JPH0243792A - Manufacture of diffraction grating - Google Patents

Manufacture of diffraction grating

Info

Publication number
JPH0243792A
JPH0243792A JP63194951A JP19495188A JPH0243792A JP H0243792 A JPH0243792 A JP H0243792A JP 63194951 A JP63194951 A JP 63194951A JP 19495188 A JP19495188 A JP 19495188A JP H0243792 A JPH0243792 A JP H0243792A
Authority
JP
Japan
Prior art keywords
groove
mask
period
diffraction grating
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63194951A
Other languages
Japanese (ja)
Inventor
Manabu Matsuda
学 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63194951A priority Critical patent/JPH0243792A/en
Publication of JPH0243792A publication Critical patent/JPH0243792A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers

Abstract

PURPOSE:To realize the manufacture of a diffraction grating possessed of an extremely small period necessary for improving an optical semiconductor device such as a shortwave band DFB laser in characteristic by a method wherein a first groove of a specified period is provided to a semiconductor substrate, and a second groove of a specified period is formed on the semiconductor substrate making use of a mask buried in the first groove. CONSTITUTION:A first mask 4 with a pattern of a specified period A is formed on a semiconductor substrate 2, which is subjected to an etching using the first mask 4 to form a first groove 6 of the specified period A on the semiconductor substrate 2. Next, the above first groove 6 is filled with a second mask 8, and the substrate 2 is etched through the second mask 8 after the first mask 4 has been removed to form a second groove 10 of the specified period A. For instance, a positive resist 4 is applied onto the GaAs substrate 2, and the resist 4 is exposed to light using a two light beam interference method and developed to form a pattern of a period A. Then, a groove 6 is formed, then a negative resist 8 is applied, which is exposed to light, developed, and rinsed, and then a groove 10 is formed.

Description

【発明の詳細な説明】 第2の溝を形成する第4の工程とを有するように構成す
る。
DETAILED DESCRIPTION OF THE INVENTION A fourth step of forming a second groove.

[産業上の利用分野] 本発明は回折格子の製造方法に係り、特に0.8μm帯
等の短波長帯DFBレーザ(Distributed 
 Feedback  La5er ;分布帰還型レー
ザ)において、DFBレーザの重要なパラメータである
結合係数を大きくとることができる1次次数の回折格子
の製造方法に関する。
[Industrial Application Field] The present invention relates to a method for manufacturing a diffraction grating, and in particular to a method for manufacturing a diffraction grating, and in particular, a method for manufacturing a diffraction grating, particularly for a short wavelength band DFB laser (Distributed
The present invention relates to a method of manufacturing a first-order diffraction grating that can increase the coupling coefficient, which is an important parameter of a DFB laser, in a distributed feedback laser (Feedback La5er).

[従来の技術〕 例えば半導付ヘレーザなどの光半導体装置に用いられる
回折格子は、光波長オーダの短い周期が要求されるため
に、通常のフォトリングラフィ技術によっては十分な分
解能を得ることができない。
[Prior art] For example, diffraction gratings used in optical semiconductor devices such as semiconductor Hello lasers require a short period on the order of the optical wavelength, so it is difficult to obtain sufficient resolution using ordinary photolithography technology. Can not.

そのために従来の回折格子の製造方法においては、光波
長オーダの微細な周期的露光パターンを得るのに有効な
パターニング技術として、コヒーレントな2つの光波を
干渉させたときに生じる干渉縞を利用する三光束干渉法
が用いられてきた。
For this reason, in the conventional method for manufacturing diffraction gratings, a three-dimensional patterning technique that utilizes interference fringes that occur when two coherent light waves are made to interfere is used as a patterning technique that is effective for obtaining fine periodic exposure patterns on the order of optical wavelengths. Flux interferometry has been used.

