JPS6032383A - Manufacture of periodic structure - Google Patents

Manufacture of periodic structure

Info

Publication number
JPS6032383A
JPS6032383A JP58141557A JP14155783A JPS6032383A JP S6032383 A JPS6032383 A JP S6032383A JP 58141557 A JP58141557 A JP 58141557A JP 14155783 A JP14155783 A JP 14155783A JP S6032383 A JPS6032383 A JP S6032383A
Authority
JP
Japan
Prior art keywords
etching
film
periodic
substrate
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58141557A
Other languages
Japanese (ja)
Other versions
JPH0418717B2 (en
Inventor
Tomoaki Uno
智昭 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58141557A priority Critical patent/JPS6032383A/en
Publication of JPS6032383A publication Critical patent/JPS6032383A/en
Publication of JPH0418717B2 publication Critical patent/JPH0418717B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Semiconductor Lasers (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To enable to form a periodic structure of a large area without necessity of an accurate optical system by forming a recess by anisotropically etching the surface of a substrate, forming and selectively removing a film for etching mask of the surface of the substrate, buring an etching film only in the recess, and then sequentially forming periodic recesses by etching. CONSTITUTION:A resist pattern 16 is formed on a substrate formed of an waveguide layer 12, a light emitting layer 13, a clad layer 14 and a substrate 15, and a periodic recess 17 is formed by anisotropic etching. Then, the resist 16 is removed, a masking film 18 is formed, dry etched to form a mask 19, and a periodic recess 20 is obtained by anisotropic etching. Then, the mask 19 is removed, a new masking film 22 is coated on the structure 21 made of the recesses 17, 20, a periodic structure 26 formed of periodic recesses 24, 25 is formed, a P type InP clad layer 27, a P type InGaAsP contacting layer 28 are eventually grown to obtain a laser structure.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、周期構造体の製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method of manufacturing a periodic structure.

従来例の構成とその問題点 近年、周期構造体は、分布帰還型のレーザや光回路に多
く用いられている。
Conventional configurations and their problems In recent years, periodic structures have been widely used in distributed feedback lasers and optical circuits.

以下図面を参照しながら、上述したような従来の周期構
造体の製造方法を分布帰還型レーザの作製例を用いて説
明する。作製例の分布帰還型レーザは1.3μmの発光
波長を有するInP/InGaAsP系の素子である。
Hereinafter, with reference to the drawings, a conventional method for manufacturing a periodic structure as described above will be explained using an example of manufacturing a distributed feedback laser. The distributed feedback laser in the fabrication example is an InP/InGaAsP-based element having an emission wavelength of 1.3 μm.

第1図は上記分布帰還型レーザの周期構造体製造工程図
である。第1図におして、1はバンドギャップが1.1
eVのP型InGaAsP 導波層、2はバンドギャッ
プが0.96eVのnWInGaAsP発光層、3はn
型のInP クラッド層、4はn型のInP 基板、5
はレジスト層、6および7は波長が3250への平面波
の進行方向、8は1860への周期でストライプ状に残
されたレジスト、9は8のレジストパターンを用いて形
成された周期的溝、10はP型のInP クラッド層、
11はバンドギヤングが1.1 eVのInGaAsP
 コンタクト層である。
FIG. 1 is a process diagram for manufacturing a periodic structure of the distributed feedback laser. In Figure 1, 1 has a band gap of 1.1.
eV p-type InGaAsP waveguide layer, 2 is nWInGaAsP light emitting layer with band gap of 0.96 eV, 3 is n
4 is an n-type InP cladding layer; 5 is an n-type InP cladding layer;
6 and 7 are resist layers, 6 and 7 are the traveling directions of plane waves with wavelengths of 3250, 8 is resist left in stripes with a period of 1860, 9 is a periodic groove formed using the resist pattern of 8, and 10 is a P-type InP cladding layer,
11 is InGaAsP with a bandgyan of 1.1 eV.
This is the contact layer.

