第3の層上に全面にわた
9均一性のよい周期的レジストパターンが形成され、第
2の層にも全面にわたシ均一性のよい周期パターンが転
写される。
Function: Firstly, by forming a surface flattening layer as the first layer, the fine irregularities and intricately processed shapes of the base layer are absorbed, and the second layer and the third layer The layer is flattened over the entire surface. Therefore, a periodic resist pattern with good uniformity over the entire surface is formed on the third layer, and a periodic pattern with good uniformity over the entire surface is also transferred to the second layer.

前記第2の層の一部分をマスクして、第1の層をエッチ
ングした後、エッチングした部分を保護膜でおおって、
第1の層の残りの部分をドライエッチングを用いて傾斜
エッチングを行って、第1の層に位相シフトされたマス
クパターンを形成させるものである。第1の層の膜厚が
変化しても、前記ドライエッチングの際のビームに対す
る基板の傾斜角を変化させることによシ、シフト量は任
意K設定することができる。以上により、下地の形状に
かかわらず、全面にわたって均一で再現性のよい位相シ
フト回折格子を作成できるものである。
After masking a portion of the second layer and etching the first layer, covering the etched portion with a protective film,
The remaining portion of the first layer is etched at an angle using dry etching to form a phase-shifted mask pattern in the first layer. Even if the thickness of the first layer changes, the shift amount can be set to an arbitrary value K by changing the inclination angle of the substrate with respect to the beam during the dry etching. As described above, it is possible to create a phase shift diffraction grating that is uniform over the entire surface and has good reproducibility, regardless of the shape of the base.

まだ第2に、半導体基板上の電流ブロック層内の溝中の
InP  グラッド層またはInGaAsP導波路層上
に前記表面平坦化層を形成することによシ、従来は困難
であったIuP クラッド層またはIuGaAsF導波
路層上へ直接位相シフト回折格子を形成した位相シフト
DFBレーザを作製するものである。
Second, by forming the surface planarization layer on the InP cladding layer or InGaAsP waveguide layer in the trench in the current blocking layer on the semiconductor substrate, it is possible to form the IuP cladding layer or the InGaAsP waveguide layer, which was previously difficult. A phase-shifted DFB laser in which a phase-shifted diffraction grating is directly formed on an IuGaAsF waveguide layer is manufactured.

実施例 以下、第1図a − hを参照しながら本発明の第1の
実施例について説明する。第1図aに示すように,In
P基板1上に膜厚1oOo人のポリイミド2を塗布し、
次に膜厚250人のSi 3を電子ビーム蒸着し、さら
に膜厚700人のボジ型フォトレジスト4を塗布する。
EXAMPLE Hereinafter, a first example of the present invention will be described with reference to FIGS. 1a to 1h. As shown in Figure 1a, In
Coat polyimide 2 with a film thickness of 1000 on P substrate 1,
Next, Si 3 with a thickness of 250 nm is deposited by electron beam, and a positive type photoresist 4 with a thickness of 700 nm is further applied.