この三光束干渉法においては、入射するレーザ光の波長
をλ、このレーザ光の基板面に入射する角度をθとする
と、この基板上で入射面を含む方向にできる干渉縞の周
期Aは、 Δ=λ/ 2s i nθ となる、そこで波長λおよび入射角度θを適当に選ぶこ
とにより所望の周期への露光パターンが形成され、さら
に現像によって周期への回折格子が形成される。
In this three-beam interferometry, if the wavelength of the incident laser beam is λ and the angle of incidence of this laser beam on the substrate surface is θ, then the period A of interference fringes formed on the substrate in a direction that includes the incident surface is: Δ=λ/2s i n θ, so by appropriately selecting the wavelength λ and the incident angle θ, an exposure pattern with a desired period is formed, and further, a diffraction grating with a period is formed by development.

このとき入射角θを適当に選べば、最小周1tfb\1
11nは、 八l1lln =λ/2 となり、またレーザ光として通常使用されるH eCd
レーザの3250人光を用いると、最小周期A min
は、 An+n=1525人 となる。
At this time, if the incident angle θ is selected appropriately, the minimum circumference 1tfb\1
11n is 8l1lln = λ/2, and H eCd which is usually used as a laser beam
When using 3250 beams of laser, the minimum period A min
An+n=1525 people.

すなわち従来の三光束干渉法を用いた回折格子のy!!
遣方法においては、最も短い周期として1600人程度
0周期の回折格子を作ることができる。
In other words, the y! of a diffraction grating using conventional three-beam interferometry! !
With this method, it is possible to create a diffraction grating with a zero period of approximately 1,600 people as the shortest period.

これによって例えば1.55μmや1.31μmの長波
長帯レーザに内蔵される回折格子が形成されている。
This forms a diffraction grating built into a long wavelength band laser of, for example, 1.55 μm or 1.31 μm.

[発明が解決しようとする課題] しかしながら、このような従来の回折格子の製造方法に
おいては、短波長帯レーザに必要とされる周期が100
0〜1200人といった短い周期の回折格子を作製する
ことができない。例えば短波長帯DPBレーザにおける
1次の回折格子を作製することができない、そのために
、やむなく2次の回折格子を作製して短波長帯DFBレ
ーザに用いていた。この2次の回折格子は、1次のもの
と比較すると、回折格子深さが同じ場合には結合係数の
値が1行程度小さく、また放射損も大きいために、結合
係数を大きくとることができない。
[Problems to be Solved by the Invention] However, in such a conventional method of manufacturing a diffraction grating, the period required for a short wavelength band laser is 100
Diffraction gratings with a short period of 0 to 1200 people cannot be manufactured. For example, it is impossible to fabricate a first-order diffraction grating for a short-wavelength DPB laser, so a second-order diffraction grating has been fabricated and used for a short-wavelength DFB laser. Compared to the first-order grating, the coupling coefficient of this second-order grating is about one line smaller when the depth of the grating is the same, and the radiation loss is also large, so it is difficult to set a large coupling coefficient. Can not.

従って、特性の大幅な向上を実現することが困難である
という問題があった。
Therefore, there was a problem in that it was difficult to achieve a significant improvement in characteristics.

そこで本発明は、短波長−IDFBレーザなどの光半導
体装置の特性を向上させるのに必要とされる、極めて黴
細な周期の回折格子の製造方法を提供することを目的と
するものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a diffraction grating having an extremely fine period, which is required to improve the characteristics of an optical semiconductor device such as a short wavelength IDFB laser.

[課題を解決するための手段] 上記課題は、半導体基板上に所定周期のパターンを有す
る第1のマスクを形成する第1の工程と、前記第1のマ
スクを使用してエツチングを行ない、前記半導体基板上
に前記所定周期の第1の溝を形成する第2の工程と、前
記第1の溝を第2のマスクによって埋め込む第3の工程
と、前記第1のマスクを除去した後、前記第2のマスク
を使用してエツチングを行ない、前記半導体基板上に前
記所定周期の第2の消を形成する第4の工程とを有する
ことを特徴とする回折格子の製造方法によって達成され
る。
[Means for Solving the Problems] The above-mentioned problems include a first step of forming a first mask having a pattern with a predetermined period on a semiconductor substrate, performing etching using the first mask, and performing etching using the first mask. a second step of forming the first grooves with the predetermined period on the semiconductor substrate; a third step of burying the first grooves with a second mask; and after removing the first mask, A fourth step of performing etching using a second mask to form a second pattern having a predetermined period on the semiconductor substrate.