第1図aは周期構造体を形成する基体であり、導波層1
1発光層2.クラッド層3.基板4がら成っている。前
記基体上に第1図すに示すように、たとえばポジ型しジ
ス) A Z −1360ヲA Z −シンナーで1:
2に希釈して毎分5000回転で塗布して約100o人
のレジスト層5を形成した後に90℃20分のベーキン
グを行い、しかるのち波長が3250へのHe −Cd
 レーザ光の平面波6および7を用いて2光束干渉露光
を行う。平面波6および7は、レジスト層5に垂直な同
一平面内に位置しレジスト層5の 線に対して61度の
角度を成して向もあっている。140℃2o分のベーキ
ング後、第1図Cに示すように1860人周期の周期的
レジストパターン8を得る。
FIG. 1a shows a substrate forming a periodic structure, and a waveguide layer 1.
1 light emitting layer 2. Cladding layer 3. It consists of a substrate 4. As shown in FIG.
After coating at 5,000 revolutions per minute to form a resist layer 5 of approximately 100 layers, baking was performed at 90° C. for 20 minutes, and then He-Cd was diluted to a wavelength of 3,250.
Two-beam interference exposure is performed using plane waves 6 and 7 of laser light. The plane waves 6 and 7 are located in the same plane perpendicular to the resist layer 5 and are oriented at an angle of 61 degrees with respect to the line of the resist layer 5. After baking at 140° C. for 20 minutes, a periodic resist pattern 8 having a period of 1860 people is obtained as shown in FIG. 1C.

この後HB r 、 HNO3,H2Oを1:1:51
7)割合で混ぜあわせた溶液を用いて約30秒間導波層
1のエツチングを行い、第1図dに示すように周期18
60人の周期構造体9を形成する。レーザ構造はこの後
に、第1図eに示すようにP型InP クラッド層1o
1 P型InGaAsP 層11を結晶成長することに
より得られる。
After this, HB r , HNO3, H2O at 1:1:51
7) Etch the waveguide layer 1 for about 30 seconds using the mixed solution at a period of 18 as shown in Figure 1d.
A periodic structure 9 of 60 people is formed. After this, the laser structure is formed by forming a P-type InP cladding layer 1o as shown in FIG. 1e.
1 by crystal growth of a P-type InGaAsP layer 11.

ところがここに説明したような周期構造体の製造方法は
、精密に配置された全く震動のない光学系が必要である
という理由と、レーザ光強度が本来ガウス分布であるた
めに大面積のレーザ光平面波を得ることが困難で周期構
造体を大面積にわたって形成することが困難であるとい
う理由から産業用の周期構造体の製造方法として1は不
むきであった。
However, the manufacturing method of periodic structures as explained here requires a precisely arranged optical system with no vibration, and because the laser light intensity is originally Gaussian distributed, it is difficult to use the laser light over a large area. Method 1 was unsuitable as a manufacturing method for industrial periodic structures because it was difficult to obtain plane waves and it was difficult to form periodic structures over a large area.

発明の目的 本発明の目的は上記欠点に鑑み、精密な光学系を必要と
せずしかも大面積にわたって周期構造体を形成すること
が可能な産業用に適した周期構造体の製造方法を提供す
ることである。
Purpose of the Invention In view of the above drawbacks, an object of the present invention is to provide a method for manufacturing a periodic structure suitable for industrial use, which does not require a precise optical system and can form a periodic structure over a large area. It is.

発明の構成 本発明は、単結晶基板表面に異方性エツチングによって
第1の凹部を形成する第1の工程と、前記基板表面全域
にエンチングマスク用被膜を被覆する第2の工程と、前
記エツチングマスク用被膜を選択的に除去して前記第1
の四部にのみエンチング被膜を埋設する第3の工程と、
前記埋設されだエツチング被膜をマスクにして前記基板
表面を異方性エツチングして前記第1の凹部に隣接した
第2の凹部を形成する第4の工程とを有することを特徴
とするものである。そして望ましくはエツチングマスク
用被膜の選択除去をドライエツチングにて行い、エツチ
ングマスク用被膜がポジ型フォトレジストであり、前記
ポジ型フォトレジストの選択除去を全面露光後の現像処
理により行う。
Structure of the Invention The present invention comprises a first step of forming a first recess on the surface of a single crystal substrate by anisotropic etching, a second step of coating the entire surface of the substrate with an etching mask film, and The etching mask film is selectively removed and the first etching mask film is removed.
a third step of embedding an etching film only in four parts;
and a fourth step of anisotropically etching the substrate surface using the buried etching film as a mask to form a second recess adjacent to the first recess. . Preferably, the etching mask film is selectively removed by dry etching, and the etching mask film is a positive photoresist, and the positive photoresist is selectively removed by a development process after the entire surface is exposed.