次に、波長3260人のHe−Cdレーザ光を用いて2
光束干渉露光を行って後、現像してΦ)に示すレジスト
パターン4Aを得る。そして前記レジストパターン4A
をマスクとして、CF4ガスを用いて反応性イオンビー
ムエッチング(以下、RIBEと称す)を行い、St 
パターン3Aを形成するCo)。そして、ボジ型フォト
レジストを形成し通常のりソグラフィ技術を用いて(d
)に示すポジ型レジストパターン6Aを得る。次に、0
2ガス6oを用いてRIBE(Reactive Io
n Beam Etching)を行い(e)に示すポ
リイミドパターン2Aを得る。そして、プラズマCVD
によシSl02膜6をデボすると、InP基板1表面が
露出している部分およびSt  S上にはS102膜θ
のデポが起こるが、ポジ型フォトレジストパダーン5A
は酸素プラズマによってエッチングされる(f)。次に
、o2ガス60を用いてRIBEによるビームに対して
基板面カ49°の傾きをもつ傾斜エッチングを行ってポ
リイミドパターン2人の一部を選択的に除去し、(cr
)に示すS102  6+ポリイミドパターン2Aよシ
なるマスクパターンが得られる。さらに、フッ酸により
Si○2を除去して、残された前記マスクパターンを用
いて飽和臭素水:リン酸:水=2:1:15のエノチン
グ液により基板1表面をエッチングを行った後、CF4
 ガスによるRIBEを行って偽》に示す位相シフト回
折格子1oOを得る。
Next, we used a He-Cd laser beam with a wavelength of 3260 nm to
After performing beam interference exposure, development is performed to obtain a resist pattern 4A shown in Φ). And the resist pattern 4A
With St as a mask, reactive ion beam etching (hereinafter referred to as RIBE) was performed using CF4 gas.
Co forming pattern 3A). Then, a positive type photoresist is formed and using normal gluing lithography technique (d
A positive resist pattern 6A shown in ) is obtained. Next, 0
RIBE (Reactive Io) using 2 gas 6o
(n Beam Etching) to obtain a polyimide pattern 2A shown in (e). And plasma CVD
When the S102 film 6 is debossed, an S102 film θ is formed on the exposed part of the surface of the InP substrate 1 and on the StS.
Deposition occurs, but positive photoresist pad 5A
is etched by oxygen plasma (f). Next, oblique etching is performed using O2 gas 60 to tilt the substrate surface at an angle of 49° with respect to the RIBE beam to selectively remove a part of the two polyimide patterns.
A mask pattern similar to S102 6+ polyimide pattern 2A shown in ) is obtained. Furthermore, after removing Si○2 with hydrofluoric acid and etching the surface of the substrate 1 using the remaining mask pattern with an enoting solution of saturated bromine water: phosphoric acid: water = 2:1:15, CF4
RIBE with gas is performed to obtain a phase-shifted diffraction grating 1oO shown in 》.

以上のように、本実施例では、ポリイミドの平坦化層を
用いているため、下地の形状にかかわらず全面にわたっ
て均一で再現性の良い位相シフト回折格子を形成するこ
とができる。なお、本実施例ではλ/4 シフト回折格
子を得たが、<q)の工程における傾斜角を変えること
によりシフト量は任意に設定できる。また、ポリイミド
の膜厚が変わっても、同様に傾斜角を変えることによシ
シフト量の制御は容易に行うことができる。
As described above, in this example, since a polyimide flattening layer is used, a phase shift diffraction grating that is uniform and has good reproducibility can be formed over the entire surface regardless of the shape of the base. In this example, a λ/4 shifted diffraction grating was obtained, but the amount of shift can be set arbitrarily by changing the tilt angle in the step <q). Moreover, even if the thickness of the polyimide film changes, the amount of shift can be easily controlled by changing the inclination angle.

以下、第2図aからeを参照しながら本発明の第2の実
施例について説明する。第2図aに示すように、n−I
nP基板7上にn−InP 8 , p−InP9 ,
 n−I!IP 1 0の順で液相エピタキシャル成長
させて電流ブロック層を作成する。次に、前記電流プロ
ソク層内に通常のフォトリングラフィ技術とウェットエ
ッチングによりV溝70を形成し(b)、この溝7oの
中にn−InP 11, ノ:yドープInGaAsP
活性層1 2 ,p−InGaAsP導波路層13の順
で液相エピタキシャル成長させる(C)。このときn−
InP10上にもこれらの層が形成される。そして、本
発明の第1の実施例に示した方法によりp−InGaA
sP導波路層12に位相シフト回折格子を形成する(d
)。(d)は一部を切欠断面を含む図である。さらに、
p−InP 1 4 , p−InGaAsP16の順
で液相エピタキシャル成長を行って後、p電極16,n
電極17を蒸着して(e)に示す位相シフトDFBレー
ザを得る。
A second embodiment of the invention will now be described with reference to FIGS. 2a to 2e. As shown in Figure 2a, n-I
n-InP 8 , p-InP 9 ,
n-I! A current blocking layer is created by liquid phase epitaxial growth in the order of IP 1 0. Next, a V-groove 70 is formed in the current prosodic layer by ordinary photolithography technology and wet etching (b), and n-InP 11, y-doped InGaAsP is formed in this groove 7o.
The active layer 1 2 and the p-InGaAsP waveguide layer 13 are grown by liquid phase epitaxial growth in this order (C). At this time n-
These layers are also formed on InP10. Then, by the method shown in the first embodiment of the present invention, p-InGaA
A phase shift diffraction grating is formed on the sP waveguide layer 12 (d
). (d) is a diagram including a partially cutaway cross section. moreover,
After performing liquid phase epitaxial growth in the order of p-InP 14 and p-InGaAsP16, p-electrodes 16 and n
An electrode 17 is deposited to obtain a phase-shifted DFB laser shown in (e).