[作 用] すなわち本発明は、半導体基板上に所定周期の第1の溝
を形成し、この第1の清に埋め込まれたマスクを使用し
て半導体基板上に所定周期の第2の溝を形成することに
よって、第1および第2の溝からなる回折格子を形成す
るものである。
[Function] That is, the present invention forms first grooves with a predetermined period on a semiconductor substrate, and uses a mask embedded in the first groove to form second grooves with a predetermined period on the semiconductor substrate. By forming the grooves, a diffraction grating consisting of the first and second grooves is formed.

これによって、これまでに形成されてきた所定周期より
も2倍に微細な周期の回折格子が形成される。
As a result, a diffraction grating having a period twice as fine as the predetermined period formed so far is formed.

[実施例] 以下、本発明を図示する実施例に基づいて具体的に説明
する。
[Example] The present invention will be specifically described below based on an illustrative example.

第1図は本発明の一実施例による回折格子の製造方法を
示す工程図である。
FIG. 1 is a process diagram showing a method for manufacturing a diffraction grating according to an embodiment of the present invention.

半導体基板としての例えばGaAs基板2の(100)
面上に、[0111方向に平行にポジレジスト(例えば
マイクロポジットMP1400−31)4を塗布する。
For example, a (100) GaAs substrate 2 as a semiconductor substrate
A positive resist (for example, Microposit MP1400-31) 4 is applied on the surface in parallel to the [0111 direction.

そして通常の三光束干渉法を用いてポジレジスト4を露
光および現像し、このポジレジスト4による周期へのパ
ターンを形成する。
Then, the positive resist 4 is exposed and developed using the usual three-beam interference method, and a periodic pattern is formed by the positive resist 4.

いま、この三光束干渉法において、He−Cdレーザの
3250 光を使用し、このHe−Cdレーザ光のGa
As基板2面に入射する角度をθとすると、ポジレジス
ト4によるパターンの周期Aは、 Δ−3250/2sinθ(A) となる、そこで入射角度θを適当に選ぶことにより、本
実施例においては、ポジレジスト4による周期Δ=20
00〜2400Aのパターンを形成するく第1図(a)
参照)。
Now, in this three-beam interferometry, 3250 light of a He-Cd laser is used, and the Ga of this He-Cd laser light is
When the angle of incidence on the two surfaces of the As substrate is θ, the period A of the pattern formed by the positive resist 4 is Δ-3250/2 sin θ(A). Therefore, by appropriately selecting the incident angle θ, in this example, , period Δ=20 due to positive resist 4
Figure 1 (a) to form a pattern of 00 to 2400A
reference).

次いで、このようにパターニングされたポジレジスト4
をマスクとして、GaAs基板2表面をエツチングし、
周期への消6を形成する(第1図(b)参照)。
Next, the positive resist 4 patterned in this way
Using as a mask, the surface of the GaAs substrate 2 is etched,
This forms a curve in the period (see FIG. 1(b)).

なお、このエツチングにおいては、GaAs基板2の(
111)面を出すようなの異方性エッチャントを用いて
行なうと、第1図(b)に示されるような7字形の湧6
となる。
Note that in this etching, (
111) If this is done using an anisotropic etchant that exposes the surface, a figure 7-shaped well 6 as shown in Figure 1(b) will be formed.
becomes.

次いで、全面にマスク材としてのネガレジスト(例えば
OMR−85の希釈液)8を塗布し、周期へのV字形の
講6を埋め込む、但し、このとき塗布されたネガレジス
ト8の厚さはポジレジスト4の厚さよりも薄くして、ポ
ジレジスト4の上部表面が露出するようにする(第1図
(c)参照)。
Next, a negative resist (for example, a diluted solution of OMR-85) 8 is applied as a mask material to the entire surface, and a V-shaped resist 6 is embedded in the period. However, the thickness of the negative resist 8 applied at this time is not equal to the positive It is made thinner than the thickness of the resist 4 so that the upper surface of the positive resist 4 is exposed (see FIG. 1(c)).