まだ、本発明は、単結晶基板表面に異方性エツチングに
て第」の凹部を形成する第1の工程と、前記基板表面全
域にエツチングマスク用被膜を被覆する第2の工程と、
前記エツチングマスク用被膜を選択的に除去して前記第
1の凹部にのみエツチング被膜を埋設する第3の工程と
、前記埋設されたエツチング被膜をマスクにして前記基
板を異方性エツチングして前記第1の四部に隣接した第
2の凹部を形成する第4の工程と、前記四部の一部にエ
ツチングマスク用被膜を埋設し、このエツチングマスク
用被膜をマスクとして前記基板を異方性エツチングして
別の凹部を形成する第5の工程とを有し、前記第5の工
程を1回以上用いることを特徴とするものである。そし
て、この場合も望捷しくはエツチングマスク用被膜の選
択除去をドライエツチングにて行う。
Still, the present invention includes a first step of forming a second recess on the surface of a single crystal substrate by anisotropic etching, a second step of coating the entire surface of the substrate with an etching mask film,
a third step of selectively removing the etching mask film and embedding the etching film only in the first recess; and anisotropically etching the substrate using the buried etching film as a mask; a fourth step of forming a second recess adjacent to the first four parts, embedding an etching mask film in a part of the four parts, and anisotropically etching the substrate using the etching mask film as a mask; and a fifth step of forming another recessed portion, and is characterized in that the fifth step is used one or more times. In this case as well, it is preferable to selectively remove the etching mask film by dry etching.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。本実施例は、1.3μm発光波長のDF B 
(Distributed Feed Back )構
造を有する分布帰還型半導体レーザにおける3760人
周期の周期構造体の製造例である。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. This example uses DF B with an emission wavelength of 1.3 μm.
This is an example of manufacturing a periodic structure having a period of 3760 in a distributed feedback semiconductor laser having a (Distributed Feed Back) structure.

第2図は本実施例の周期構造体の製造工程を示す。FIG. 2 shows the manufacturing process of the periodic structure of this example.

第2図において、12はバンドギャップが1.1e■の
P型InGaAsP 導波層、13はバンドギャップが
0.96eV のn型InGaAsP 発光層、14は
n型のInP クラッド層、15はn型のInP基板、
16は周期的に残されたストライプ形状のレジスト、1
7はレジスト16をマスクとして形成された周期的凹部
、18は導波層12の表面全域を被覆するエツチングマ
スク用被膜、19は周期的凹部13に埋設されたエツチ
ングマスク、2゜はエツチングマスク19をマスクとし
て形成した周期的四部、21は周期的凹部13および周
期的凹部20とからなる第1の周期構造体、22は第1
の周期構造体21表面全域を被覆するエツチングマスク
用被膜、23は周期的凹部に埋設したエツチングマスク
、24はエツチングマスク23にマスクされた周期的凹
部、25はエツチングマスク23をマスクとして形成さ
れた周期的凹部、26は周期的凹部24および周期的凹
部26からなる第2の周期構造体、27はP型InP 
クラッド層、28はバンドギャップが1.1eVのIn
GaAsPコンタクト層である。
In FIG. 2, 12 is a P-type InGaAsP waveguide layer with a band gap of 1.1 eV, 13 is an n-type InGaAsP light emitting layer with a band gap of 0.96 eV, 14 is an n-type InP cladding layer, and 15 is an n-type InP substrate,
16 is a stripe-shaped resist left periodically, 1
7 is a periodic recess formed using the resist 16 as a mask, 18 is an etching mask film covering the entire surface of the waveguide layer 12, 19 is an etching mask embedded in the periodic recess 13, and 2° is an etching mask 19. 21 is a first periodic structure consisting of periodic recesses 13 and periodic recesses 20, 22 is a first
23 is an etching mask embedded in the periodic recesses, 24 is a periodic recess masked by the etching mask 23, and 25 is formed using the etching mask 23 as a mask. Periodic recesses, 26 a second periodic structure consisting of periodic recesses 24 and periodic recesses 26, 27 P-type InP
The cladding layer 28 is In with a band gap of 1.1 eV.
This is a GaAsP contact layer.

第2図aは、周期構造体を形成する基体であり、導波層
122発光層13.クラッド層14.基板15から成っ
ている。まずフォトマスクを用いた既知のフォトリング
ラフィにより、1.6μm周期で0.8μmの太さにレ
ジストを周期的に残したレジストパターン16を形成す
る。
FIG. 2a shows a substrate forming a periodic structure, including a waveguide layer 122, a light emitting layer 13, and the like. Cladding layer 14. It consists of a substrate 15. First, by known photolithography using a photomask, a resist pattern 16 is formed in which resist is left periodically with a period of 1.6 μm and a thickness of 0.8 μm.