以上のように、本実施例によれば、従来、回折格子の形
成が困難であった電流ブロック層内の溝中に活性層を埋
込む構造においてさえも、InPクラッド層またはIn
GaAsP導波路層上へ直接位相シフト回折格子を形成
した位相シフ}DFBレーザの作製を行うことができる
As described above, according to this embodiment, even in a structure in which the active layer is buried in the groove in the current blocking layer, in which it has been difficult to form a diffraction grating, it is possible to
A phase-shifted DFB laser in which a phase-shifted diffraction grating is formed directly on a GaAsP waveguide layer can be manufactured.

発明の効果 以上のように、本発明の効果としては、半導体基板表面
または前記基板上のエピタキシャル成長層表面の形状に
かかわらず、全面にわたって均一で位相シフト量の再現
性,制御性にすぐれた位相シフト回折格子を作成するこ
とができる。また、従来、回折格子の形成が困難であっ
た電流ブロック層内の溝中に活性層を埋込む構造におい
ても、InP クラッド層またはInGaAsP導波路
層上へ直接位相シフト回折格子を形成した位相シフトD
FBレーザを作製することができる。
Effects of the Invention As described above, the effects of the present invention include a phase shift that is uniform over the entire surface and has excellent reproducibility and controllability of the amount of phase shift, regardless of the shape of the semiconductor substrate surface or the surface of the epitaxial growth layer on the substrate. Diffraction gratings can be created. In addition, even in a structure in which the active layer is buried in a groove in the current block layer, where it has been difficult to form a diffraction grating, it is also possible to form a phase shift grating directly on the InP cladding layer or InGaAsP waveguide layer. D
An FB laser can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a − hは本発明の第1の実施例における位相
シフト回折格子の作成工程断面図、第2図aからeは本
発明の第2の実施例における位相シフ}DFBレーザの
作製工程斜視図、第3図aからqは従来の位相シフト回
折格子の作成工程断面図である。 1・^・・・InP基板、2・・・・・・ポリイミド、
3・旧・・St ,4・・・・・・ポジ型フォトレジヌ
ト、60・・・・・・02ガス。 代理人の氏名 弁理士 粟 野 重 孝 ほか1名1 
図 4A 第 図 IJI−1川,r 第 図 第 図 霞
Figures 1a to 1h are cross-sectional views of the manufacturing process of a phase-shifted diffraction grating according to the first embodiment of the present invention, and Figures 2a to 2e are sectional views of the manufacturing process of a phase-shifted DFB laser according to the second embodiment of the present invention. The perspective views and FIGS. 3A to 3Q are cross-sectional views of the manufacturing process of a conventional phase shift diffraction grating. 1.^...InP substrate, 2...polyimide,
3. Old...St, 4...Positive photoresinut, 60...02 gas. Name of agent: Patent attorney Shigetaka Awano and 1 other person1
Figure 4A Figure IJI-1 River,r Figure Figure Kasumi