続いて、全面にわたって露光を行なう(第1図(d)I
照)。さらに、通常のフォトリングラフィ技術を用いて
現像およびリンスを行なう、これにより、一方において
露光されたネガレジスト8は周期Δで残存し、他方にお
いて露光されたポジレジスト4は溶解されて除去され、
GaAs基板2表面が露出される(第1図(e)参照)
Subsequently, the entire surface is exposed to light (Fig. 1(d) I
(see). Further, development and rinsing are carried out using a normal photolithography technique, whereby the exposed negative resist 8 remains on the one hand with a period Δ, and the exposed positive resist 4 on the other hand is dissolved and removed.
The surface of the GaAs substrate 2 is exposed (see FIG. 1(e)).
.

次いで、周期へのパターンのネガレジスト8をマスクと
して、露出されたGaAs基板2表面をエツチングし、
周期への7字形の消10を形成する。なお、このエツチ
ングは消6を形成する際と同じエッチャントおよび同じ
条件で行なうため、講6と講10とは同じ形状となる(
第1図(f)参照)。
Next, using the periodic patterned negative resist 8 as a mask, the exposed surface of the GaAs substrate 2 is etched,
Form a figure 7 cross 10 to the period. Note that this etching is performed with the same etchant and under the same conditions as when forming Eraser 6, so Eraser 6 and Eraser 10 have the same shape (
(See Figure 1(f)).

続いて、ネガレジスト8を除去すると、周期への7字形
の清6と同じく周期AのV字形の溝10とが合わさって
、周期への2倍に微細な周期、すなわち周期Δ/2=1
000〜1200人の回折格子がGaAs基板上に形成
される(第1図(g)参照)。
Subsequently, when the negative resist 8 is removed, the 7-shaped groove 6 in the period and the V-shaped groove 10 in the period A are combined to form a period twice as fine as the period, that is, the period Δ/2=1
A diffraction grating of 000 to 1200 people is formed on a GaAs substrate (see FIG. 1(g)).

次いで、この周期A/2の回折格子を有するGaAs基
板2上に、例えばAlGaAsからなる光ガイド層12
をエピタキシャル成長させ、さらにこの光ガイド層12
上に順次例えばGaAsからなる活性層14、例えばA
lGaAsからなるクラッド層16、および例えばGa
Asからなるコンタクト層18をエピタキシャル成長さ
せる(第1図(h)参照)。
Next, a light guide layer 12 made of AlGaAs, for example, is placed on the GaAs substrate 2 having the diffraction grating with a period of A/2.
is epitaxially grown, and further this optical guide layer 12 is grown epitaxially.
An active layer 14 made of, for example, GaAs, for example, A
A cladding layer 16 made of lGaAs and, for example, GaAs.
A contact layer 18 made of As is epitaxially grown (see FIG. 1(h)).

続いて、コンタクト層18上およびGaAs基板2底面
上に、それぞれ電極20.22を形成する(第1図(i
)参照)。その後、両側壁に無反射膜(図示せず)を形
成して、周期入/2=1000〜1200人の回折格子
を内蔵するDFBレーザを製造する。
Subsequently, electrodes 20 and 22 are formed on the contact layer 18 and the bottom surface of the GaAs substrate 2, respectively (see FIG.
)reference). Thereafter, a non-reflective film (not shown) is formed on both side walls to manufacture a DFB laser having a built-in diffraction grating of period/2=1000-1200.

このように本実施例によれば、通常の三光束干渉法とフ
ォトリングラフィ技術を組み合わせることによって、三
光束干渉法を用いて形成される周期の2倍にV&細な周
期の回折格子を容易に形成することができる。従って、
周期が1000〜1200八といった短波長帯レーザに
必要な短い周期の回折格子を作ることができ、例えば短
波長帯DFBレーザにおける1次の回折格子を作製する
ことができる。このなめ、これまでの2次の回折格子を
用いた場合と比較すると、結合係数を大きくとることが
でき、また放射損も減少することができる。従って、短
波長帯DFBレーザの特性を向上させることができる。
As described above, according to this embodiment, by combining the ordinary three-beam interferometry and photolithography technology, it is possible to easily create a diffraction grating with a V&fine period twice that of the period formed using the three-beam interferometry. can be formed into Therefore,
A diffraction grating with a short period of 1000 to 12008, which is necessary for a short wavelength band laser, can be manufactured, for example, a first order diffraction grating in a short wavelength band DFB laser can be manufactured. Because of this, the coupling coefficient can be increased and the radiation loss can also be reduced compared to the conventional case of using a second-order diffraction grating. Therefore, the characteristics of the short wavelength band DFB laser can be improved.