しかる後にこのレジスト16をマスクにした異方性エツ
チングにより第2図すに示す周期的四部17を形成する
。本実施例は(100)の面方位の結晶を用いて、周期
的四部17の形状が7字形になるようにしているが、他
の面方位の結晶でも周期的凹部の形状が7字形になるも
のであれば良い。本実施例では、HBr、HNO3,H
2Oを1=1:5の割合で混ぜあわせたエツチング溶液
を用いてエツチングすることにより(111)面からな
るV字形の凹部を得ている。
Thereafter, periodic four portions 17 shown in FIG. 2 are formed by anisotropic etching using this resist 16 as a mask. In this example, a crystal with a (100) plane orientation is used so that the shape of the periodic four parts 17 is a figure 7 shape, but the shape of the periodic recesses is also a figure 7 shape even in crystals with other plane orientations. It's fine as long as it's something. In this example, HBr, HNO3, H
A V-shaped recess made of a (111) plane was obtained by etching using an etching solution containing 2O mixed in a ratio of 1=1:5.

周期的凹部17を形成した後レジスト16を除去し、次
いで第2図Cに示すようにエツチングマスク用被膜18
を形成する。エツチングマスク用破膜の材料としては、
ネガ型およびポジ型レジスト、ポリイミド等の液状有機
物フィルム材料、液状ンリカフィルムでも良い。エツチ
ングマスク用被膜18の表面はできるだけ平坦であるこ
とが望ましく、前記材料を回転塗布した場合平坦な面が
得られる。本実施例はポジ型レジストをエツチングマス
クとして用いた。ドライエツチング法によりエツチング
マスク用被膜18をエツチングして第2図dに示すエツ
チングマスク19を形成する。
After forming the periodic recesses 17, the resist 16 is removed, and then an etching mask film 18 is formed as shown in FIG. 2C.
form. As a material for the membrane rupture for etching masks,
Negative and positive resists, liquid organic film materials such as polyimide, and liquid phosphoric acid films may also be used. It is desirable that the surface of the etching mask coating 18 be as flat as possible, and a flat surface can be obtained when the material is spin-coated. In this example, a positive resist was used as an etching mask. The etching mask film 18 is etched by a dry etching method to form an etching mask 19 shown in FIG. 2d.

本実M例では02雰囲気によるドライエツチングを用い
た。特にエツチングマスク用被膜としてポジレジストを
用いる場合には、エツチングマスク用被膜18を適度に
全面露光して、現像処理を行うことによりドライエツチ
ング法を用いずにエツチングマスク19を形成できる。
In this practical example, dry etching using a 02 atmosphere was used. In particular, when a positive resist is used as the etching mask coating, the etching mask 19 can be formed without using dry etching by exposing the entire surface of the etching mask coating 18 appropriately and performing a development process.

これは周期的四部は光の散乱によりレジストが露光され
にくいことによる。
This is because the resist is difficult to be exposed to light in the periodic four parts due to light scattering.

次にエツチングマスク19を用いて前記エツチング溶液
による異方性エツチングを行い第2図eに示す周期的凹
部20を得る。エツチングマスク19を取り除いた後、
周期的凹部17および周期的四部20とからなる750
0人の周期を有する第1の周期構造体21上にエツチン
グマスク用被膜18とまったく同様にして第2図fに示
すようにあらたなエツチングマスク用被膜22を塗布す
る。
Next, anisotropic etching is performed using the etching solution using the etching mask 19 to obtain the periodic recesses 20 shown in FIG. 2e. After removing the etching mask 19,
750 consisting of periodic recesses 17 and periodic quarters 20
A new etching mask coating 22 is applied on the first periodic structure 21 having a period of 0 in exactly the same manner as the etching mask coating 18, as shown in FIG. 2f.

本実施例ではポジ型レジストである。In this example, a positive resist is used.