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上にまたは、前記基板上のエピタキシ
ャル成長層上に表面平坦化層である第1の層と、前記第
1の層上に中間層である第2の層と、前記第2の層上に
フォトレジストである第3の層を形成する工程と、前記
第3の層に周期的レジストパターン形成し、前記レジス
トパターンをマスクとして、第2の層をエッチングする
工程と、前記第2の層上の一部分をマスクして、第3の
層をエッチングする工程と、前記の第3の層のエッチン
グされた部分を保護膜でおおった後、残りの部分を傾斜
ドライエッチングする工程と、前記保護膜を除去した後
、第3の層をマスクとして、前記半導体基板または前記
基板上のエピタキシャル成長層をエッチングする工程と
を少なくとも備えたことを特徴とする回折格子の作成方
法。
(1) A first layer that is a surface flattening layer on a semiconductor substrate or an epitaxial growth layer on the substrate, a second layer that is an intermediate layer on the first layer, and a second layer that is an intermediate layer on the first layer; forming a third layer of photoresist on the third layer; forming a periodic resist pattern on the third layer; and etching the second layer using the resist pattern as a mask; etching the third layer while masking a portion on the layer; covering the etched portion of the third layer with a protective film, and then subjecting the remaining portion to inclined dry etching; A method for producing a diffraction grating, comprising at least the step of etching the semiconductor substrate or an epitaxial growth layer on the substrate using the third layer as a mask after removing the protective film.
(2)特許請求の範囲第1項記載の方法にて形成された
回折格子を内蔵し、半導体基板上にエピタキシャル成長
した電流ブロック層内の溝中に活性層を埋込む構造を有
する分布帰還型半導体レーザ。
(2) A distributed feedback semiconductor having a structure in which a diffraction grating formed by the method described in claim 1 is built in and an active layer is buried in a groove in a current blocking layer epitaxially grown on a semiconductor substrate. laser.
JP63286139A 1988-11-11 1988-11-11 Formation of diffraction grating and distributed feedback type semiconductor laser Pending JPH02132873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63286139A JPH02132873A (en) 1988-11-11 1988-11-11 Formation of diffraction grating and distributed feedback type semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63286139A JPH02132873A (en) 1988-11-11 1988-11-11 Formation of diffraction grating and distributed feedback type semiconductor laser

Publications (1)

Publication Number Publication Date
JPH02132873A true JPH02132873A (en) 1990-05-22

Family

ID=17700440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63286139A Pending JPH02132873A (en) 1988-11-11 1988-11-11 Formation of diffraction grating and distributed feedback type semiconductor laser

Country Status (1)

Country Link
JP (1) JPH02132873A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022547A (en) * 2009-06-17 2011-02-03 Sumitomo Electric Ind Ltd Method of forming diffraction grating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022547A (en) * 2009-06-17 2011-02-03 Sumitomo Electric Ind Ltd Method of forming diffraction grating

Similar Documents

Publication Publication Date Title
US5020072A (en) Semiconductor laser device
US5386433A (en) Semiconductor laser including periodic structures with different periods for producing a single wavelength of light
US20020061046A1 (en) Distributed feedback laser device and method for manufacturing the same
US5668047A (en) Method for fabricating InP diffraction grating and distributed feedback laser
JPS61190368A (en) Formation of fine pattern
JPH06201909A (en) Production of diffraction grating
US6197608B1 (en) Mask for area forming selective grating and selective area growth and method for fabricating semiconductor device by utilizing the same
JPH02132873A (en) Formation of diffraction grating and distributed feedback type semiconductor laser
US5221429A (en) Method of manufacturing phase-shifted diffraction grating
JPH0669605A (en) Formation of diffraction grating
JPH08162706A (en) Manufacture of integrated semiconductor optical element
JPH11337713A (en) Formation of diffraction grating
JPS60247986A (en) Distributed feedback type semiconductor laser
JPH0653600A (en) Method for forming diffraction grating for semiconductor light emitting element
JPH09312437A (en) Semiconductor laser and manufacture thereof
JPS63169784A (en) Distributed feedback semiconductor laser device
JPH05136521A (en) Semiconductor laser
JP2527833B2 (en) Method of manufacturing diffraction grating
JPH02213182A (en) Manufacture of diffraction grating
JP2735589B2 (en) Manufacturing method of diffraction grating
JPH063541A (en) Waveguide type grating and its production
JP3338150B2 (en) Manufacturing method of diffraction grating
JPS6360587A (en) Manufacture of semiconductor laser
JP2965023B2 (en) Multi-wavelength distributed feedback semiconductor laser array and method of manufacturing the same
JPS62165392A (en) Manufacture of diffraction grating