なお、上記実施例においては、半導体基板としてGaA
s基板2が用いられているが、短波長帯レーザとなるも
のであれば、例えば同じGaA s系のGaAlAsな
どの他の半導体であってもよい。
Note that in the above embodiment, GaA is used as the semiconductor substrate.
Although the s-substrate 2 is used, other semiconductors such as GaAlAs of the same GaAs s-based material may be used as long as the material serves as a short wavelength band laser.

また、GaAs基板2の(100)面をエツチングして
(111)面を露出する講6,10を形成しているが、
必ずしもこの基板面およびエツチング面を限定する必要
はない。ただし、上記実施例におけるこれらの条件は、
溝6,10を同一形状の7字形に形成するに適するもの
である。
In addition, the (100) plane of the GaAs substrate 2 is etched to form the grooves 6 and 10 that expose the (111) plane.
It is not necessary to limit the substrate surface and etching surface. However, these conditions in the above example are as follows:
This is suitable for forming the grooves 6 and 10 into the same figure 7 shape.

また、マスク材としてのネガレジスト8を塗布する替わ
りに、例えばECR−CVD法を用い、ポジレジスト4
にダメージを与えないような低温においてシリコン酸化
膜やシリコン窒化膜を堆積させ、溝6を埋め込んでやっ
てもよい、勿論このときも、ネガレジスト8の替わりに
マスク材として用いるシリコン酸化膜やシリコン窒化膜
の厚さはポジレジスト4の厚さよりも薄くして、ポジレ
ジスト4の上部表面が露出するようにしなければならな
い。
In addition, instead of applying the negative resist 8 as a mask material, for example, using the ECR-CVD method, a positive resist 4 can be applied.
It is also possible to fill in the groove 6 by depositing a silicon oxide film or a silicon nitride film at a low temperature that does not cause damage to the silicon oxide film or silicon nitride film used as a mask material instead of the negative resist 8. The thickness of the nitride film must be made thinner than the thickness of the positive resist 4 so that the upper surface of the positive resist 4 is exposed.

そしてマスク材としてネガレジスト8の替わりにシリコ
ン酸化膜やシリコン窒化膜を用いた場合、ポジレジスト
4はポジ形に限定されず、ネガレジストを用いてもよい
When a silicon oxide film or a silicon nitride film is used as a mask material instead of the negative resist 8, the positive resist 4 is not limited to a positive type, and a negative resist may be used.

さらにまた、上記実施例においては、この回折格子の製
造方法を短波長帯DFBレーザに適用しているが、これ
に限定されることなく、光集積回路において周期の短い
回折格子を形成する際に広く適用することができる。
Furthermore, in the above embodiment, this diffraction grating manufacturing method is applied to a short wavelength band DFB laser, but the method is not limited to this, and can be applied when forming a short-period diffraction grating in an optical integrated circuit. Can be widely applied.

[発明の効果] 以上のように本発明によれば、半導体基板上に所定周期
の第1の溝を形成し、この第1の清に埋め込まれたマス
クを使用して同じ所定周期の第2の溝を形成することに
より、短波長帯DFBレーザなどの光半導体装置の特性
を向上させるのに必要とされる、所定周期の2倍に微細
な周期の回折格子を製造することができる。
[Effects of the Invention] As described above, according to the present invention, a first groove with a predetermined period is formed on a semiconductor substrate, and a second groove with the same predetermined period is formed using a mask embedded in the first groove. By forming the grooves, it is possible to manufacture a diffraction grating having a period twice as fine as a predetermined period, which is required to improve the characteristics of an optical semiconductor device such as a short wavelength band DFB laser.