次にドライエツチングによりエツチングマスク用被膜2
2をエツチングし、第2図qに示すように周期構造体2
1の凹部の半分までエツチングマスク用被膜22が埋設
されるようにしてエツチングマスク23とする。次に前
記エツチング溶液を用いて異方性エツチングを行い第2
図りに示す周期的凹部25を得る。エツチングマスク2
3を取り除くと、周期的凹部24および周期的凹部25
からなる3750への周期を有する第2の周期構造体2
6が形成さ五る。周期構造体の形成を終えた前記基体は
P型InP クラッド層27、P型InGaAsP コ
ンタクト層28を結晶成長して第2図1に示すレーザ構
造を得る。
Next, the etching mask coating 2 is formed by dry etching.
2 to form a periodic structure 2 as shown in FIG.
An etching mask 23 is obtained by embedding the etching mask coating 22 up to half of the recess 1. Next, anisotropic etching is performed using the etching solution described above.
Periodic recesses 25 shown in the figure are obtained. Etching mask 2
3, periodic recesses 24 and periodic recesses 25
A second periodic structure 2 having a period of 3750 consisting of
6 is formed. After the formation of the periodic structure, a P-type InP cladding layer 27 and a P-type InGaAsP contact layer 28 are grown on the substrate to obtain the laser structure shown in FIG. 2.

本実施例では、周期構造体の形成をDFB構造を有する
分布帰還型半導体レーザの場合について説明しだが、他
の素子にも応用が可能であり、例えばDBR構造を有す
る分布帰還壁レーザおよび光回路中の各種グレイティン
グに用いることができ、周期溝道を有するものならば応
用はこの限りではない。まだ上記周期構造体製造工程の
一部をn回くり返すことにより、周期構造体の周期を1
/2nの大きさにすることができる。
In this example, the formation of the periodic structure is explained in the case of a distributed feedback semiconductor laser having a DFB structure, but it can also be applied to other elements, such as a distributed feedback wall laser having a DBR structure and an optical circuit. It can be used for various types of gratings inside, but the application is not limited to this as long as it has periodic grooves. By repeating part of the above periodic structure manufacturing process n times, the period of the periodic structure can be increased to 1.
/2n.

発明の効果 上記のように、本発明においては、精密な光学系を必要
とせずに、しかも大面積の産業用に適した周期構造体を
容易に得ることができるすぐれた効果を発揮することが
できる。
Effects of the Invention As described above, the present invention has the excellent effect of easily obtaining a periodic structure suitable for large-area industrial use without requiring a precise optical system. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a−eは従来例におけるレーザの周期構造体製造
方法の工程図、第2図a % iは本発明の一実施例に
おけるレーザの周期的溝遺体の製造工程図である。 12 ・導波層、17,24.25 ・−周期的凹部、
18 、22 ・・エツチングマスク用被膜、19.2
3 ・・エツチングマスク、21・・・・・第1の周期
構造体、26 ・ 第2の周期構造体。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第1図 第2図 第2図
1A to 1E are process diagrams of a conventional method for manufacturing a periodic structure of a laser, and FIG. 2A is a process diagram of a process of manufacturing a periodic groove structure of a laser in an embodiment of the present invention. 12 ・Waveguide layer, 17, 24.25 ・-periodic recess,
18, 22... Coating for etching mask, 19.2
3...Etching mask, 21...First periodic structure, 26. Second periodic structure. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 1 Figure 2 Figure 2

Claims (5)