4・・・・・・活性層、 6・・・・・・クラッド層、 8・・・・・・コンタクト層、 0.22・・・・・・電極。4...Active layer, 6... cladding layer, 8...Contact layer, 0.22... Electrode.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による回折格子の製造方法を
示す工程図である。 図において、 2・・・・・・G a A s基板、 4・・・・・・ポジレジスト、 6.10・・・・・・溝、 8・・・・・・ネガレジスト、 12・・・・・・光ガイド層、
FIG. 1 is a process diagram showing a method for manufacturing a diffraction grating according to an embodiment of the present invention. In the figure, 2...GaAs substrate, 4...Positive resist, 6.10...Groove, 8...Negative resist, 12... ...light guide layer,

Claims (1)

【特許請求の範囲】 半導体基板上に所定周期のパターンを有する第1のマス
クを形成する第1の工程と、 前記第1のマスクを使用してエッチングを行ない、前記
半導体基板上に前記所定周期の第1の溝を形成する第2
の工程と、 前記第1の溝を第2のマスクによって埋め込む第3の工
程と、 前記第1のマスクを除去した後、前記第2のマスクを使
用してエッチングを行ない、前記半導体基板上に前記所
定周期の第2の溝を形成する第4の工程と を有することを特徴とする回折格子の製造方法。
[Scope of Claims] A first step of forming a first mask having a pattern with a predetermined period on the semiconductor substrate; and performing etching using the first mask to form the pattern with the predetermined period on the semiconductor substrate. a second groove forming a first groove of
a third step of burying the first trench with a second mask; and after removing the first mask, etching is performed using the second mask to form an area on the semiconductor substrate. and a fourth step of forming the second grooves with the predetermined period.
JP63194951A 1988-08-03 1988-08-03 Manufacture of diffraction grating Pending JPH0243792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63194951A JPH0243792A (en) 1988-08-03 1988-08-03 Manufacture of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63194951A JPH0243792A (en) 1988-08-03 1988-08-03 Manufacture of diffraction grating

Publications (1)

Publication Number Publication Date
JPH0243792A true JPH0243792A (en) 1990-02-14

Family

ID=16333039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63194951A Pending JPH0243792A (en) 1988-08-03 1988-08-03 Manufacture of diffraction grating

Country Status (1)

Country Link
JP (1) JPH0243792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258269A (en) * 2006-03-20 2007-10-04 Sumitomo Electric Ind Ltd Semiconductor optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258269A (en) * 2006-03-20 2007-10-04 Sumitomo Electric Ind Ltd Semiconductor optical element

Similar Documents

Publication Publication Date Title
US5238785A (en) Method of manufacturing a diffraction grating for a semiconductor laser
US5024726A (en) Method for producing a λ/4 shift type diffraction grating
JP5056347B2 (en) Manufacturing method of optical semiconductor device
JP6388007B2 (en) Optical device manufacturing method
US6197608B1 (en) Mask for area forming selective grating and selective area growth and method for fabricating semiconductor device by utilizing the same
JPH06300909A (en) Formation of diffraction grating by using holographic interference exposing method and optical semiconductor device using the same
JP3007928B2 (en) Method for manufacturing optical semiconductor device
JPH0243792A (en) Manufacture of diffraction grating
US4845014A (en) Method of forming a channel
JP3287331B2 (en) Method for manufacturing semiconductor optical device
JPH0231488A (en) Semiconductor laser device and its manufacture
JP2809809B2 (en) Manufacturing method of phase shift type diffraction grating
JP2000193813A (en) Diffraction grating formation method, diffraction grating and optical semiconductor element
JPS60136278A (en) Pattern formation
JP2876546B2 (en) Method of forming diffraction grating and semiconductor device using the same
JPH0340481A (en) Semiconductor laser
JPH04356001A (en) Production of diffraction grating
KR100464353B1 (en) Method for fabricating grating of laser diode
JP2527833B2 (en) Method of manufacturing diffraction grating
JPH04186829A (en) Manufacture of semiconductor device
JPH09184909A (en) Manufacture of diffraction grating limited in region
JPS61212803A (en) Manufacture of diffraction grating
JPH06317704A (en) Formation of diffraction grating
JPS63150984A (en) Forming method for diffraction grating
JPH02213182A (en) Manufacture of diffraction grating