【特許請求の範囲】[Claims] (1) 単結晶基板表面に異方性エツチングにて第1の
四部を形成する第1の工程と、前記基板表面全域にエツ
チングマスク用被膜を被覆する第2の工程と、前記エツ
チングマスク用被膜を選択的に除去して前記第1の四部
にのみエツチング被膜を埋設する第3の工程と、前記埋
設されたエツチング被膜をマスクにして前記基板を異方
性エツチングして前記第1の凹部に隣接した第2の凹部
を形成する第4の工程とを有することを特徴とする周期
構造体の製造方法。
(1) A first step of forming the first four parts on the surface of a single crystal substrate by anisotropic etching, a second step of coating the entire surface of the substrate with an etching mask film, and a second step of forming the etching mask film on the entire surface of the substrate. a third step of embedding an etching film only in the first four portions by selectively removing the etching film; and anisotropically etching the substrate using the embedded etching film as a mask to fill the first recessed portions. A method for manufacturing a periodic structure, comprising: a fourth step of forming an adjacent second recess.
(2) エツチングマスク用被膜の選択除去をドライエ
ツチングにて行うことを特徴とする特許請求の範囲第1
項に記載の周期構造体の製造方法。
(2) Claim 1, characterized in that selective removal of the etching mask film is performed by dry etching.
The method for manufacturing the periodic structure described in 2.
(3) エツチングマスク用被膜がポジ型フォトレジス
トであり、前記ポジ型フォトレジストの選択除去を全面
露光後の現像処理により行うこと、を特徴とする特許請
求の範囲第1項に記載の周期構造体の製造方法。
(3) The periodic structure according to claim 1, wherein the etching mask film is a positive photoresist, and selective removal of the positive photoresist is performed by a development process after the entire surface is exposed. How the body is manufactured.
(4)単結晶基板表面に異方性エツチングにて第1の凹
部を形成する第1の工程と、前記基板表面全域忙エツチ
ングマスク用被膜を被覆する第2の工程と、前記エツチ
ングマスク用被膜を選択的に除去して前記第1の凹部に
のみエツチング被膜を埋設する第3の工程と、前記埋設
されだエツチング被膜をマスクにして前記基板を異方性
エツチングして前記第1の凹部に隣接し/こ第2の四部
を形成する第4の工程と、前記凹部の一部にエツチング
マスク用被膜を埋設し、このエツチングマスク用被膜を
マスクとして前記基板を異方性エノチノグして別の四部
を形成する第5の工程とを有するととを特徴とする周期
構造体の製造方法。
(4) a first step of forming a first recess on the surface of a single crystal substrate by anisotropic etching; a second step of coating the entire surface of the substrate with a film for an etching mask; and a second step of coating the entire surface of the substrate with a film for an etching mask; a third step of selectively removing and burying an etching film only in the first recess; and anisotropically etching the substrate using the buried etching film as a mask to fill the first recess. a fourth step of forming adjacent/second four parts, embedding an etching mask film in a part of the recess, and anisotropically etching the substrate using the etching mask film as a mask to form another etching mask; and a fifth step of forming four parts.
(5) エツチングマスク用被膜の選択除去をドライエ
ツチングにて行うことを特徴とする特許請求のグ 範囲第字項に記載の周期構造体の製造方法。
(5) A method for manufacturing a periodic structure as set forth in claim 1, characterized in that selective removal of the etching mask film is carried out by dry etching.
JP58141557A 1983-08-02 1983-08-02 Manufacture of periodic structure Granted JPS6032383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58141557A JPS6032383A (en) 1983-08-02 1983-08-02 Manufacture of periodic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58141557A JPS6032383A (en) 1983-08-02 1983-08-02 Manufacture of periodic structure

Publications (2)

Publication Number Publication Date
JPS6032383A true JPS6032383A (en) 1985-02-19
JPH0418717B2 JPH0418717B2 (en) 1992-03-27

Family

ID=15294736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58141557A Granted JPS6032383A (en) 1983-08-02 1983-08-02 Manufacture of periodic structure

Country Status (1)

Country Link
JP (1) JPS6032383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132586A1 (en) * 2013-02-28 2014-09-04 富士フイルム株式会社 Method for producing a structure with fine irregularities, and structure with fine irregularities produced using said method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014132586A1 (en) * 2013-02-28 2014-09-04 富士フイルム株式会社 Method for producing a structure with fine irregularities, and structure with fine irregularities produced using said method

Also Published As

Publication number Publication date
JPH0418717B2 (en) 1992-03-27

Similar Documents

Publication Publication Date Title
JPS6032383A (en) Manufacture of periodic structure
JPH0653600A (en) Method for forming diffraction grating for semiconductor light emitting element
JPH0669605A (en) Formation of diffraction grating
JPS6033505A (en) Manufacture of diffraction grating
JP2527833B2 (en) Method of manufacturing diffraction grating
JPS61242027A (en) Molding of surface lattice with specified lattice constant on surface of crystal substrate
JPS60216304A (en) Preparation of diffraction grating
JPS6081829A (en) Etching process of semiconductor
KR100464353B1 (en) Method for fabricating grating of laser diode
JPS61242026A (en) Manufacture of surface lattice with specified lattice constant
JPH0670954B2 (en) Method for manufacturing semiconductor device
JPS6370477A (en) Manufacture of phase shift type diffraction grating
JPS61189503A (en) Manufacture of diffraction grating
JP2786229B2 (en) Manufacturing method of diffraction grating
JPS62205354A (en) Lithographic method
JPH01225189A (en) Manufacture of diffraction grating
JPS62139503A (en) Production of diffraction grating
JPH09184909A (en) Manufacture of diffraction grating limited in region
JPS6284515A (en) Forming method for resist pattern
JPS624386A (en) Manufacture of compound semiconductor device
JPH0283990A (en) Manufacture of semiconductor light emitting device
JPS61292924A (en) Formation of resist pattern
JPS62165392A (en) Manufacture of diffraction grating
JPH0243792A (en) Manufacture of diffraction grating
JPS6381885A (en) Manufacture of phase shift type deflection lattice